81
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in augmenting biogas generation for achieving sustainable development

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2304730 | Received 04 May 2023, Accepted 18 Dec 2023, Published online: 26 Jan 2024

References

  • Abbas, Y., S. Yun, Z. Wang, Y. Zhang, X. Zhang, and K. Wang. 2021. “Recent Advances in bio-Based Carbon Materials for Anaerobic Digestion: A Review.” Renewable and Sustainable Energy Reviews 135:110378. https://doi.org/10.1016/j.rser.2020.110378.
  • Abbasi, T., S. Tauseef, and S. Abbasi, eds. 2012. “A Brief History of Anaerobic Digestion and ‘Biogas’.” In Biogas Energy, 11–23. New York: Springer.
  • Ahmed, S. F., M. Mofijur, K. Tarannum, A. T. Chowdhury, N. Rafa, S. Nuzhat, P. S. Kumar, D. -V. N. Vo, E. Lichtfouse, and T. M. I. Mahlia. 2021. “Biogas Upgrading, Economy and Utilization: A Review.” Environmental Chemistry Letters 19 (6): 4137–4164. https://doi.org/10.1007/s10311-021-01292-x.
  • Ahnert, M., and P. Krebs. 2021. “Growth of Science in Activated Sludge Modelling – a Critical Bibliometric Review.” Water Science and Technology 83 (12): 2841–2862. https://doi.org/10.2166/wst.2021.191.
  • Ajayi-Banji, A., and S. Rahman. 2022. “A Review of Process Parameters Influence in Solid-State Anaerobic Digestion: Focus on Performance Stability Thresholds.” Renewable and Sustainable Energy Reviews 167:112756. https://doi.org/10.1016/j.rser.2022.112756.
  • Alaerts, G., S. Veenstra, M. Bentvelsen, and L. A. van Duijl. 1993. “Feasibility of Anaerobic Sewage Treatment in Sanitation Strategies in Developing Countries.” Water Science and Technology 27 (1): 179–186. https://doi.org/10.2166/wst.1993.0042.
  • Ali, R. 2015. Biogas Production from Poultry Manure Using a Novel Solar Assisted System [Doctoral dissertation]. Palestine: Birzeit University.
  • Ali, S. S., M. Kornaros, A. Manni, J. Sun, A. E. -R. R. El-Shanshoury, E. -R. Kenawy, and M. A. Khalil. 2020. “Enhanced Anaerobic Digestion Performance by Two Artificially Constructed Microbial Consortia Capable of Woody Biomass Degradation and Chlorophenols Detoxification.” Journal of Hazardous Materials 389:122076. https://doi.org/10.1016/j.jhazmat.2020.122076.
  • Amore, A., P. N. Ciesielski, C. -Y. Lin, D. Salvachúa, and V. Sànchez i Nogué. 2016. “Development of Lignocellulosic Biorefinery Technologies: Recent Advances and Current Challenges.” Australian Journal of Chemistry 69 (11): 1201–1218. https://doi.org/10.1071/CH16022.
  • Amori, A. A., A. Ajayi-Banji, and R. A. Oloyo. 2017. “Utilization of Co-Digested Poultry Droppings and Swine Dung for Biogas Production.”
  • Ampese, L. C., W. G. Sganzerla, H. Di Domenico Ziero, A. Mudhoo, G. Martins, and T. Forster-Carneiro. 2022. “Research Progress, Trends, and Updates on Anaerobic Digestion Technology: A Bibliometric Analysis.” Journal of Cleaner Production 331:130004. https://doi.org/10.1016/j.jclepro.2021.130004.
  • Andrade, L. P., E. Crespim, N. de Oliveira, R. C. de Campos, J. C. Teodoro, C. M. A. Galvão, and R. M. Filho. 2017. “Influence of Sugarcane Bagasse Variability on Sugar Recovery for Cellulosic Ethanol Production.” Bioresource Technology 241:75–81. https://doi.org/10.1016/j.biortech.2017.05.081.
  • Assis, T. I., and R. F. Gonçalves. 2022. “Valorization of Food Waste by Anaerobic Digestion: A Bibliometric and Systematic Review Focusing on Optimization.” Journal of Environmental Management 320:115763. https://doi.org/10.1016/j.jenvman.2022.115763.
  • Atelge, R. 2021. “Co-digestion of Orange Pulp and Cattle Manure with Different C/N Ratios and a New Modeling of Biogas Production.” Karadeniz Fen Bilimleri Dergisi 11 (2): 557–569. https://doi.org/10.31466/kfbd.937269.
  • Atelge, M. R., H. Senol, M. Djaafri, T. A. Hansu, D. Krisa, A. Atabani, C. Eskicioglu, et al. 2021. “A Critical Overview of the State-of-the-art Methods for Biogas Purification and Utilization Processes.” Sustainability 13 (20): 11515. https://doi.org/10.3390/su132011515.
  • Attard, G., A. Comparetti, P. Febo, C. Greco, M. Mammano, and S. Orlando. 2017. “Case Study of Potential Production of Renewable Energy Sources (RES) from Livestock Wastes in Mediterranean Islands.”
  • Awe, O. W., Y. Zhao, A. Nzihou, D. P. Minh, and N. Lyczko. 2017. “A Review of Biogas Utilisation, Purification and Upgrading Technologies.” Waste and Biomass Valorization 8 (2): 267–283. https://doi.org/10.1007/s12649-016-9826-4.
  • Babæe, A., and J. Shayegan. 2011, May. “Effect of Organic Loading Rates (OLR) on Production of Methane from Anaerobic Digestion of Vegetables Waste.” In World Renewable Energy Congress-Sweden, 8–13. Linköping, Sweden: Linköping University Electronic Press.
  • Baitha, R., and R. Kaushal. 2019. “Experimental and Numerical Study of Biogas, Methane and Carbon Dioxide Produced by pre-Treated Wheat Straw and Pre-digested Cow Dung.” International Journal of Sustainable Engineering 12 (4): 240–247. https://doi.org/10.1080/19397038.2019.1605548.
  • Baitha, R., and R. Kaushal. 2020. “Numerical and Experimental Study of Biogas, Methane and Carbon Dioxide Produced by Pre-treated Slurry.” International Journal of Ambient Energy 41 (2): 198–204. https://doi.org/10.1080/01430750.2018.1456966.
  • Bandgar, P., S. Jain, and N. Panwar. 2022. “A Comprehensive Review on Optimization of Anaerobic Digestion Technologies for Lignocellulosic Biomass Available in India.” Biomass and Bioenergy 161:106479. https://doi.org/10.1016/j.biombioe.2022.106479.
  • Baruah, J., B. K. Nath, R. Sharma, S. Kumar, R. C. Deka, D. C. Baruah, and E. Kalita. 2018. “Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-added Products.” Frontiers in Energy Research 6:141. https://doi.org/10.3389/fenrg.2018.00141.
  • Battista, F., D. Fino, and G. Mancini. 2016. “Optimization of Biogas Production from Coffee Production Waste.” Bioresource Technology 200:884–890. https://doi.org/10.1016/j.biortech.2015.11.020.
  • Bhat, A., Y. K. Dasan, I. Khan, and M. Jawaid. 2017. “Cellulosic Biocomposites: Potential Materials for Future.” In Green Biocomposites, edited by Mohammad Jawaid, Mohd Sapuan Salit, and Othman Y. Alothman, 69–100. Springer.
  • Bond, T., and M. R. Templeton. 2011. “History and Future of Domestic Biogas Plants in the Developing World.” Energy for Sustainable Development 15 (4): 347–354. https://doi.org/10.1016/j.esd.2011.09.003.
  • Boneberg, B. S., G. D. Machado, D. F. Santos, F. Gomes, D. J. Faria, L. A. Gomes, and F. A. Santos. 2016. “Biorefinery of Lignocellulosic Biopolymers.” Revista Eletrônica Científica da UERGS 2 (1): 79–100. https://doi.org/10.21674/2448-0479.21.79-100.
