126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of boundary conditions on Rayleigh-Bénard convection: stability, heat transfer and chaos

, , &
Article: 2304713 | Received 02 Jan 2023, Accepted 29 Dec 2023, Published online: 22 Jan 2024

References

  • Azhar, F. A., J. Jawdat, M. Faisal, M. Basir, and N. A. Jaafar. 2022. “Mathematical Modeling on Chaotic Convection in a Hybrid Nanofluids.” Waves in Random and Complex Media 32: 1–13.
  • Barletta, A. 2021. “Time-evolving to Space-Evolving Rayleigh–Bénard Instability of a Horizontal Porous Medium Flow.” Physics of Fluids 33 (12): 124106. https://doi.org/10.1063/5.0076368
  • Barrio, R., and S. Serrano. 2009. “Bounds for the Chaotic Region in the Lorenz Model.” Physica D: Nonlinear Phenomena 238 (16): 1615–1624. https://doi.org/10.1016/j.physd.2009.04.019
  • Chaabane, R., L. Kolsi, A. Jemni, N. K. Alshammari, and A. D. Orazio. 2021. “Numerical Study of the Rayleigh–Bénard Convection in two-Dimensional Cavities Heated by Elliptical Heat Sources Using the Lattice Boltzmann Method.” Physics of Fluids 33 (12): 123605. https://doi.org/10.1063/5.0073856
  • Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability. New York: Oxford University Press.
  • Chandrasekhar, S., and W. Reid. 1957. “On the Expansion of Functions Which Satisfy Four Boundary Conditions.” Proceedings of the National Academy of Sciences 43 (6): 521–527. https://doi.org/10.1073/pnas.43.6.521
  • Giglio, M., S. Musazzi, and U. Perini. 1981. “Transition to Chaotic Behavior via a Reproducible Sequence of Period-Doubling Bifurcations.” Physical Review Letters 47: 243–246. https://doi.org/10.1103/PhysRevLett.47.243
  • Haragus, M., and G. Iooss. 2021. “Domain Walls for the Bénard–Rayleigh Convection Problem with “Rigid–Free” Boundary Conditions.” Journal of Dynamics and Differential Equations 34: 1–23.
  • Hartmann, R., K. L. Chong, R. J. Stevens, R. Verzicco, and D. Lohse. 2021. “Heat Transport Enhancement in Confined Rayleigh-Bénard Convection Feels the Shape of the Container.” Europhysics Letters 135 (2): 24004. https://doi.org/10.1209/0295-5075/ac19ed
  • Herring, J. 1963. “Investigation of Problems in Thermal Convection.” Journal of the Atmospheric Sciences 20 (4): 325–338. https://doi.org/10.1175/1520-0469(1963)020<0325:IOPITC>2.0.CO;2
  • Herring, J. 1964. “Investigation of Problems in Thermal Convection: Rigid Boundaries.” Journal of the Atmospheric Sciences 21 (3): 277–290. https://doi.org/10.1175/1520-0469(1964)021<0277:IOPITC>2.0.CO;2
  • Hilborn, R. C. 1999. Chaos and Nonlinear Dynamics. Oxford: Oxford University Press.
  • Jeffreys, H. 1926. “The Stability of a Layer of Fluid Heated Below.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (10): 833–844. https://doi.org/10.1080/14786442608564114
  • Kanchana, C., P. G. Siddheshwar, L. M. Pérez, and D. Laroze. 2023. “Comparison of the Effect of Suction-Injection-Combination on Rayleigh–Bénard Convection in the Case of Asymmetric Boundaries with Those of Symmetric Ones.” Physics of Fluids 35 (5): 053615. https://doi.org/10.1063/5.0146657
  • Kanchana, C., P. G. Siddheshwar, and B. Shanker. 2022. “Convective Heat and Mass Transports and Chaos in two-Component Systems: Comparison of Results of Physically Realistic Boundary Conditions with Those of Artificial Ones.” Journal of Thermal Analysis and Calorimetry 147 (4): 3247–3266. https://doi.org/10.1007/s10973-021-10662-0
  • Kanchana, C., P. G. Siddheshwar, and Y. Zhao. 2019. “A Study of Rayleigh-Bénard Convection in Hybrid Nanoliquids with Physically Realistic Boundaries.” The European Physical Journal Special Topics 228 (12): 2511–2530. https://doi.org/10.1140/epjst/e2019-900074-1
  • Kanchana, C., P. G. Siddheshwar, and Y. Zhao. 2020. “The Effect of Boundary Conditions on the Onset of Chaos in Rayleigh–Bénard Convection Using Energy-Conserving Lorenz Models.” Applied Mathematical Modelling 88: 349–366. https://doi.org/10.1016/j.apm.2020.06.062
  • Kanchana, C., Y. Su, and Y. Zhao. 2020. “Regular and Chaotic Rayleigh-Bénard Convective Motions in Methanol and Water.” Communications in Nonlinear Science and Numerical Simulation 83: 105129. https://doi.org/10.1016/j.cnsns.2019.105129
  • Kanchana, C., Y. Zhao, and P. G. Siddheshwar. 2018. “A Comparative Study of Individual Influences of Suspended Multiwalled Carbon Nanotubes and Alumina Nanoparticles on Rayleigh-Bénard Convection in Water.” Physics of Fluids 30: 1–14.
