64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Irreversibility scrutiny of SWCNT and MWCNT nanofluid convective flow using Darcy-Forchheimer rule in an upright microchannel with variable thermal conductivity and Brownian motion and thermophoresis

, &
Article: 2316782 | Received 30 Jan 2023, Accepted 13 Jan 2024, Published online: 20 Feb 2024

References

  • Abbasi, A., W. Farooq, E. S. M. Tag-EIDin, S. U. Khan, M. I. Khan, K. Guedri, S. Elattar, M. Waqas, and A. M. Gala. 2022. “Heat Transport Exploration for Hybrid Nanoparticle -Based Blood Flow Via Tapered Complex Wavy Curved Channel with Slip Features.” Micromachines 13 (9): 1415. https://doi.org/10.3390/mi13091415.
  • Ahmed, M. F., A. Zaib, F. Ali, O. T. Bafakeeh, E. S. M. Tag-EIDin, K. Guedri, S. Elattar, and M. I. Khan. 2022. “Numerical Computation for Gyrotactic Microorganisms in MHD Radiative Eyring-Powell Nanomaterial Flow by a Static/Moving Wedge with Darcy-Forchheimer Relation.” Micromachines 13 (10): 1768. https://doi.org/10.3390/mi13101768.
  • Asjad, M. I., M. Aleem, A. Ahmadian, S. Salahshour, and M. Ferrara. 2020. “New Trends of Fractional Modeling and Heat and Mass Transfer Investigation of (SWCNTs and MWCNTs)-CMC Based Nanofluids Flow Over Inclined Plate with Generalized Boundary Conditions.” Chinese Journal of Physics 66: 497–516. https://doi.org/10.1016/j.cjph.2020.05.026.
  • Azam, M., T. Xu, and M. Khan. 2020. “Numerical Simulation for Variable Thermal Properties and Heat Source/Sink in Flow of Cross Nanofluid Over a Moving Cylinder.” International Communications in Heat and Mass Transfer 118: 104832. https://doi.org/10.1016/j.icheatmasstransfer.2020.104832.
  • Durgaprasad, P., S. V. K. Varmal, Mohammad Mainul Hoque, and C. S. K. Raju. 2019. “Combined Effects of Brownian Motion and Thermophoresis Parameters on Three-Dimensional (3D) Casson Nanofluid Flow Across the Porous Layers Slendering Sheet in a Suspension of Graphene Nanoparticles.” Neural Computing and Applications 31: 6275–6286. https://doi.org/10.1007/s00521-018-3451-z.
  • Gireesha, B. J., and L. Anitha. 2022. “Irreversibility Analysis of Micropolar Nanofluid Flow Using Darcy-Forchheimer Rule in an Inclined Microchannel with Multiple Slip Effects.” Heat Transfer 51: 5834–5856.
  • Halelfadl, S., A. M. Adham, N. Mohd-Ghazali, T. Mare, P. Estelle, and R. Ahmad. 2014. “Optimization of Thermal Performances and Pressure Drop of Rectangular Microchannel Heat Sink Using Aqueous Carbon Nanotubes Based Nanofluid.” Applied Thermal Engineering 62: 492–499. https://doi.org/10.1016/j.applthermaleng.2013.08.005.
  • Hayat, T., F. Haider, T. Muhammad, and A. Alsaedi. 2017. “On Darcy-Forchheimer Flow of Carbon Nanotubes due to a Rotating Disk.” International Journal of Heat and Mass Transfer 112: 248–254. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.123.
  • Ibanez, G., A. Lopez, I. Lopez, J. Pantoja, J. Moreira, and O. Lastres. 2019. “Optimization of MHD Nanofluid Flow in a Vertical Microchannel with a Porous Medium, Nonlinear Radiation Heat Flux, Slip Flow and Convective–Radiative Boundary Conditions.” Journal of Thermal Analysis Calorimetry 135: 3401–3420.
  • Lahmar, S., M. Kezzar, M. R. Eid, and M. R. Sari. 2020. “Heat Transfer of Squeezing Unsteady Nanofluid Flow Under the Effects of an Inclined Magnetic Field and Variable Thermal Conductivity.” Physica A: Statistical Mechanics and its Applications 540: 123138. https://doi.org/10.1016/j.physa.2019.123138.