  • Boscaro, M. E., D. F. Canaver Marin, D. Camila da Silva, and S. I. Maintinguer. 2022. “Effect of Fe3O4 Nanoparticles on Microbial Diversity and Biogas Production in Anaerobic Digestion of Crude Glycerol.” Biomass and Bioenergy 160:106439. https://doi.org/10.1016/j.biombioe.2022.106439.
  • Bouallagui, H., R. Ben Cheikh, L. Marouani, and M. Hamdi. 2003. “Mesophilic Biogas Production from Fruit and Vegetable Waste in a Tubular Digester.” Bioresource Technology 86 (1): 85–89. https://doi.org/10.1016/S0960-8524(02)00097-4.
  • Bridgwater, A. 1999. “Principles and Practice of Biomass Fast Pyrolysis Processes for Liquids.” Journal of Analytical and Applied Pyrolysis 51 (1–2): 3–22. https://doi.org/10.1016/S0165-2370(99)00005-4.
  • Bridgwater, A., D. Meier, and D. Radlein. 1999. “An Overview of Fast Pyrolysis of Biomass.” Organic Geochemistry 30 (12): 1479–1493. https://doi.org/10.1016/S0146-6380(99)00120-5.
  • Chen, Y. 2009. “Initial Investigation on Xylose Fermentation for Lignocellulosic Bioethanol Production.”
  • Chen, W.-Y., Y. J. Chan, J. W. Lim, C. S. Liew, M. Mohamad, C. -D. Ho, A. Usman, G. Lisak, H. Hara, and W. -N. Tan. 2022. “Artificial Neural Network (ANN) Modelling for Biogas Production in pre-Commercialized Integrated Anaerobic-Aerobic Bioreactors (IAAB).” Water 14 (9): 1410. https://doi.org/10.3390/w14091410.
  • Cheng, J., and G. R. Timilsina. 2010. “Advanced Biofuel Technologies: Status and Barriers.” World Bank Policy Research Working Paper (5411).
  • Cherukuri, N. R., and P. Parthasarathy. 2023. “Impact of Sequential Hybrid Pretreatment in Anaerobic Digestion of Food Waste and Garden Waste Co-Digestion on Waste Characteristics and Biogas Production.” Journal of Material Cycles and Waste Management 25: 1–14.
  • Coimbra-Araújo, C. H., L. Mariane, C. B. Júnior, E. P. Frigo, M. S. Frigo, I. R. C. Araújo, and H. J. Alves. 2014. “Brazilian Case Study for Biogas Energy: Production of Electric Power, Heat and Automotive Energy in Condominiums of Agroenergy.” Renewable and Sustainable Energy Reviews 40:826–839. https://doi.org/10.1016/j.rser.2014.07.024.
  • Comino, E., M. Rosso, and V. Riggio. 2009. “Development of a Pilot Scale Anaerobic Digester for Biogas Production from cow Manure and Whey mix.” Bioresource Technology 100 (21): 5072–5078. https://doi.org/10.1016/j.biortech.2009.05.059.
  • Comparettia, A., P. Feboa, C. Grecoa, M. M. Mammanob, and S. Orlando. 2017. “Potential Production of Biogas from Prinkly Pear (Opuntia Ficus-Indica L.) in Sicilian Uncultivated Areas.” Chemical Engineering 58:559–564.
  • Comparetti, A., P. Febo, C. Greco, and S. Orlando. 2013. “Current State and Future of Biogas and Digestate Production.” Bulgarian Journal of Agricultural Science 19 (1): 1–14.
  • Comparetti, A., P. Febo, C. Greco, and S. Orlando. 2015. “Italian Potential Biogas and Biomethane Production from OFMSW.” In IV International Conference Ragusa SHWA on “Safety, Health and Welfare in Agriculture, Agro-food and Forestry Systems”. Lodi, Italy.
  • Córdova, M. E. H., H. L. de Castro e Silva, R. M. Barros, E. E. S. Lora, I. F. S. dos Santos, J. V. R. de Freitas, A. H. M. Santos, J. R. Pedreira, and B. K. Flauzino. 2022. “Analysis of Viable Biogas Production from Anaerobic Digestion of Swine Manure with the Magnetite Powder Addition.” Environmental Technology & Innovation 25:102207. https://doi.org/10.1016/j.eti.2021.102207.
  • Dahunsi, S., S. Oranusi, J. B. Owolabi, and V. E. Efeovbokhan. 2016. “Comparative Biogas Generation from Fruit Peels of Fluted Pumpkin (Telfairia Occidentalis) and its Optimization.” Bioresource Technology 221:517–525. https://doi.org/10.1016/j.biortech.2016.09.065.
  • Daniel-Gromke, J., N. Rensberg, V. Denysenko, W. Stinner, T. Schmalfuß, M. Scheftelowitz, M. Nelles, and J. Liebetrau. 2018. “Current Developments in Production and Utilization of Biogas and Biomethane in Germany.” Chemie Ingenieur Technik 90 (1–2): 17–35. https://doi.org/10.1002/cite.201700077.
  • Das, N., P. K. Jena, D. Padhi, M. K. Mohanty, and G. Sahoo. 2021. “A Comprehensive Review of Characterization, Pretreatment and its Applications on Different Lignocellulosic Biomass for Bioethanol Production.” Biomass Conversion and Biorefinery 13: 1–25.
  • David, B., B. Federico, C. Cristina, G. Marco, M. Federico, and P. Paolo. 2019. “Biohythane Production from Food Wastes.” In Biohydrogen, edited by Ashok Pandey, S. Venkata Mohan, Jo-Shu Chang, Patrick C. Hallenbeck, and Christian Larroche, 347–368. Elsevier.
  • Deepanraj, B., N. Senthilkumar, J. Ranjitha, S. Jayaraj, and H. C. Ong. 2021. “Biogas from Food Waste Through Anaerobic Digestion: Optimization with Response Surface Methodology.” Biomass Conversion and Biorefinery 11 (2): 227–239. https://doi.org/10.1007/s13399-020-00646-9.
  • Deepanraj, B., V. Sivasubramanian, and S. Jayaraj. 2014. “Biogas Generation through Anaerobic Digestion Process-an Overview.” Research Journal of Chemistry and Environment 18:5.
  • Deepanraj, B., V. Sivasubramanian, and S. Jayaraj. 2017. “Multi-response Optimization of Process Parameters in Biogas Production from Food Waste Using Taguchi – Grey Relational Analysis.” Energy Conversion and Management 141:429–438. https://doi.org/10.1016/j.enconman.2016.12.013.
  • del Real Olvera, J., and A. Lopez-Lopez. 2012. Biogas Production from Anaerobic Treatment of Agro-Industrial Wastewater. Biogas. Rijeka: InTech, 91–112.
  • Demirbaş, A. 2001. “Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals.” Energy Conversion and Management 42 (11): 1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0.
  • Deublein, D., and A. Steinhauser. 2011. Biogas from Waste and Renewable Resources: An Introduction. John Wiley & Sons.
  • Devi, N. D., S. Das, A. Chaudhuri, and V. V. Goud. 2022. “Anaerobic Digestate Management.” Anaerobic Digestate Management, 171–188. https://doi.org/10.2166/9781789062755_0171.
  • Dobre, P., F. Nicolae, and F. Matei. 2014. “Main Factors Affecting Biogas Production-an Overview.” Romanian Biotechnological Letters 19 (3): 9283–9296.
  • Dominguillo-Ramírez, D., J. Aburto, H. H. Leon-Santiesteban, and E. Martinez-Hernandez. 2023. “Neural Network Model for Predicting the Biomethane Yield in an Anaerobic Digester Using Biomass Composition Profiles.” Fuel 344:128053. https://doi.org/10.1016/j.fuel.2023.128053.