  • Kita, T. 2007. “Entropy Change Through Rayleigh–Bénard Convective Transition with Rigid Boundaries.” Journal of the Physical Society of Japan 76 (6): 064006. https://doi.org/10.1143/JPSJ.76.064006
  • Kloosterziel, R., and G. Carnevale. 2003. “Closed-form Linear Stability Conditions for Rotating RayleighBnard Convection with Rigid Stress-Free Upper and Lower Boundaries.” Journal of Fluid Mechanics 480: 25–42. https://doi.org/10.1017/S0022112002003294
  • Kvernvold, O. 1979. “Rayleigh-Bénard Convection with one Free and one Rigid Boundary.” Geophysical & Astrophysical Fluid Dynamics 12 (1): 273–294. https://doi.org/10.1080/03091927908242693
  • Laroze, D., P. G. Siddheshwar, and H. Pleiner. 2013. “Chaotic Convection in a Ferrofluid.” Communications in Nonlinear Science and Numerical Simulation 18 (9): 2436–2447. https://doi.org/10.1016/j.cnsns.2013.01.016
  • Lichtenberg, A. J., and M. A. Lieberman. 1992. Regular and Chaotic Dynamics. 2nd ed. New York: Springer-Verlag.
  • Lopez, A., L. Romero, and A. Pearlstein. 1990. “Effect of Rigid Boundaries on the Onset of Convective Instability in a Triply Diffusive Fluid Layer.” Physics of Fluids A: Fluid Dynamics 2 (6): 897–902. https://doi.org/10.1063/1.857650
  • Lorenz, E. 1963. “Deterministic Nonperiodic Flow.” Journal of the Atmospheric Sciences 20 (2): 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  • Lorenz, E. N. 1984. “The Local Structure of a Chaotic Attractor in Four Dimensions.” Physica D: Nonlinear Phenomena 13 (1-2): 90–104. https://doi.org/10.1016/0167-2789(84)90272-0
  • Low, A. R. 1929. “On the Criterion for Stability of a Layer of Viscous Fluid Heated from Below.” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 125: 180–195.
  • McLaughlin, J. B., and S. A. Orszag. 1982. “Transition from Periodic to Chaotic Thermal Convection.” Journal of Fluid Mechanics 122 (-1): 123–142. https://doi.org/10.1017/S0022112082002122
  • Mizushima, J. 1993. “Mechanism of Mode Selection in Rayleigh—Bénard Convection with Free—Rigid Boundaries.” Fluid Dynamics Research 11 (6): 297–311. https://doi.org/10.1016/0169-5983(93)90014-2
  • Paul, S., P. Pal, P. Wahi, and M. K. Verma. 2011. “Dynamics of Zero-Prandtl Number Convection Near Onset.” Chaos: An Interdisciplinary Journal of Nonlinear Science 21: 023118. https://doi.org/10.1063/1.3591793
  • Paul, S., and M. K. Varma. 2012. “Bifurcation Analysis of the Flow Patterns in two-Dimensional Rayleigh-Bénard Convection.” International Journal of Bifurcation and Chaos 22 (05): 1230018–1230018-15. https://doi.org/10.1142/S0218127412300182
  • Paul, S., P. Wahi, and M. K. Verma. 2011. “Bifurcations and Chaos in Large-Prandtl Number Rayleigh–Bénard Convection.” International Journal of Non-Linear Mechanics 46: 772–781. https://doi.org/10.1016/j.ijnonlinmec.2011.02.010
  • Pellew, A., and R. V. Southwell. 1940. “On Maintained Convective Motion in a Fluid Heated from Below.” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 176: 312–343.
  • Platten, J. K., and J. C. Legros. 2012. Convection in Liquids. New York: Springer Science & Business Media.
