20
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Semi-analytical and numerical investigation of a fully wet porous moving longitudinal fin exposed to a magnetic field with radiation and temperature-dependent thermal conductivity

ORCID Icon &
Article: 2304728 | Received 14 Sep 2023, Accepted 25 Dec 2023, Published online: 08 Feb 2024

References

  • Adeyeye, O., A. Aldalbahi, Z. Omar, J. Raza, M. Rahaman, A. Issakhov, Mohammad Rahimi-Gorji, and S. Nadeem. 2021. “Investigation of a Hyperbolic Annular Fin with Temperature Dependent Thermal Conductivity by Two Step Third Derivative Block Method (TSTDBM).” Microsystem Technologies 27: 2063–2074. https://doi.org/10.1007/s00542-020-05015-0.
  • Arslanturk, C. 2005. “A Decomposition Method for Fin Efficiency of Convective Straight Fins with Temperature-Dependent Thermal Conductivity.” International Communications in Heat and Mass Transfer 32 (6): 831–841. https://doi.org/10.1016/j.icheatmasstransfer.2004.10.006.
  • Aziz, A., and M. N. Bouaziz. 2011. “A Least Squares Method for a Longitudinal Fin with Temperature Dependent Internal Heat Generation and Thermal Conductivity.” Energy Conversion and Management 52 (8-9): 2876–2882. https://doi.org/10.1016/j.enconman.2011.04.003.
  • Aziz, A., and F. Khani. 2011. “Convection–Radiation from a Continuously Moving Fin of Variable Thermal Conductivity.” Journal of the Franklin Institute 348 (4): 640–651. https://doi.org/10.1016/j.jfranklin.2011.01.008.
  • Aziz, A., and M. Torabi. 2012. “Convective-Radiative Fins with Simultaneous Variation of Thermal Conductivity, Heat Transfer Coefficient, and Surface Emissivity with Temperature.” Heat Transfer—Asian Research 41 (2): 99–113. https://doi.org/10.1002/htj.20408.
  • Barrett, J. H. 1954. “Differential Equations of Non-Integer Order.” Canadian Journal of Mathematics 6: 529–541. https://doi.org/10.4153/CJM-1954-058-2.
  • Bhanja, D., B. Kundu, and A. Aziz. 2014. “Enhancement of Heat Transfer from a Continuously Moving Porous fin Exposed in Convective–Radiative Environment.” Energy Conversion and Management 88: 842–853. https://doi.org/10.1016/j.enconman.2014.09.016.
  • Darvishi, M. T., R. S. R. Gorla, F. Khani, and B. J. Gireesha. 2016. “Thermal Analysis of Natural Convection and Radiation in a Fully Wet Porous Fin.” International Journal of Numerical Methods for Heat & Fluid Flow 26 (8): 2419–2431. https://doi.org/10.1108/HFF-06-2015-0230.
  • Das, R., and B. Kundu. 2021. “Simultaneous Estimation of Heat Generation and Magnetic Field in a Radial Porous Fin from Surface Temperature Information.” International Communications in Heat and Mass Transfer 127: 105497. https://doi.org/10.1016/j.icheatmasstransfer.2021.105497.
  • Das, R., and D. K. Prasad. 2015. “Prediction of Porosity and Thermal Diffusivity in a Porous Fin Using Differential Evolution Algorithm.” Swarm and Evolutionary Computation 23: 27–39. https://doi.org/10.1016/j.swevo.2015.03.001.
  • Ghasemi, S. E., M. Hatami, and D. D. Ganji. 2014. “Thermal Analysis of Convective Fin with Temperature-Dependent Thermal Conductivity and Heat Generation.” Case Studies in Thermal Engineering 4: 1–8. https://doi.org/10.1016/j.csite.2014.05.002.
  • Gireesha, B. J., and G. Sowmya. 2022. “Heat Transfer Analysis of an Inclined Porous Fin Using Differential Transform Method.” International Journal of Ambient Energy 43 (1): 3189–3195. https://doi.org/10.1080/01430750.2020.1818619.
  • Gireesha, B. J., G. Sowmya, and N. Srikantha. 2022. “Heat Transfer in a Radial Porous Fin in the Presence of Magnetic Field: A Numerical Study.” International Journal of Ambient Energy 43 (1): 3402–3409. https://doi.org/10.1080/01430750.2020.1831599.