  • dos Santos, A. L., A. L. S. Castro, K. R. Salomon, T. S. O. de Souza, and D. V. Vich. 2022. “Global Research Trends on Anaerobic Digestion and Biogas Production from Cassava Wastewater: A Bibliometric Analysis.” Journal of Chemical Technology & Biotechnology 97: 1379–1389.
  • Edwards, J., M. Othman, E. Crossin, and S. Burn. 2017. “Anaerobic Co-digestion of Municipal Food Waste and Sewage Sludge: A Comparative Life Cycle Assessment in the Context of a Waste Service Provision.” Bioresource Technology 223:237–249. https://doi.org/10.1016/j.biortech.2016.10.044.
  • Fahmi, R., A. V. Bridgwater, I. Donnison, N. Yates, and J. M. Jones. 2008. “The Effect of Lignin and Inorganic Species in Biomass on Pyrolysis oil Yields, Quality and Stability.” Fuel 87 (7): 1230–1240. https://doi.org/10.1016/j.fuel.2007.07.026.
  • Ferreira Maluf Braga, A., and M. Zaiat. 2022. “Fundamentals of Biofuel Production Using Anaerobic Digestion: Metabolic Pathways and Factors Affecting the Process.” In Renewable Energy Technologies for Energy Efficient Sustainable Development, edited by Arindam Sinharoy and Piet N. L. Lens, 3–21. Springer.
  • Fountoulakis, M., I. Petousi, and T. Manios. 2010. “Co-digestion of Sewage Sludge with Glycerol to Boost Biogas Production.” Waste Management 30 (10): 1849–1853. https://doi.org/10.1016/j.wasman.2010.04.011.
  • Fulford, D. 1999. “A Short History of Biogas.” Renewable Energy World, 1.
  • Gabhane, J., A. Tripathi, S. Athar, S. P. M. P. William, A. N. Vaidya, and S. R. Wate. 2016. “Assessment of Bioenergy Potential of Agricultural Wastes: A Case Study cum Template.” Journal of Biofuels and Bioenergy 2 (2): 122–131. https://doi.org/10.5958/2454-8618.2016.00011.0.
  • Gado, H., M. M. Y. Elghandour, M. Cipriano, N. E. Odongo, and A. Z. M. Salem. 2017. “Rumen Degradation and Nutritive Utilization of Wheat Straw, Corn Stalks and Sugarcane Bagasse Ensiled with Multienzymes.” Journal of Applied Animal Research 45 (1): 485–489. https://doi.org/10.1080/09712119.2016.1217866.
  • Gaudel, R. 2014. “Pressurised Hot Water Extraction (PHWE) and Alkaline Extraction of Spruce.”
  • Ghatak, M. D., and P. Mahanta. 2014. “Comparison of Kinetic Models for Biogas Production Rate from saw Dust.” Carbon 63:35.
  • Ghosh, P., G. Shah, S. Sahota, L. Singh, and V. K. Vijay. 2020. “Biogas Production from Waste: Technical Overview, Progress, and Challenges.” Bioreactors, 89–104. https://doi.org/10.1016/B978-0-12-821264-6.00007-3.
  • Glivin, G., M. Vairavan, P. Manickam, and J. S. Santhappan. 2021. “Techno Economic Studies on the Effective Utilization of Non-uniform Biowaste Generation for Biogas Production.” Anaerobic Digestion in Built Environments 81.
  • Gomez, C. D. C. 2013. Biogas as an Energy Option: An Overview. The biogas handbook, 1–16.
  • Goswami, R., P. Chattopadhyay, A. Shome, S. N. Banerjee, A. K. Chakraborty, A. K. Mathew, and S. Chaudhury. 2016. “An Overview of Physico-chemical Mechanisms of Biogas Production by Microbial Communities: A Step towards Sustainable Waste Management.” 3 Biotech 6 (1): 1–12. https://doi.org/10.1007/s13205-016-0395-9.
  • Goyal, A., D. Pandey, S. Jain, M. Tyagi, J. Agarwal, and S. Jain. 2018. “Development of Decision Model for Power Generation from Carbonized Food Waste.” Waste and Biomass Valorization 9 (10): 1955–1960. https://doi.org/10.1007/s12649-017-9948-3.
  • Graminha, E., A. Z. L. Gonçalves, R. D. P. B. Pirota, M. A. A. Balsalobre, R. Da Silva, and E. Gomes. 2008. “Enzyme Production by Solid-State Fermentation: Application to Animal Nutrition.” Animal Feed Science and Technology 144 (1–2): 1–22. https://doi.org/10.1016/j.anifeedsci.2007.09.029.
  • Grando, R. L., A. M. de Souza Antune, F. V. da Fonseca, A. Sánchez, R. Barrena, and X. Font. 2017. “Technology Overview of Biogas Production in Anaerobic Digestion Plants: A European Evaluation of Research and Development.” Renewable and Sustainable Energy Reviews 80:44–53. https://doi.org/10.1016/j.rser.2017.05.079.
  • Grosser, A. 2018. “Determination of Methane Potential of Mixtures Composed of Sewage Sludge, Organic Fraction of Municipal Waste and Grease Trap Sludge Using Biochemical Methane Potential Assays. A Comparison of BMP Tests and Semi-continuous Trial Results.” Energy 143:488–499. https://doi.org/10.1016/j.energy.2017.11.010.
  • Gupte, A. P., M. Basaglia, S. Casella, and L. Favaro. 2022. “Rice Waste Streams as a Promising Source of Biofuels: Feedstocks, Biotechnologies and Future Perspectives.” Renewable and Sustainable Energy Reviews 167:112673. https://doi.org/10.1016/j.rser.2022.112673.
  • Gutiérrez, A. S., J. J. Cabello Eras, L. Hens, and C. Vandecasteele. 2020. “The Energy Potential of Agriculture, Agroindustrial, Livestock, and Slaughterhouse Biomass Wastes Through Direct Combustion and Anaerobic Digestion. The Case of Colombia.” Journal of Cleaner Production 269:122317. https://doi.org/10.1016/j.jclepro.2020.122317.
  • Guven, H., M. S. Akca, E. Iren, F. Keles, I. Ozturk, and M. Altinbas. 2018. “Co-digestion Performance of Organic Fraction of Municipal Solid Waste with Leachate: Preliminary Studies.” Waste Management 71:775–784. https://doi.org/10.1016/j.wasman.2017.04.039.
  • Halim, A. M., and O. Abas. 2017. “Design a Mechanical-Biological System for Treatment Biological Wastes (Orange Peels, Peel Peas, Okra Shell) with Optimization and Qualification for Liberal and Residue Products.” Advances in Environmental Biology 11 (2): 71–83.
  • Harris, P. 2008. “A Brief History of Biogas.” Accessed August 20, 2008. http://www. adelaide.edu.au/biogas/history.
  • Hartmann, H., and B. K. Ahring. 2005. “Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Influence of Co-digestion with Manure.” Water Research 39 (8): 1543–1552. https://doi.org/10.1016/j.watres.2005.02.001.
  • Herringshaw, B. 2009. A Study of Biogas Utilization Efficiency Highlighting Internal Combustion Electrical Generator Units. The Ohio State University.
  • Hobbs, S. R., A. E. Landis, B. E. Rittmann, M. N. Young, and P. Parameswaran. 2018. “Enhancing Anaerobic Digestion of Food Waste through Biochemical Methane Potential Assays at Different Substrate: Inoculum Ratios.” Waste Management 71:612–617. https://doi.org/10.1016/j.wasman.2017.06.029.
  • Horan, N., A. Z. Yaser, and N. Wid. 2018. Anaerobic Digestion Processes. Springer.
  • Hotta, S. K., N. Sahoo, K. Mohanty, and V. Kulkarni. 2020. “Ignition Timing and Compression Ratio as Effective Means for the Improvement in the Operating Characteristics of a Biogas Fueled Spark Ignition Engine.” Renewable Energy 150:854–867. https://doi.org/10.1016/j.renene.2019.12.145.