  • Puigjaner, D., J. Herrero, C. Simo, and F. Giralt. 2011. “From Steady Solutions to Chaotic Flows in a Rayleigh-Bénard Problem at Moderate Rayleigh Numbers.” Physica D: Nonlinear Phenomena 240 (11): 920–934. https://doi.org/10.1016/j.physd.2011.01.007
  • Reid, W., and D. Harris. 1958. “Some Further Results on the Bénard Problem.” The Physics of Fluids 1 (2): 102–110. https://doi.org/10.1063/1.1705871
  • Saltzman, B. 1962. “Finite Amplitude Free Convection as an Initial Value Problem—I.” Journal of the Atmospheric Sciences 19 (4): 329–341. https://doi.org/10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO;2
  • Sanjalee, Y. D. Sharma, and O. P. Yadav. 2023. “Regular and Chaotic Rayleigh Bénard Convection in Hybrid Casson Nanoliquid Under the Effect of non-Uniform Heat Source.” Chinese Journal of Physics 83: 28–50. https://doi.org/10.1016/j.cjph.2023.02.006
  • Siddheshwar, P. G. 2010. “A Series Solution for the Ginzburg-Landau Equation with a Time-Periodic Coefficient.” Applied Mathematics 1 (06): 542–554. https://doi.org/10.4236/am.2010.16072
  • Siddheshwar, P. G. 2019. “A Differential Geometry Approach to Studying Rayleigh-Bénard Convection in Newtonian-Boussinesq Liquids.” Proceedings of the international conference on mathematical modeling in science and engineering, 46–54.
  • Siddheshwar, P. G., and C. Kanchana. 2017. “Unicellular Unsteady Rayleigh–Bénard Convection in Newtonian Liquids and Newtonian Nanoliquids Occupying Enclosures : New Findings.” International Journal of Mechanical Sciences 131-132: 1061–1072. https://doi.org/10.1016/j.ijmecsci.2017.07.050
  • Siddheshwar, P. G., and T. N. Sakshath. 2021. “Steady Finite-Amplitude Rayleigh–Bénard Convection of Ethylene Glycol–Copper Nanoliquid in a High-Porosity Medium Made of 30% Glass Fiber-Reinforced Polycarbonate.” Journal of Thermal Analysis and Calorimetry 143 (1): 485–502. https://doi.org/10.1007/s10973-019-09214-4
  • Siddheshwar, P. G., B. N. Shivakumar, Y. Zhao, and C. Kanchana. 2020. “Rayleigh-Bénard Convection in a Newtonian Liquid Bounded by Rigid Isothermal Boundaries.” Applied Mathematics and Computation 371: 124942. https://doi.org/10.1016/j.amc.2019.124942
  • Sparrow, C. 1982. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. New York: Springer Verlag.
  • Sprott, J. C. 2009. “Simplifications of the Lorenz Attractor.” Nonlinear Dynamics, Psychology, and Life Sciences 13: 271–278.
  • Strogatz, S. H. 1994. Nonlinear Dynamics and Chaos. Massachusetts: Westview Press.
  • Tveitereid, M., E. Palm, and A. Skogvang. 1986. “Transition to Chaos in Rayleigh-Bénard Convection.” Dynamics and Stability of Systems 1 (4): 343–365. https://doi.org/10.1080/02681118608806022
  • Vadasz, P. 2010. “Analytical Prediction of the Transition to Chaos in Lorenz Equations.” Applied Mathematics Letters 23 (5): 503–507. https://doi.org/10.1016/j.aml.2009.12.012
  • Vitral, E., S. Mukherjee, P. H. Leo, J. Viñals, M. R. Paul, and Z. Huang. 2020. “Spiral Defect Chaos in Rayleigh-Bénard Convection: Asymptotic and Numerical Studies of Azimuthal Flows Induced by Rotating Spirals.” Physical Review Fluids 5: 093501. https://doi.org/10.1103/PhysRevFluids.5.093501
  • Yigit, S., J. Hasslberger, N. Chakraborty, and M. Klein. 2020. “Effects of Rayleigh-Bénard Convection on Spectra of Viscoplastic Fluids.” International Journal of Heat and Mass Transfer 147: 118947. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118947
  • Zheng, X., S. Xin, M. Boutaous, C. Wang, D. A. Siginer, and W. Cai. 2023. “Oscillating Onset of the Rayleigh–Bénard Convection with Viscoelastic Fluids in a Slightly Tilted Cavity.” Physics of Fluids 35 (2): 023107. https://doi.org/10.1063/5.0137501

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.