161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A machine learning investigation of the ZnO–water nanofluid flow with magnetic field through convergent and divergent channels: a numerical study

, , ORCID Icon, , &
Article: 2316793 | Received 02 Nov 2023, Accepted 05 Feb 2024, Published online: 20 Feb 2024

References

  • Ahmad, S., S. Nadeem, and N. Ullah. 2020. “Entropy Generation and Temperature-Dependent Viscosity in the Study of SWCNT–MWCNT Hybrid Nanofluid.” Applied Nanoscience 10 (12): 5107–5119. https://doi.org/10.1007/s13204-020-01306-0
  • Ashwinkumar, G. P. 2021. “Heat and Mass Transfer Analysis in Unsteady MHD Flow of Aluminum Alloy/Silver–Water Nanoliquid Due to an Elongated Surface.” Heat Transfer 50 (2): 1679–1696. https://doi.org/10.1002/htj.21947
  • Awais, M., S. Ehsan Awan, M. Asif Zahoor Raja, N. Parveen, W. U. Khan, M. Yousaf Malik, and Y. He. 2021. “Effects of Variable Transport Properties on Heat and Mass Transfer in MHD Bioconvective Nanofluid Rheology with Gyrotactic Microorganisms: Numerical Approach.” Coatings 11 (2): 231. https://doi.org/10.3390/coatings11020231
  • Azadeh, A., M. S. Sangari, and A. S. Amiri. 2012. “A Particle Swarm Algorithm for Inspection Optimization in Serial Multi-Stage Processes.” Applied Mathematical Modelling 36 (4): 1455–1464. https://doi.org/10.1016/j.apm.2011.09.037
  • Chamkha, A. J., T. Groşan, and I. Pop. 2002. “Fully Developed Free Convection of a Micropolar Fluid in a Vertical Channel.” International Communications in Heat and Mass Transfer 29 (8): 1119–1127. https://doi.org/10.1016/S0735-1933(02)00440-2
  • Eskandar, H., A. Sadollah, A. Bahreininejad, and M. Hamdi. 2012. “Water Cycle Algorithm–A Novel Metaheuristic Optimization Method for Solving Constrained Engineering Optimization Problems.” Computers & Structures 110: 151–166. https://doi.org/10.1016/j.compstruc.2012.07.010
  • Gandomi, A. H., X. S. Yang, and A. H. Alavi. 2013. “Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems.” Engineering with Computers 29 (1): 17–35. https://doi.org/10.1007/s00366-011-0241-y
  • Hamel, G. 1917. “Spiralförmige Bewegungen zäher Flüssigkeiten.” Jahresbericht der deutschen mathematiker-vereinigung 25: 34–60.
  • Hatamie, A., A. Khan, M. Golabi, A. P. Turner, V. Beni, W. C. Mak, … M. Willander. 2015. “Zinc Oxide Nanostructure-Modified Textile and its Application to Biosensing, Photocatalysis, and as Antibacterial Material.” Langmuir 31 (39): 10913–10921. https://doi.org/10.1021/acs.langmuir.5b02341
  • Heidari, A. A., S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen. 2019. “Harris Hawks Optimization: Algorithm and Applications.” Future Generation Computer Systems 97: 849–872. https://doi.org/10.1016/j.future.2019.02.028
  • Hosseinzadeh, K., M. E. Moghaddam, A. Asadi, A. R. Mogharrebi, and D. D. Ganji. 2020. “Effect of Internal Fins Along with Hybrid Nano-Particles on Solid Process in Star Shape Triplex Latent Heat Thermal Energy Storage System by Numerical Simulation.” Renewable Energy 154: 497–507. https://doi.org/10.1016/j.renene.2020.03.054
  • Izadi, M., M. A. Sheremet, and S. A. M. Mehryan. 2020. “Natural Convection of a Hybrid Nanofluid Affected by an Inclined Periodic Magnetic Field Within a Porous Medium.” Chinese Journal of Physics 65: 447–458. https://doi.org/10.1016/j.cjph.2020.03.006
  • Jabeen, I., S. Ahmad, A. Anjum, and M. Farooq. 2022. “Analysis of Variable Mass Diffusivity in Maxwell's Fluid with Cattaneo–Christov and Nonlinear Stratification.” Heliyon 8 (12). https://doi.org/10.1016/j.heliyon.2022.e11850
  • Jeffery, G. B. 1915. “L. The Two-Dimensional Steady Motion of a Viscous Fluid.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 29 (172): 455–465. https://doi.org/10.1080/14786440408635327
  • Jiang, J., J. Pi, and J. Cai. 2018. “The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications.” Bioinorganic Chemistry and Applications 2018. https://doi.org/10.1155/2018/1062562