  • Houghton, R., F. Hall, and S. J. Goetz. 2009. “Importance of Biomass in the Global Carbon Cycle.” Journal of Geophysical Research: Biogeosciences 114 (G2): 1–13.
  • Huang, X., S. Yun, J. Zhu, T. Du, C. Zhang, and X. Li. 2016. “Mesophilic Anaerobic Co-digestion of Aloe Peel Waste with Dairy Manure in the Batch Digester: Focusing on Mixing Ratios and Digestate Stability.” Bioresource Technology 218:62–68. https://doi.org/10.1016/j.biortech.2016.06.070.
  • Ihoeghian, N. A., A. N. Amenaghawon, M. U. Ajieh, C. E. Oshoma, A. Ogofure, N. O. Erhunmwunse, V. I.O. Edosa, et al. 2022. “Anaerobic co-Digestion of Cattle Rumen Content and Food Waste for Biogas Production: Establishment of co-Digestion Ratios and Kinetic Studies.” Bioresource Technology Reports 18:101033. https://doi.org/10.1016/j.biteb.2022.101033.
  • Induchoodan, T., I. Haq, and A. S. Kalamdhad. 2022. “Factors Affecting Anaerobic Digestion for Biogas Production: A Review.” Advanced Organic Waste Management, 223–233.
  • Jahirul, M. I., M. Rasul, A. Chowdhury, and N. Ashwath. 2012. “Biofuels Production through Biomass Pyrolysis—A Technological Review.” Energies 5 (12): 4952–5001. https://doi.org/10.3390/en5124952.
  • Kaushal, R., and R. Baitha. 2021. “Biogas and Methane Yield Enhancement Using Graphene Oxide Nanoparticles and Ca(OH)2 Pre-treatment in Anaerobic Digestion.” International Journal of Ambient Energy 42 (6): 618–625. https://doi.org/10.1080/01430750.2018.1562975.
  • Kaushal, R., S. Sandhu, and M. K. Soni. 2022. “Anaerobic Co-digestion of Food Waste, Algae, and Cow Dung for Biogas Yield Enhancement as a Prospective Approach for Environmental Sustainability.” Sustainable Energy Technologies and Assessments 52:102236. https://doi.org/10.1016/j.seta.2022.102236.
  • Keche, D. D., Z. M. Fetanu, W. Z. Babiso, and A. C. Wachemo. 2022. “Anaerobic Digestion of Urea Pretreated Water Hyacinth Removed from Lake Abaya; Bio-methane Potential, System Stability, and Substance Conversion.” RSC Advances 12 (14): 8548–8558. https://doi.org/10.1039/D2RA00303A.
  • Khadka, A., A. Parajuli, S. Dangol, B. Thapa, L. Sapkota, A. A. Carmona-Martínez, and A. Ghimire. 2022. “Effect of the Substrate to Inoculum Ratios on the Kinetics of Biogas Production During the Mesophilic Anaerobic Digestion of Food Waste.” Energies 15 (3): 834. https://doi.org/10.3390/en15030834.
  • Khawer, M. U. B., S. R. Naqvi, I. Ali, M. Arshad, D. Juchelková, M. W. Anjum, and M. Naqvi. 2022. “Anaerobic Digestion of Sewage Sludge for Biogas & Biohydrogen Production: State-of-the-art Trends and Prospects.” Fuel 329:125416. https://doi.org/10.1016/j.fuel.2022.125416.
  • Khuntia, H. K., A. Paliwal, D. R. Kumar, and H. N. Chanakya. 2022. “Review on Solid-state Anaerobic Digestion of Lignocellulosic Biomass and Organic Solid Waste.” Environmental Monitoring and Assessment 194 (7): 1–27. https://doi.org/10.1007/s10661-022-10160-2.
  • Kim, D. 2018. “Physico-chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.” Molecules 23 (2): 309. https://doi.org/10.3390/molecules23020309.
  • Kossmann, W., and U. Pönitz. 2011. “Biogas Digest: Volume I-biogas Basics.”
  • Koszel, M., A. Kocira, and E. Lorencowicz. 2016. “The Evaluation of the Use of Biogas Plant Digestate as a Fertilizer in Alfalfa and Spring Wheat Cultivation.” Fresenius Environmental Bulletin 25:3258–3264.
  • Koszel, M., and E. Lorencowicz. 2015. “Agricultural use of Biogas Digestate as a Replacement Fertilizers.” Agriculture and Agricultural Science Procedia 7:119–124. https://doi.org/10.1016/j.aaspro.2015.12.004.
  • Kovačić, Đ, D. Kralik, D. Jovičić, and R. Spajić. 2019. “An Assessment of Anaerobic Thermophilic Co-digestion of Dairy Cattle Manure and Separated Tomato Greenhouse Waste in Lab-scale Reactors.” Acta Technologica Agriculturae 22 (2): 38–42. https://doi.org/10.2478/ata-2019-0007.
  • Kumar, A., K. Kumar, N. Kaushik, S. Sharma, and S. Mishra. 2010. “Renewable Energy in India: Current Status and Future Potentials.” Renewable and Sustainable Energy Reviews 14 (8): 2434–2442. https://doi.org/10.1016/j.rser.2010.04.003.
  • Kumar, P., V. Kumar, J. Singh, and P. Kumar. 2021. “Electrokinetic Assisted Anaerobic Digestion of Spent Mushroom Substrate Supplemented with Sugar Mill Wastewater for Enhanced Biogas Production.” Renewable Energy 179:418–426. https://doi.org/10.1016/j.renene.2021.07.045.
  • Kumar, S., K. Paritosh, N. Pareek, A. Chawade, and V. Vivekanand. 2018. “De-construction of Major Indian Cereal Crop Residues through Chemical Pretreatment for Improved Biogas Production: An Overview.” Renewable and Sustainable Energy Reviews 90:160–170. https://doi.org/10.1016/j.rser.2018.03.049.
  • Lahbab, A., M. Djaafri, S. Kalloum, A. Benatiallah, M. R. Atelge, and A. E. Atabani. 2021. “Co-digestion of Vegetable Peel with Cow Dung Without External Inoculum for Biogas Production: Experimental and a New Modelling Test in a Batch Mode.” Fuel 306:121627. https://doi.org/10.1016/j.fuel.2021.121627.
  • Leung, D. Y., and J. Wang. 2016. “An Overview on Biogas Generation from Anaerobic Digestion of Food Waste.” International Journal of Green Energy 13 (2): 119–131. https://doi.org/10.1080/15435075.2014.909355.
  • Li, K., R. Liu, S. Cui, Q. Yu, and R. Ma. 2018a. “Anaerobic Co-digestion of Animal Manures with Corn Stover or Apple Pulp for Enhanced Biogas Production.” Renewable Energy 118:335–342. https://doi.org/10.1016/j.renene.2017.11.023.
  • Li, X., Y. Liu, J. Hao, and W. Wang. 2018b. “Study of Almond Shell Characteristics.” Materials 11 (9): 1782. https://doi.org/10.3390/ma11091782.
  • Li, W., and G. Xu. 2017. “Enhancement of Anaerobic Digestion of Grass by Pretreatment with Imidazolium-Based Ionic Liquids.” Environmental Technology 38 (15): 1843–1851. https://doi.org/10.1080/09593330.2016.1238963.
  • Lin, Y., D. Wang, S. Wu, and C. Wang. 2009. “Alkali Pretreatment Enhances Biogas Production in the Anaerobic Digestion of Pulp and Paper Sludge.” Journal of Hazardous Materials 170 (1): 366–373. https://doi.org/10.1016/j.jhazmat.2009.04.086.