  • Li, S., M. I. Khan, F. Alzahrani, and S. M. Eldin. 2023. “Heat and Mass Transport Analysis in Radiative Time Dependent Flow in the Presence of Ohmic Heating and Chemical Reaction, Viscous Dissipation: An Entropy Modeling.” Case Studies in Thermal Engineering 42: 102722. https://doi.org/10.1016/j.csite.2023.102722.
  • Liu, S., D. Bahrami, R. Kalbasi, M. Jahangiri, Y. Lu, X. Yang, S. S. Band, K. W. Chau, and A. Mosavi. 2022. “Efficacy of Applying Discontinuous Boundary Condition on the Heat Transfer and Entropy Generation Through a Slip Microchannel Equipped with Nanofluid.” Engineering Applications of Computational Fluid Mechanics 16: 952–964. https://doi.org/10.1080/19942060.2022.2057591.
  • Mala, G. M., D. Li, C. Werner, H. J. Jacobasch, and Y. B. Ning. 1997. “Flow Characteristics of Water Through a Microchannel Between two Parallel Plates with Electrokinetic Effects.” International Journal of Heat and Fluid Flow 18: 489–496. https://doi.org/10.1016/S0142-727X(97)00032-5.
  • Mamatha, S. U., R. L. V. Renuka Devi, N. Ameer Ahammad, N. A. Shah, B. Madhudsudhan Rao, C. S. K. Raju, M. I. Khan, and K. Guedri. 2023. “Multilinear Regression of Triple Diffusive Convectively Heated Boundary Layer Flow with Suction and Injection: Lie Group Transformations.” International Journal of Modern Physics B 37 (1): 2350007. https://doi.org/10.1142/S0217979223500078.
  • Manthesha, P. B. Mallikarjun, L. Kavitha, and K. C. Shobha. 2021. “Mixed Convection of Williamson Fluid Along an Inclined Porous Microchannel with Chemical Reaction by Taking Non-Constant Thermal Conductivity: An Entropy Analysis.” Indian Journal of Science and Technology 14: 3525–3536. https://doi.org/10.17485/IJST/v14i48.1853.
  • Mehdi, N., and K. Arash. 2016. “The Effects of Porosity and Permeability on Fluid Flow and Heat Transfer of Multi Walled Carbon Nanotubes Suspended in Oil (MWCNT/Oil Nano Fluid) in a Microchannel Filled with a Porous Medium.” Physica E: Low-Dimensional Systems and Nanostructures 84: 423–433. https://doi.org/10.1016/j.physe.2016.07.020.
  • MehdiKiyasatfa. 2018. “Convective Heat Transfer and Entropy Generation Analysis of non-Newtonian Power law Fluid Flows in Parallel-Plate and Circular Microchannels Under Slip Boundary Conditions.” International Journal of Thermal Sciences 128: 15–27. https://doi.org/10.1016/j.ijthermalsci.2018.02.013
  • Nayak, M. K., T. M. Agbaje, S. Mondal, P. Sibanda, and P. G. L. Leach. 2020. “Thermodynamic Effect in Darcy-Forchheimer Nanofluid Flow of a Single-Wall Carbon Nanotubes/Multi-Wall Carbon Nanotubes Suspension due to a Stretching/Shrinking Rotating Disk: Buongiorno Two-Phase Model.” Journal of Engineering Mathematics 120: 43–65. https://doi.org/10.1007/s10665-019-10031-9.
  • Ranjit, N. K., G. C. Shit, and D. Tripathi. 2019. “Entropy Generation and Joule Heating of Two Layered Electro Osmotic Flow in the Peristaltically Induced Microchannel.” International Journal of Mechanical Sciences 153–154: 430–444.
  • Rasool, G., T. Zhang, A. J. Chamkha, A. Shafiq, I. Tlili, and G. Shahzadi. 2020. “Entropy Generations and Consequences of Binary Chemical Reaction on MHD Darcy-Forchheimer Williamson Nanofluid Flow Over non-Linearly Stretching Surface.” Entropy 22: 18.
  • Shafiq, A., A. B. Colak, and T. N. Sindhu. 2022. “Significance of Bioconvective Flow of MHD Thixotropic Nanofluid Passing Through a Vertical Surface by Machine Learning Algorithm.” Chinese Journal of Physics 80: 427–444. https://doi.org/10.1016/j.cjph.2022.08.008.