  • Karaboga, D., and B. Basturk. 2007. “Artificial bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems.” In Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science. Vol. 4529, edited by P. Melin, O. Castillo, L. T. Aguilar, J. Kacprzyk, and W. Pedrycz. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Khan, S. A., T. Hayat, and A. Alsaedi. 2023a. “Bioconvection Entropy Optimized Flow of Reiner-Rivlin Nanoliquid with Motile Microorganisms.” Alexandria Engineering Journal 79: 81–92. https://doi.org/10.1016/j.aej.2023.07.069
  • Khan, S. A., A. Razaq, A. Alsaedi, and T. Hayat. 2023b. “Modified Thermal and Solutal Fluxes Through Convective Flow of Reiner–Rivlin Material.” Energy 283: 128516. https://doi.org/10.1016/j.energy.2023.128516
  • Khodadadi, H., S. Aghakhani, H. Majd, R. Kalbasi, S. Wongwises, and M. Afrand. 2018. “A Comprehensive Review on Rheological Behavior of Mono and Hybrid Nanofluids: Effective Parameters and Predictive Correlations.” International Journal of Heat and Mass Transfer 127: 997–1012. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.103
  • Koriko, O. K., K. S. Adegbie, I. L. Animasaun, and A. F. Ijirimoye. 2020. “Comparative Analysis Between Three-Dimensional Flow of Water Conveying Alumina Nanoparticles and Water Conveying Alumina–Iron (III) Oxide Nanoparticles in the Presence of Lorentz Force.” Arabian Journal for Science and Engineering 45 (1): 455–464. https://doi.org/10.1007/s13369-019-04223-9
  • Krishna, M. V., and A. J. Chamkha. 2019. “Hall Effects on MHD Squeezing Flow of a Water-Based Nanofluid Between Two Parallel Disks.” Journal of Porous Media 22 (2). https://doi.org/10.1615/JPorMedia.2018028721
  • Krishna, M. V., and A. J. Chamkha. 2020. “Hall and Ion Slip Effects on Unsteady MHD Convective Rotating Flow of Nanofluids—Application in Biomedical Engineering.” Journal of the Egyptian Mathematical Society 28 (1): 1. https://doi.org/10.1186/s42787-019-0065-2
  • Krishna, M. V., B. V. Swarnalathamma, and A. J. Chamkha. 2019. “Investigations of Soret, Joule and Hall Effects on MHD Rotating Mixed Convective Flow Past an Infinite Vertical Porous Plate.” Journal of Ocean Engineering and Science 4 (3): 263–275. https://doi.org/10.1016/j.joes.2019.05.002
  • Lee, M. W. T., and K. Perumal. 2019. “Numerical Study of Flow and Heat Transfer with ZnO–Water Nanofluid in Flattened Tubes.” Chemical Product and Process Modeling 15 (3): 20190092.
  • Mahanthesh, B., G. Lorenzini, F. M. Oudina, and I. L. Animasaun. 2020. “Significance of Exponential Space-and Thermal-Dependent Heat Source Effects on Nanofluid Flow Due to Radially Elongated Disk with Coriolis and Lorentz Forces.” Journal of Thermal Analysis and Calorimetry 141 (1): 37–44. https://doi.org/10.1007/s10973-019-08985-0
  • Makinde, O. D., N. Sandeep, T. M. Ajayi, and I. L. Animasaun. 2018. “Numerical Exploration of Heat Transfer and Lorentz Force Effects on the Flow of MHD Casson Fluid Over an Upper Horizontal Surface of a Thermally Stratified Melting Surface of a Paraboloid of Revolution.” International Journal of Nonlinear Sciences and Numerical Simulation 19 (2): 93–106. https://doi.org/10.1515/ijnsns-2016-0087
  • Mirjalili, S., S. M. Mirjalili, and A. Lewis. 2014. “Grey Wolf Optimizer.” Advances in Engineering Software 69: 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  • Mishra, P. K., H. Mishra, A. Ekielski, S. Talegaonkar, and B. Vaidya. 2017. Zinc Oxide Nanoparticles: A Promising Nanomaterial for Biomedical Applications.” Drug Discovery Today 22 (12): 1825–1834. https://doi.org/10.1016/j.drudis.2017.08.006
  • Mottupalle, G. R., D. P. Ashwathnarayana, B. M. Shankarappa, and A. A. Sanjeevamurthy. 2022. “Effects of Variable Fluid Properties on Double Diffusive Mixed Convection with Chemical Reaction Over an Accelerating Surface.” Biointerface Research in Applied Chemistry 12 (4): 5161–5173.