  • Lindmark, J., E. Thorin, R. Bel Fdhila, and E. Dahlquist. 2014. “Effects of Mixing on the Result of Anaerobic Digestion: Review.” Renewable and Sustainable Energy Reviews 40:1030–1047. https://doi.org/10.1016/j.rser.2014.07.182.
  • Liu, R., K. Zhang, X. Chen, and B. Xiao. 2022. “Effects of Substrate Organic Composition on Mesophilic and Thermophilic Anaerobic co-Digestion of Food Waste and Paper Waste.” Chemosphere 291:132933. https://doi.org/10.1016/j.chemosphere.2021.132933.
  • Luostarinen, S., A. Normak, and M. Edström. 2011. Overview of Biogas Technology. Baltic manure WP6 Energy potentials, 47.
  • Luz, F. C., S. Cordiner, A. Manni, V. Mulone, and V. Rocco. 2017. “Anaerobic Digestion of Coffee Grounds Soluble Fraction at Laboratory Scale: Evaluation of the Biomethane Potential.” Applied Energy 207:166–175. https://doi.org/10.1016/j.apenergy.2017.06.042.
  • MacFarlane, D. W. 2009. “Potential Availability of Urban Wood Biomass in Michigan: Implications for Energy Production, Carbon Sequestration and Sustainable Forest Management in the U.S.A.” Biomass and Bioenergy 33 (4): 628–634. https://doi.org/10.1016/j.biombioe.2008.10.004.
  • Magama, P., I. Chiyanzu, and J. Mulopo. 2022. “A Parametric Experimental Validation of a Biorefinery Concept Based on Anaerobic Digestion of Fruit and Vegetable Waste.” Biofuels, Bioproducts and Biorefining 16: 972–985.
  • Mahajan, Y. S., R. S. Kamath, P. S. Kumbhar, and S. M. Mahajani. 2008. “Self-condensation of Cyclohexanone Over Ion Exchange Resin Catalysts: Kinetics and Selectivity Aspects.” Industrial & Engineering Chemistry Research 47 (1): 25–33. https://doi.org/10.1021/ie061275b.
  • Mancini, G., S. Papirio, P. N. L. Lens, and G. Esposito. 2018. “Increased Biogas Production from Wheat Straw by Chemical Pretreatments.” Renewable Energy 119:608–614. https://doi.org/10.1016/j.renene.2017.12.045.
  • Mangindaan, D., A. Adib, H. Febrianta, and D. J. C. Hutabarat. 2022. “Systematic Literature Review and Bibliometric Study of Waste Management in Indonesia in the COVID-19 Pandemic Era.” Sustainability 14 (5): 2556. https://doi.org/10.3390/su14052556.
  • Manigandan, S., T. R. Praveenkumar, A. Anderson, A. Maryam, and E. Mahmoud. 2023. “Benefits of Pretreated Water Hyacinth for Enhanced Anaerobic Digestion and Biogas Production.” International Journal of Thermofluids 19:100369. https://doi.org/10.1016/j.ijft.2023.100369.
  • Markou, G., B. Ilkiv, M. Brulé, D. Antonopoulos, L. Chakalis, D. Arapoglou, and I. Chatzipavlidis. 2020. “Methane Production Through Anaerobic Digestion of Residual Microalgal Biomass After the Extraction of Valuable Compounds.” Biomass Conversion and Biorefinery 12: 1–8.
  • Matheri, A., S. N. Ndiweni, M. Belaid, E. Muzenda, and R. Hubert. 2017. “Optimising Biogas Production from Anaerobic Co-digestion of Chicken Manure and Organic Fraction of Municipal Solid Waste.” Renewable and Sustainable Energy Reviews 80:756–764. https://doi.org/10.1016/j.rser.2017.05.068.
  • Mattioli, A., G. B. Gatti, G. P. Mattuzzi, F. Cecchi, and D. Bolzonella. 2017. “Co-digestion of the Organic Fraction of Municipal Solid Waste and Sludge Improves the Energy Balance of Wastewater Treatment Plants: Rovereto Case Study.” Renewable Energy 113:980–988. https://doi.org/10.1016/j.renene.2017.06.079.
  • Merlin, G., and H. Boileau. 2013. Anaerobic Digestion of Agricultural Waste: State of the Art and Future Trends. Anaerobic Digestion: Types, Processes and Environmental Impact. New York: Nova Science Publishers, Inc.
  • Mertins, A., and T. Wawer. 2022. “How to Use Biogas?: A Systematic Review of Biogas Utilization Pathways and Business Models.” Bioresources and Bioprocessing 9 (1): 1–18. https://doi.org/10.1186/s40643-022-00545-z.
  • Mittal, S., E. O. Ahlgren, and P. Shukla. 2019. “Future Biogas Resource Potential in India: A Bottom-up Analysis.” Renewable Energy 141:379–389. https://doi.org/10.1016/j.renene.2019.03.133.
  • Mougari, N., J. F. Largeau, N. Himrane, M. Hachemi, and M. Tazerout. 2021. “Application of Artificial Neural Network and Kinetic Modeling for the Prediction of Biogas and Methane Production in Anaerobic Digestion of Several Organic Wastes.” International Journal of Green Energy 18 (15): 1584–1596. https://doi.org/10.1080/15435075.2021.1914630.
  • Msibi, S. S., and G. Kornelius. 2017. “Potential for Domestic Biogas as Household Energy Supply in South Africa.” Journal of Energy in Southern Africa 28 (2): 1–13. https://doi.org/10.17159/2413-3051/2017/v28i2a1754.
  • Mu, H., Y. Li, Y. Zhao, X. Zhang, D. Hua, H. Xu, and F. Jin. 2018. “Microbial and Nutritional Regulation of High-solids Anaerobic Mono-Digestion of Fruit and Vegetable Wastes.” Environmental Technology 39 (4): 405–413. https://doi.org/10.1080/09593330.2017.1301571.
  • Muktham, R., K. B. Suresh, B. Satyavathi, and S. B. Andrew. 2016. “A Review on 1st and 2nd Generation Bioethanol Production-Recent Progress.” Journal of Sustainable Bioenergy Systems 6 (3): 72–92. https://doi.org/10.4236/jsbs.2016.63008.
  • Murugesan, V., D. J. Amarnath, and P. Shanmugam. 2022. “Investigation on Water Hyacinth in Anaerobic Co-digestion for Biogas Production: A Measure to Reduce Kosavampatti and Phoosur Lake Municipal Solid Waste Loading.” Nature Environment and Pollution Technology 21 (1): 183–191. https://doi.org/10.46488/NEPT.2022.v21i01.020.
  • Ni, J.-Q., and E.-J. Nyns. 1996. “New Concept for the Evaluation of Rural Biogas Management in Developing Countries.” Energy Conversion and Management 37 (10): 1525–1534. https://doi.org/10.1016/0196-8904(95)00354-1.
  • Nistor, S., B. Nistor, and D. Strat. 2011. “Thermal Desorption Decontamination of Hydrocarbons Polluted Wastes in Suplacu de Barcau (Bihor County).”
  • Ormaechea, P., L. Castrillón, B. Suárez-Peña, L. Megido, Y. Fernández-Nava, L. Negral, E. Marañón, and J. Rodríguez-Iglesias. 2018. “Enhancement of Biogas Production from Cattle Manure Pretreated and/or co-Digested at Pilot-Plant Scale. Characterization by SEM.” Renewable Energy 126:897–904. https://doi.org/10.1016/j.renene.2018.04.022.
  • Osaki, M. R., and P. Seleghim, Jr. 2017. “Bioethanol and Power from Integrated Second Generation Biomass: A Monte Carlo Simulation.” Energy Conversion and Management 141:274–284. https://doi.org/10.1016/j.enconman.2016.08.076
  • Özarslan, S., S. Abut, M. R. Atelge, M. Kaya, and S. Unalan. 2021. “Modeling and Simulation of Co-digestion Performance with Artificial Neural Network for Prediction of Methane Production from tea Factory Waste with Co-substrate of Spent Tea Waste.” Fuel 306:121715. https://doi.org/10.1016/j.fuel.2021.121715.