  • Shafiq, A., A. B. Colak, and T. N. Sindhu. 2023. “Modeling of Soret and Dufour’s Convective Heat Transfer in Nanofluid Flow Through a Moving Needle with Artificial Neural Network.” Arab. J. Sci. Eng 48: 2807–2820. https://doi.org/10.1007/s13369-022-06945-9.
  • Shafiq, A., A. B. Colak, T. N. Sindhu, and T. Muhammad. 2022. “Optimization of Darcy-Forchheimer Squeezing Flow in Nonlinear Stratified Fluid Under Convective Conditions with Artificial Neural Network.” Heat Transfer Research 53 (3): 67–89. https://doi.org/10.1615/HeatTransRes.2021041018.
  • Shashikumar, N. S., B. J. Gireesha, B. Mahanthesh, and B. C. Prasannakumara. 2018. “Brinkman-Forchheimer Flow of SWCNT and MWCNT Magneto-Nanoliquids in a Microchannel with Multiple Slips and Joule Heating Aspects.” Multidiscipline Modelling in Materials and Structures 14: 769–786. https://doi.org/10.1108/MMMS-01-2018-0005.
  • Shashikumar, N., S. B. J. Gireesha, B. Mahanthesh, B. C. Prasannakumara, and A. J. Chamkha. 2019. “Entropy Generation Analysis of Magneto-Nanoliquids Embedded with Aluminium and Titanium Alloy Nanoparticles in Microchannel with Partial Slips and Convective Conditions.” International Journal of Numerical Methods for Heat and Fluid Flow 29: 3638–3659. https://doi.org/10.1108/HFF-06-2018-0301.
  • Shehzad, S. A., B. Mahanthesh, B. J. Gireesha, N. S. Shashikumar, and M. Madhu. 2019. “Brinkman-Forchheimer Slip Flow Subject to Exponential Space and Thermal Dependent Each Source in a Microchannel Utilizing SWCNT and MWCNT Nanoliquids.” Heat Transfer-Asian Research 48: 1688–1708. https://doi.org/10.1002/htj.21536.
  • Shoaib, M., S. Naz, K. S. Nisar, M. A. Z. Raja, S. Aslam, and I. Ahmad. 2022. “MHD Casson Nanofluid in Darcy-Forchheimer Porous Medium in the Presence of Heat Source and Arrhenious Activation Energy: Applications of Neural Networks.” International Journal of Modelling and Simulation 43 (4): 438–461.
  • Toh, K. C., X. Y. Chen, and J. C. Chai. 2002. “Numerical Computation of Fluid Flow and Heat Transfer in Microchannels.” International Journal of Heat and Mass Transfer 45: 5133–5141. https://doi.org/10.1016/S0017-9310(02)00223-5.
  • Wang, R., D. U. Jiayou, and Z. H. U. Zefei. 2016. “Effects of Wall Slip and Nanoparticles Thermophoresis on the Convective Heat Transfer Enhancement of Nanofluids in a Microchannel.” Journal of Thermal Science and Technology 11. https://doi.org/10.1299/jtst.2016jtst00017.
  • Yang, Y. T., Y. H. Wang, and B. Y. Huang. 2015. “Numerical Optimization for Nanofluid Flow in Microchannels Using Entropy Generation Minimization.” Numerical Heat Transfer, Part A: Applications 67: 571–588. https://doi.org/10.1080/10407782.2014.937282.
  • Yasmin, H., and N. Iqbal. 2021. “Convective Mass/Heat Analysis of an Electroosmotic Peristaltic Flow of Ionic Liquid in a Symmetric Porous Microchannel with Soret and Dufour.” Mathematical Problems in Engineering 2638647. https://doi.org/10.1155/2021/2638647.
  • Yazdi, M. H., S. Abdullah, I. Hashim, and K. Sopian. 2011. “Effects of Viscous Dissipation on the Slip MHD Flow and Heat Transfer Past a Permeable Surface with Convective Boundary Conditions.” Energies 4: 2273–2294.
  • Yazdi, M. H., S. Abdullah, I. Hashim, and K. Sopian. 2013. “Reducing Entropy Generation in MHD Fluid Flow Over Open Parallel Microchannels Embedded in a Micro Patterened Permeable Surface.” Entropy 15: 4822–4843. https://doi.org/10.3390/e15114822.
  • Zhang, C., Y. Chen, and M. Shi. 2010. “Effects of Roughness Elements on Laminar Flow and Heat Transfer in Microchannels.” Chemical Engineering and Processing: Process Intensification 49: 1188–1192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.