  • Gorla, R. S. R., and A. Y. Bakier. 2011. “Thermal Analysis of Natural Convection and Radiation in Porous Fins.” International Communications in Heat and Mass Transfer 38 (5): 638–645. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.024.
  • He, J. H. 2004. “The Homotopy Perturbation Method for Nonlinear Oscillators with Discontinuities.” Applied Mathematics and Computation 151 (1): 287–292. https://doi.org/10.1016/S0096-3003(03)00341-2.
  • Hoshyar, H. A., D. D. Ganji, and A. R. Majidian. 2016. “Least Square Method for Porous Fin in the Presence of Uniform Magnetic Field.” Journal of Applied Fluid Mechanics 9 (2): 661–668. https://doi.org/10.18869/acadpub.jafm.68.225.24245.
  • Izadi, M., M. Sheremet, A. Hajjar, A. M. Galal, I. Mahariq, F. Jarad, and M. B. B. Hamida. 2023. “Numerical Investigation of Magneto-Thermal-Convection Impact on Phase Change Phenomenon of Nano-PCM within a Hexagonal Shaped Thermal Energy Storage.” Applied Thermal Engineering 223: 119984. https://doi.org/10.1016/j.applthermaleng.2023.119984.
  • Jawairia, S., and J. Raza. 2022. “Optimization of Heat Transfer Rate in a Moving Porous Fin Under Radiation and Natural Convection by Response Surface Methodology: Sensitivity Analysis.” Chemical Engineering Journal Advances 11: 100304. https://doi.org/10.1016/j.ceja.2022.100304.
  • Keerthi, M. L., B. J. Gireesha, and G. Sowmya. 2022. “Numerical Investigation of Transient Thermal Behaviour of Fully Wet and Porous Moving Semi-Spherical fin.” Physica Scripta 97 (8): 085220. https://doi.org/10.1088/1402-4896/ac8293.
  • Kiwan, S. 2007. “Effect of Radiative Losses on the Heat Transfer from Porous Fins.” International Journal of Thermal Sciences 46 (10): 1046–1055. https://doi.org/10.1016/j.ijthermalsci.2006.11.013.
  • Kiwan, S., and M. A. Al-Nimr. 2001. “Using Porous Fins for Heat Transfer Enhancement.” Journal of Heat Transfer 123 (4): 790–795. https://doi.org/10.1115/1.1371922.
  • Kraus, A. D., A. Aziz, J. Welty, and D. P. Sekulic. 2001. “Extended Surface Heat Transfer.” Applied Mechanics Reviews 54 (5): B92–B92. https://doi.org/10.1115/1.1399680.
  • Kundu, B., R. Das, P. A. Wankhade, and K. S. Lee. 2018. “Heat Transfer Improvement of a Wet Fin Under Transient Response with a Unique Design Arrangement Aspect.” International Journal of Heat and Mass Transfer 127: 1239–1251. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.110.
  • Kundu, B., and K. S. Lee. 2016. “A Proper Analytical Analysis of Annular Step Porous Fins for Determining Maximum Heat Transfer.” Energy Conversion and Management 110: 469–480. https://doi.org/10.1016/j.enconman.2015.09.037.
  • Massoudi, M. D., and M. B. B. Hamida. 2022. “Enhancement of MHD Radiative CNT-50% Water+50% Ethylene Glycol Nanoliquid Performance in Cooling an Electronic Heat Sink Featuring Wavy Fins.” Waves in Random and Complex Media, 1–26. https://doi.org/10.1080/17455030.2022.2122626.
  • Massoudi, M. D., and M. B. B. Hamida. 2023. “Combined Impacts of Square Fins Fitted Wavy Wings and Micropolar Magnetized-Radiative Nanofluid on the Heat Sink Performance.” Journal of Magnetism and Magnetic Materials 574: 170655. https://doi.org/10.1016/j.jmmm.2023.170655.
  • Moradi, A., and H. Ahmadikia. 2010. “Analytical Solution for Different Profiles of Fin with Temperature-Dependent Thermal Conductivity.” Mathematical Problems in Engineering.  2010: Article id 568263.