  • Özbay, N., A. E. Pütün, B. B. Uzun, and E. Pütün. 2001. “Biocrude from Biomass: Pyrolysis of Cottonseed Cake.” Renewable Energy 24 (3–4): 615–625. https://doi.org/10.1016/S0960-1481(01)00048-9.
  • Passos, F., V. Ortega, and A. Donoso-Bravo. 2017. “Thermochemical Pretreatment and Anaerobic Digestion of Dairy cow Manure: Experimental and Economic Evaluation.” Bioresource Technology 227:239–246. https://doi.org/10.1016/j.biortech.2016.12.034.
  • Patel, V. R. 2017. “Cost-effective Sequential Biogas and Bioethanol Production from the Cotton Stem Waste.” Process Safety and Environmental Protection 111:335–345. https://doi.org/10.1016/j.psep.2017.07.019.
  • Patowary, D., H. West, M. Clarke, and D. C. Baruah. 2016. “Biogas Production from Surplus Plant Biomass Feedstock: Some Highlights of Indo-UK R&D Initiative.” Procedia Environmental Sciences 35:785–794. https://doi.org/10.1016/j.proenv.2016.07.094.
  • Pavi, S., L. E. Kramer, L. P. Gomes, and L. A. S. Miranda. 2017. “Biogas Production from Co-digestion of Organic Fraction of Municipal Solid Waste and Fruit and Vegetable Waste.” Bioresource Technology 228:362–367. https://doi.org/10.1016/j.biortech.2017.01.003.
  • Perimenis, A., T. Nicolay, M. Leclercq, and P. A. Gerin. 2018. “Comparison of the Acidogenic and Methanogenic Potential of Agroindustrial Residues.” Waste Management 72:178–185. https://doi.org/10.1016/j.wasman.2017.11.033.
  • Pilarska, A. A., K. Pilarski, A. Ryniecki, K. Tomaszyk, J. Dach, and A. Wolna-Maruwka. 2017. “Utilization of Vegetable Dumplings Waste from Industrial Production by Anaerobic Digestion.” International Agrophysics 31 (1). https://doi.org/10.1515/intag-2016-0033.
  • Pinkie, C., J. Devika, and P. Majidha. 2022. “Bibliometric Analysis and Challenges in Biofuel Production Using Petroplants.” Journal of Renewable Energies 1: 199–205.
  • Pramanik, S. K., F. B. Suja, M. Porhemmat, and B. K. Pramanik. 2019. “Performance and Kinetic Model of a Single-stage Anaerobic Digestion System Operated at Different Successive Operating Stages for the Treatment of Food Waste.” Processes 7 (9): 600. https://doi.org/10.3390/pr7090600.
  • Prassl, H. 2015. “Biogas Purification and Assessment of the Natural Gas Grid in Southern and Eastern Europe.” IEE–Project: BiG> East (Task 2.5.–Report).
  • Puspawati, S., T. Soesilo, and R. Soemantojo. 2019. “An Overview of Biogas Utilization from Tempeh Wastewater.” In IOP Conference Series: Earth and Environmental Science. IOP Publishing.
  • Qi, C., R. Yin, X. Gao, J. Chen, R. Wang, Z. Xu, W. Luo, G. Li, and Y. Li. 2022. “Development of Solid-state Anaerobic Digestion and Aerobic Composting Hybrid Processes for Organic Solid Waste Treatment and Resource Recovery: A Review.” Current Pollution Reports, 1–13.
  • Rajendran, K., E. Drielak, V. Sudarshan Varma, S. Muthusamy, and G. Kumar. 2018. “Updates on the Pretreatment of Lignocellulosic Feedstocks for Bioenergy Production–a Review.” Biomass Conversion and Biorefinery 8 (2): 471–483. https://doi.org/10.1007/s13399-017-0269-3.
  • Rajendran, K., D. Mahapatra, A. V. Venkatraman, S. Muthuswamy, and A. Pugazhendhi. 2020. “Advancing Anaerobic Digestion through Two-stage Processes: Current Developments and Future Trends.” Renewable and Sustainable Energy Reviews 123:109746. https://doi.org/10.1016/j.rser.2020.109746.
  • Ren, Y., M. Yu, C. Wu, Q. Wang, M. Gao, Q. Huang, and Y. Liu. 2018. “A Comprehensive Review on Food Waste Anaerobic Digestion: Research Updates and Tendencies.” Bioresource Technology 247:1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109.
  • Revolution, E. 2011. “History of Biogas.”
  • Rizk, M. C., R. Bergamasco, and C. R. G. Tavares. 2007. “Anaerobic Co-digestion of Fruit and Vegetable Waste and Sewage Sludge.” International Journal of Chemical Reactor Engineering 5 (1).
  • Rodriguez, C., A. Alaswad, K. Y. Benyounis, and A. G. Olabi. 2017a. “Pretreatment Techniques Used in Biogas Production from Grass.” Renewable and Sustainable Energy Reviews 68:1193–1204. https://doi.org/10.1016/j.rser.2016.02.022.
  • Rodriguez, C., A. Alaswad, Z. El-Hassan, and A. G. Olabi. 2017b. “Mechanical Pretreatment of Waste Paper for Biogas Production.” Waste Management 68:157–164. https://doi.org/10.1016/j.wasman.2017.06.040.
  • Ryue, J., L. Lin, F. L. Kakar, E. Elbeshbishy, A. Al-Mamun, and B. R. Dhar. 2020. “A Critical Review of Conventional and Emerging Methods for Improving Process Stability in Thermophilic Anaerobic Digestion.” Energy for Sustainable Development 54:72–84. https://doi.org/10.1016/j.esd.2019.11.001.
  • Saharan, R., P. G. Soni, S. Kaith, and T. Yadav. 2016. “Sweet Sorghum: An Alternative Energy Crop for Biofuel, Food and High Biomass.”
  • Sailer, G., J. Eichermüller, J. Poetsch, S. Paczkowski, S. Pelz, H. Oechsner, and J. Müller. 2020. “Optimizing Anaerobic Digestion of Organic Fraction of Municipal Solid Waste (OFMSW) by Using Biomass Ashes as Additives.” Waste Management 109:136–148. https://doi.org/10.1016/j.wasman.2020.04.047.
  • Sandhu, S., and R. Kaushal. 2019a. “Anaerobic Co-digestion of Water Hyacinth and Banana Peel with Cow Dung and Cow Urine with and Without Using Chemical Pre-treatment.” International Journal of Engineering and Advanced Technology 8:5099–5103. https://doi.org/10.35940/ijeat.F9561.088619.
  • Sandhu, S., and R. Kaushal. 2019b. “Anaerobic Digestion of Vegetable, Fruit and Cafeteria Wastes with Cow Dung by Chemical Pretreatment for Biogas Production in Batch Digester.” Journal of Physics: Conference Series. IOP Publishing.
  • Sandhu, S., and R. Kaushal. 2019c. “Bio-methane Generation from Anaerobic co-Digestion of Eichhornia (Water Hyacinth) and Kitchen Edible Material Ravage and Waste Paper with Pond Sludge and cow Compost by Using Chemical Pretreatment.” In National Conference on IC Engines and Combustion. Springer.
  • Sandhu, S., and R. Kaushal. 2022. “Anaerobic Co-digestion of Food Wastes, Algae, Pond Sludge and Cow Dung for Biogas Yield Enhancement as a Potent Approach to Reduce Carbon Footprints.” Australian Journal of Mechanical Engineering 21: 1–20.
  • Sandhu, S., and R. Kaushal. 2022. “Optimisation of Anaerobic Digestion of Layer Manure, Breeding Manure and Cow Dung Using Grey Relational Analysis.” Biomass Conversion and Biorefinery, 1–13.