  • Newman, M. D., M. Stotland, and J. I. Ellis. 2009. “The Safety of Nanosized Particles in Titanium Dioxide–and Zinc Oxide–Based Sunscreens.” Journal of the American Academy of Dermatology 61 (4): 685–692. https://doi.org/10.1016/j.jaad.2009.02.051
  • Rashid, U., A. Iqbal, H. Liang, W. Khan, and M. W. Ashraf. 2021. “Dynamics of Water Conveying Zinc Oxide Through Divergent-Convergent Channels with the Effect of Nanoparticles Shape When Joule Dissipation are Significant.” PLoS One 16 (1): e0245208. https://doi.org/10.1371/journal.pone.0245208
  • Raza, J., F. Mebarek-Oudina, and A. J. Chamkha. 2019. “Magnetohydrodynamic Flow of Molybdenum Disulfide Nanofluid in a Channel with Shape Effects.” Multidiscipline Modeling in Materials and Structures 15 (4): 737–757. https://doi.org/10.1108/MMMS-07-2018-0133
  • Razaq, A., T. Hayat, S. A. Khan, and S. Momani. 2023. “ATSS Model Based upon Applications of Cattaneo–Christov Thermal Analysis for Entropy Optimized Ternary Nanomaterial Flow with Homogeneous-Heterogeneous Chemical Reactions.” Alexandria Engineering Journal 79: 390–401. https://doi.org/10.1016/j.aej.2023.08.013
  • Rehman, S., Hashim, Hassine, S.B.H., Tag Eldin, E. and Shah, S.O. 2023. “Investigation of Entropy Production with Thermal Analysis Under Soret and Dufour Effects in MHD Flow Between Convergent and Divergent Channels.” ACS Omega 8 (10): 9121–9136. https://doi.org/10.1021/acsomega.2c05937
  • Ruszkiewicz, J. A., A. Pinkas, B. Ferrer, T. V. Peres, A. Tsatsakis, and M. Aschner. 2017. “Neurotoxic Effect of Active Ingredients in Sunscreen Products, a Contemporary Review.” Toxicology Reports 4: 245–259. https://doi.org/10.1016/j.toxrep.2017.05.006
  • Sadollah, A., H. Eskandar, H. M. Lee, and J. H. Kim. 2016. “Water Cycle Algorithm: A Detailed Standard Code.” SoftwareX 5: 37–43. https://doi.org/10.1016/j.softx.2016.03.001
  • Salahuddin, T., N. Siddique, M. Khan, and M. Altanji. 2022. “A Significant Study on Flow Analysis of Viscoelastic Fluid with Variable Thermo-Physical Properties.” Mathematics and Computers in Simulation 194: 416–429. https://doi.org/10.1016/j.matcom.2021.11.024
  • Shah, N. A., I. L. Animasaun, A. Wakif, O. K. Koriko, R. Sivaraj, K. S. Adegbie, … K. V. Prasad. 2020. “Significance of Suction and Dual Stretching on the Dynamics of Various Hybrid Nanofluids: Comparative Analysis Between Type I and Type II Models.” Physica Scripta 95 (9): 095205. https://doi.org/10.1088/1402-4896/aba8c6
  • Sharma, B. K., and C. Kumawat. 2021. “Impact of Temperature Dependent Viscosity and Thermal Conductivity on MHD Blood Flow Through a Stretching Surface with Ohmic Effect and Chemical Reaction.” Nonlinear Engineering 10 (1): 255–271. https://doi.org/10.1515/nleng-2021-0020
  • Smijs, T. G., and S. Pavel. 2011. “Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness.” Nanotechnology, Science and Applications, 95–112. https://doi.org/10.2147/NSA.S19419
  • Tlili, I., H. A. Nabwey, G. P. Ashwinkumar, and N. Sandeep. 2020. “3-D Magnetohydrodynamic AA7072-AA7075/Methanol Hybrid Nanofluid Flow Above an Uneven Thickness Surface with Slip Effect.” Scientific Reports 10 (1): 4265. https://doi.org/10.1038/s41598-020-61215-8
  • Toghraie, D., R. Mashayekhi, H. Arasteh, S. Sheykhi, M. Niknejadi, and A. J. Chamkha. 2019. “Two-phase Investigation of Water-Al2O3 Nanofluid in a Micro Concentric Annulus Under Non-Uniform Heat Flux Boundary Conditions.” International Journal of Numerical Methods for Heat & Fluid Flow 30 (4): 1795–1814. https://doi.org/10.1108/HFF-11-2018-0628
  • Waqas, M. 2022. “Chemical Reaction Impact in Dual Diffusive non-Newtonian Liquid Featuring Variable Fluid Thermo-Solutal Attributes.” Chemical Physics Letters 802: 139661. https://doi.org/10.1016/j.cplett.2022.139661

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.