  • Nguyen, L. M. Q., A. Hajjar, M. Izadi, M. B. B. Hamida, and A. A. AlGhamdi. 2023. “Numerical Study on Permanent Magnetic Heat Transfer Inside a Dual Semicircle Enclosure: Controlling by Magnet Position.” International Communications in Heat and Mass Transfer 148: 107058. https://doi.org/10.1016/j.icheatmasstransfer.2023.107058.
  • Oguntala, G., G. Sobamowo, R. Abd-Alhameed, and S. Jones. 2019. “Efficient Iterative Method for Investigation of Convective–Radiative Porous Fin with Internal Heat Generation Under a Uniform Magnetic Field.” International Journal of Applied and Computational Mathematics 5: 1–19. https://doi.org/10.1007/s40819-018-0592-9.
  • Patel, T., and R. Meher. 2015. “A Study on Temperature Distribution, Efficiency and Effectiveness of Longitudinal Porous Fins by Using Adomian Decomposition Sumudu Transform Method.” Procedia Engineering 127: 751–758. https://doi.org/10.1016/j.proeng.2015.11.409.
  • Patel, T., and R. Meher. 2017. “Adomian Decomposition Sumudu Transform Method for Convective Fin with Temperature-Dependent Internal Heat Generation and Thermal Conductivity of Fractional Order Energy Balance Equation.” International Journal of Applied and Computational Mathematics 3: 1879–1895. https://doi.org/10.1007/s40819-016-0208-1.
  • Patra, A., and S. S. Ray. 2014. “Homotopy Perturbation Sumudu Transform Method for Solving Convective Radial Fins with Temperature-Dependent Thermal Conductivity of Fractional Order Energy Balance Equation.” International Journal of Heat and Mass Transfer 76: 162–170. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.020.
  • Pavithra, C. G., B. J. Gireesha, and M. L. Keerthi. 2023. “Heat Transfer Analysis of a Convective Radiative Porous Moving Longitudinal Fin Exposed to Magnetic Field by Adomian Decomposition Sumudu Transform Method.” Physica Scripta 98 (4): 045208. https://doi.org/10.1088/1402-4896/acbeed.
  • Raza, J., M. Raza, T. Mustaq, and M. I. Qureshi. 2023. “Supervised Machine Learning Techniques for Optimization of Heat Transfer Rate of Cu-H2O Nanofluid Flow Over a Radial Porous Fin.” Multidiscipline Modeling in Materials and Structures 19 (4): 680–706. https://doi.org/10.1108/MMMS-08-2022-0153.
  • Raza, J., and K. Saleem. 2022. “Thermal Radiation and Natural Convection in the Flow of Hybrid Nanofluid Across a Permeable Longitudinal Moving Fin Using TOPSIS.” In Advancements in Nanotechnology for Energy and Environment. Advances in Sustainability Science and Technology, edited by D. Tripathi, R. K. Sharma, and H. F. Öztop, 199–228. Singapore: Springer. https://doi.org/10.1007/978-981-19-5201-2_11.
  • Turkyilmazoglu, M. 2018. “Heat Transfer from Moving Exponential Fins Exposed to Heat Generation.” International Journal of Heat and Mass Transfer 116: 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091.
  • Wang, F., R. S. Varun Kumar, G. Sowmya, E. R. El-Zahar, B. C. Prasannakumara, M. I. Khan, Sami Ullah Khan, M. Y. Malik, and W. F. Xia. 2022. “LSM and DTM-Pade Approximation for the Combined Impacts of Convective and Radiative Heat Transfer on an Inclined Porous Longitudinal fin.” Case Studies in Thermal Engineering 35: 101846. https://doi.org/10.1016/j.csite.2022.101846.
  • Watugala, G. K. 1993. “Sumudu Transform: A New Integral Transform to Solve Differential Equations and Control Engineering Problems.” Integrated Education 24 (1): 35–43. https://doi.org/10.1080/0020739930240105.
  • Zohora, F.-T., M. R. Haque, and M. M. Haque. 2023. “Numerical Investigation of the Hydrothermal Performance of Novel Pin-fin Heat Sinks with Hyperbolic, Wavy, and Crinkle Geometries and Various Perforations.” International Journal of Thermal Sciences 194: 108578. https://doi.org/10.1016/j.ijthermalsci.2023.108578.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.