  • Saratale, G. D., S.-D. Chen, Y.-C. Lo, R. G. Saratale, and J.-S. Chang. 2008. “Outlook of Biohydrogen Production from Lignocellulosic Feedstock Using Dark Fermentation–A Review.”
  • Sarker, S., J. J. Lamb, D. R. Hjelme, and K. M. Lien. 2019. “A Review of the Role of Critical Parameters in the Design and Operation of Biogas Production Plants.” Applied Sciences 9 (9): 1915. https://doi.org/10.3390/app9091915.
  • Sawyerr, N., C. Trois, T. S. Workneh, and V. I. Okudoh. 2019. “An Overview of Biogas Production: Fundamentals, Applications and Future Research.” International Journal of Energy Economics and Policy 9 (2): 105.
  • Schmidt, T., B. K. McCabe, P. W. Harris, and S. Lee. 2018. “Effect of Trace Element Addition and Increasing Organic Loading Rates on the Anaerobic Digestion of Cattle Slaughterhouse Wastewater.” Bioresource Technology 264:51–57. https://doi.org/10.1016/j.biortech.2018.05.050.
  • Senghor, A., R. M. N. Dioh, C. Müller, and I. Youm. 2017. “Cereal Crops for Biogas Production: A Review of Possible Impact of Elevated CO2.” Renewable and Sustainable Energy Reviews 71:548–554. https://doi.org/10.1016/j.rser.2016.12.082.
  • Shahzadi, T., S. Mehmood, M. Irshad, Z. Anwar, A. Afroz, N. Zeeshan, U. Rashid, and K. Sughra. 2014. “Advances in Lignocellulosic Biotechnology: A Brief Review on Lignocellulosic Biomass and Cellulases.” Advances in Bioscience and Biotechnology 2014.
  • Shen, F., H. Li, X. Wu, Y. Wang, and Q. Zhang. 2018a. “Effect of Organic Loading Rate on Anaerobic Co-digestion of Rice Straw and Pig Manure With or Without Biological Pretreatment.” Bioresource Technology 250:155–162. https://doi.org/10.1016/j.biortech.2017.11.037.
  • Shen, J., H. Yan, R. Zhang, G. Liu, and C. Chen. 2018b. “Characterization and Methane Production of Different nut Residue Wastes in Anaerobic Digestion.” Renewable Energy 116:835–841. https://doi.org/10.1016/j.renene.2017.09.018.
  • Shen, J., and J. Zhu. 2016. “Optimization of Methane Production in Anaerobic Co-digestion of Poultry Litter and Wheat Straw at Different Percentages of Total Solid and Volatile Solid Using a Developed Response Surface Model.” Journal of Environmental Science and Health, Part A 51 (4): 325–334. https://doi.org/10.1080/10934529.2015.1109395.
  • Shi, J., W. Z. Zhao, Y. C. Wu, X. B. Liu, J. Jiang, X. Z. Cao, and B. Y. Wang. 2019. “Evolution of Microstructures and Hardening Property of Initial Irradiated, Post-irradiation Annealed and Re-irradiated Chinese-type Low-Cu Reactor Pressure Vessel Steel.” Journal of Nuclear Materials 523:333–341. https://doi.org/10.1016/j.jnucmat.2019.06.022.
  • Singh, P., and A. S. Kalamdhad. 2021. “A Comprehensive Assessment of State-wise Biogas Potential and its Utilization in India.” Biomass Conversion and Biorefinery 13: 1–23.
  • Singh, B., Z. Szamosi, and Z. Siménfalvi. 2020. “Impact of Mixing Intensity and Duration on Biogas Production in an Anaerobic Digester: A Review.” Critical Reviews in Biotechnology 40 (4): 508–521. https://doi.org/10.1080/07388551.2020.1731413.
  • SLIET, L. 2017. “Effect of Temperature and Other Factors on Anaerobic Digestion Process, Responsible for bio gas Production.” International Journal of Theoretical and Applied Mechanics 12 (3): 637–657.
  • Sombultawee, K., P. Lenuwat, N. Aleenajitpong, and S. Boon-itt. 2022. “COVID-19 and Supply Chain Management: A Review with Bibliometric.” Sustainability 14 (6): 3538. https://doi.org/10.3390/su14063538.
  • Speight, J. G. 2020. Synthetic Fuels Handbook: Properties, Process, and Performance. McGraw-Hill Education.
  • Spieß, W. 2018. “Global Change and Future Earth.” Global Change and Future Earth: The Geoscience Perspective 3:247–267. https://doi.org/10.1017/9781316761489.026.
  • Sridhar, A., M. Ponnuchamy, P. S. Kumar, A. Kapoor, and L. Xiao. 2021. “Progress in the Production of Hydrogen Energy from Food Waste: A Bibliometric Analysis.” International Journal of Hydrogen Energy 47: 26326–26354.
  • Stafford, D. 1982. “The Effects of Mixing and Volatile Fatty Acid Concentrations on Anaerobic Digester Performance.” Biomass 2 (1): 43–55. https://doi.org/10.1016/0144-4565(82)90006-3.
  • Strehler, A. 2000. “Technologies of Wood Combustion.” Ecological Engineering 16:25–40. https://doi.org/10.1016/S0925-8574(00)00049-5.
  • Sun, Y., and J. Cheng. 2002. “Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review.” Bioresource Technology 83 (1): 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7.
  • Sun, Y., and J. J. Cheng. 2005. “Dilute Acid Pretreatment of Rye Straw and Bermudagrass for Ethanol Production.” Bioresource Technology 96 (14): 1599–1606. https://doi.org/10.1016/j.biortech.2004.12.022.
  • Suthar, S., B. Sharma, K. Kumar, J. Rajesh Banu, and V. K. Tyagi. 2022. “Enhanced Biogas Production in Dilute Acid-thermal Pretreatment and Cattle Dung Biochar Mediated Biomethanation of Water Hyacinth.” Fuel 307:121897. https://doi.org/10.1016/j.fuel.2021.121897.
  • Syaichurrozi, I., S. Suhirman, and T. Hidayat. 2018. “Effect of Initial pH on Anaerobic Co-digestion of Salvinia Molesta and Rice Straw for Biogas Production and Kinetics.” Biocatalysis and Agricultural Biotechnology 16:594–603. https://doi.org/10.1016/j.bcab.2018.10.007.
  • Tang, Y., Q. Huang, K. Sun, Y. Chi, and J. Yan. 2018. “Co-pyrolysis Characteristics and Kinetic Analysis of Organic Food Waste and Plastic.” Bioresource Technology 249:16–23. https://doi.org/10.1016/j.biortech.2017.09.210.
  • Tarekegn, M. M., and M. A. Abebe. 2017. “Characterization of Fruit and Vegetable Wastes for Biogas Production Under Anaerobic Condition.” International Journal of Scientific Research in Environmental Sciences 5 (1): 1–9. https://doi.org/10.12983/ijsres-2017-p0001-0009.
  • Tayyab, M., A. Noman, W. Islam, S. Waheed, Y. Arafat, F. Ali, M. Zaynab, S. Lin, H. Zhang, and W. Lin. 2018. “Bioethanol Production from Lignocellulosic Biomass by Environment-Friendly Pretreatment Methods: A Review.” Applied Ecology and Environmental Research 16 (1): 225–249. https://doi.org/10.15666/aeer/1601_225249.
  • Timilsina, G. R., and J. J. Cheng. 2010. “Advanced Biofuel Technologies: Status and Barriers.”
  • Tišma, M., M. Planinić, A. Bucić-Kojić, M. Panjičko, G. D. Zupančič, and B. Zelić. 2018. “Corn Silage Fungal-based Solid-state Pretreatment for Enhanced Biogas Production in Anaerobic Co-digestion with Cow Manure.” Bioresource Technology 253:220–226. https://doi.org/10.1016/j.biortech.2018.01.037.
  • Tsapekos, P., P. G. Kougias, L. Treu, S. Campanaro, and I. Angelidaki. 2017. “Process Performance and Comparative Metagenomic Analysis During Co-digestion of Manure and Lignocellulosic Biomass for Biogas Production.” Applied Energy 185:126–135. https://doi.org/10.1016/j.apenergy.2016.10.081.
  • Tufaner, F., Y. Avşar, and M. T. Gönüllü. 2017. “Modeling of Biogas Production from Cattle Manure with Co-digestion of Different Organic Wastes Using an Artificial Neural Network.” Clean Technologies and Environmental Policy 19 (9): 2255–2264. https://doi.org/10.1007/s10098-017-1413-2.
  • Waddell, M. A. 2003. “The Perversion of Nature: Johannes Baptista Van Helmont, the Society of Jesus, and the Magnetic Cure of Wounds.” Canadian Journal of History 38 (2): 179–198. https://doi.org/10.3138/cjh.38.2.179.
  • Wang, X. 2006. “Biomass Fast Pyrolysis in a Fluidized Bed. Product Cleaning by In-situ Filtration.”
  • Wang, Y., G. Li, M. Chi, Y. Sun, J. Zhang, S. Jiang, and Z. Cui. 2018. “Effects of Co-digestion of Cucumber Residues to Corn Stover and Pig Manure Ratio on Methane Production in Solid State Anaerobic Digestion.” Bioresource Technology 250:328–336. https://doi.org/10.1016/j.biortech.2017.11.055.
  • Wang, L.-H., Q. Wang, X. Zhang, W. Cai, and X. Sun. 2013. “A Bibliometric Analysis of Anaerobic Digestion for Methane Research During the Period 1994–2011.” Journal of Material Cycles and Waste Management 15 (1): 1–8. https://doi.org/10.1007/s10163-012-0094-5.
  • Wanjohi, A. M., and A. N. Mumbi. 2022. “Fixed Dome Biogas Digester Installation in Kenya.”
  • Wattanapisit, A., M. Kotepui, S. Wattanapisit, and N. Crampton. 2022. “Bibliometric Analysis of Literature on Physical Activity and COVID-19.” International Journal of Environmental Research and Public Health 19 (12): 7116. https://doi.org/10.3390/ijerph19127116.
  • Weiland, P. 2010. “Biogas Production: Current State and Perspectives.” Applied Microbiology and Biotechnology 85 (4): 849–860. https://doi.org/10.1007/s00253-009-2246-7.
  • Weir, A. 2013. “History of Biogas Technology.”
  • Wellinger, A., J. P. Murphy, and D. Baxter. 2013. The Biogas Handbook: Science, Production and Applications. Elsevier.
  • Wongarmat, W., S. Sittijunda, C. Mamimin, and A. Reungsang. 2022. “Acidogenic Phase Anaerobic Digestion of Pretreated Sugarcane Filter Cake for Co-digestion with Biogas Effluent to Enhance the Methane Production.” Fuel 310:122466. https://doi.org/10.1016/j.fuel.2021.122466.
  • Woo, C.-K., A. Olson, I. Horowitz, and S. Luk. 2006. “Bi-directional Causality in California's Electricity and Natural-gas Markets.” Energy Policy 34 (15): 2060–2070. https://doi.org/10.1016/j.enpol.2005.02.016.
  • Xie, S., P. G. Lawlor, P. Frost, C. D. Dennehy, Z. Hu, and X. Zhan. 2017. “A Pilot Scale Study on Synergistic Effects of Co-digestion of Pig Manure and Grass Silage.” International Biodeterioration & Biodegradation 123:244–250. https://doi.org/10.1016/j.ibiod.2017.07.005.
  • Xu, Z., M. Zhao, H. Miao, Z. Huang, S. Gao, and W. Ruan. 2014. “In Situ Volatile Fatty Acids Influence Biogas Generation from Kitchen Wastes by Anaerobic Digestion.” Bioresource Technology 163:186–192. https://doi.org/10.1016/j.biortech.2014.04.037.
  • Yao, Y., A. D. Bergeron, and M. Davaritouchaee. 2018. “Methane Recovery from Anaerobic Digestion of Urea-Pretreated Wheat Straw.” Renewable Energy 115:139–148. https://doi.org/10.1016/j.renene.2017.08.038.
  • Yentekakis, I. V., G. Goula, P. Leone, and S. G. Neophytides. 2018. Advanced Utilization and Management of Biogas. Frontiers Media SA, 75.
  • Yuan, T., Z. Zhang, Z. Lei, K. Shimizu, and D. -J. Lee. 2022. “A Review on Biogas Upgrading in Anaerobic Digestion Systems Treating Organic Solids and Wastewaters via Biogas Recirculation.” Bioresource Technology 344:126412. https://doi.org/10.1016/j.biortech.2021.126412.
  • Zahedi, S., M. Rivero, R. Solera, and M. Perez. 2018. “Mesophilic Anaerobic Co-digestion of Sewage Sludge with Glycerine: Effect of Solids Retention Time.” Fuel 215:285–289. https://doi.org/10.1016/j.fuel.2017.11.007.
  • Zhang, L., R. A. Carter, X. Qian, S. Yang, J. Rujimora, and S. Wen. 2022a. “Academia's Responses to Crisis: A Bibliometric Analysis of Literature on Online Learning in Higher Education During COVID-19.” British Journal of Educational Technology 53 (3): 620–646. https://doi.org/10.1111/bjet.13191.
  • Zhang, J., Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B. H. Shanks. 2015. “Cellulose–hemicellulose and Cellulose–lignin Interactions During Fast Pyrolysis.” ACS Sustainable Chemistry & Engineering 3 (2): 293–301. https://doi.org/10.1021/sc500664h.
  • Zhang, M., M. Gao, S. Yue, T. Zheng, Z. Gao, X. Ma, and Q. Wang. 2018. “Global Trends and Future Prospects of Food Waste Research: A Bibliometric Analysis.” Environmental Science and Pollution Research 25 (25): 24600–24610. https://doi.org/10.1007/s11356-018-2598-6.
  • Zhang, J., C. Qi, Y. Wang, Y. Li, T. Han, X. Gong, M. Shan, G. Li, and W. Luo. 2022b. “Enhancing Biogas Production from Livestock Manure in Solid-state Anaerobic Digestion by Sorghum-vinegar Residues.” Environmental Technology & Innovation 26:102276. https://doi.org/10.1016/j.eti.2022.102276.
  • Zhang, L., Z. Yang, S. Li, X. Wang, and R. Lin. 2020. “Comparative Study on the Two-step Pyrolysis of Different Lignocellulosic Biomass: Effects of Components.” Journal of Analytical and Applied Pyrolysis 152:104966. https://doi.org/10.1016/j.jaap.2020.104966.
  • Zhou, H., J. Jiang, Q. Zhao, L. Li, K. Wang, and L. Wei. 2022. “Effects of Organic Loading Rates on High-solids Anaerobic Digestion of Food Waste in Horizontal Flow Reactor: Methane Production, Stability and Mechanism.” Chemosphere 293:133650. https://doi.org/10.1016/j.chemosphere.2022.133650.
  • Zhou, S., Y. Zhang, and Y. Dong. 2012. “Pretreatment for Biogas Production by Anaerobic Fermentation of Mixed Corn Stover and Cow Dung.” Energy 46 (1): 644–648. https://doi.org/10.1016/j.energy.2012.07.017.
  • Zhu, X., D. Yellezuome, R. Liu, Z. Wang, and X. Liu. 2022. “Effects of Co-digestion of Food Waste, Corn Straw and Chicken Manure in Two-stage Anaerobic Digestion on Trace Element Bioavailability and Microbial Community Composition.” Bioresource Technology 346:126625. https://doi.org/10.1016/j.biortech.2021.126625.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.