51
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Parametric optimisation for heat transfer through nanofluid impinging upon a Riga plate: the Taguchi method

& ORCID Icon
Article: 2317911 | Received 01 Dec 2023, Accepted 05 Feb 2024, Published online: 27 Feb 2024

References

  • Abadeh, A., M. Passandideh-Fard, M. J. Maghrebi, and M. Mohammadi. 2019. “Stability and Magnetisation of Fe3O4/Water Nanofluid Preparation Characteristics Using Taguchi Method.” Journal of Thermal Analysis and Calorimetry 135 (2): 1323–1334. https://doi.org/10.1007/s10973-018-7662-4.
  • Andersson, H., K. Bech, and B. Dandapat. 1992. “Magnetohydrodynamic Flow of a Power-Law Fluid Over a Stretching Sheet.” International Journal of Non-Linear Mechanics 27 (6): 929–936. https://doi.org/10.1016/0020-7462(92)90045-9.
  • Beard, D., and K. Walters. 1964. “Elastico-Viscous Boundary-Layer Flows I. Two-Dimensional Flow Near a Stagnation Point.” In Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 60, 667–674. Cambridge University Press.
  • Bement, T. R. 1989. Taguchi Techniques for Quality Engineering.
  • Berger, T. W., J. Kim, C. Lee, and J. Lim. 2000. “Turbulent Boundary Layer Control Utilising the Lorentz Force.” Physics of Fluids 12 (3): 631–649. https://doi.org/10.1063/1.870270.
  • Bhargavi, D. N., K. Gangadhar, and A. J. Chamkha. 2022. “Graphene-gold/pdms Maxwell Hybrid Nanofluidic Flow in a Squeezed Channel with Linear and Irregular Radiations.” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 28 (1): 09544089221139696.
  • Bhattacharyya, K., T. Hayat, and A. Alsaedi. 2013. “Analytic Solution for Magnetohydrodynamic Boundary Layer Flow of Casson Fluid Over a Stretching/Shrinking Sheet with Wall Mass Transfer.” Chinese Physics B 22 (2): 024702. https://doi.org/10.1088/1674-1056/22/2/024702.
  • Bhatti, M. M., A. Zeeshan, and R. Ellahi. 2016. “Endoscope Analysis on Peristaltic Blood Flow of Sisko Fluid with Titanium Magneto-Nanoparticles.” Computers in Biology and Medicine 78:29–41. https://doi.org/10.1016/j.compbiomed.2016.09.007.
  • Brimmo, A. T., and M. A. Qasaimeh. 2017. “Stagnation Point Flows in Analytical Chemistry and Life Sciences.” RSC Advances 7 (81): 51206–51232. https://doi.org/10.1039/C7RA11155J.
  • Buongiorno, J. 2006. “Convective Transport in Nanofluids.” Journal of Heat Transfer 128 (3): 240–250. https://doi.org/10.1115/1.2150834.
  • BVPH2.0 Software Package, https://numericaltank.sjtu.edu.cn/BVPh2_0.htm, accessed: 2017-01-20.
  • Crane, L. J. 1970. “Flow Past a Stretching Plate.” Zeitschrift Für Angewandte Mathematik Und Physik ZAMP 21 (4): 645–647. https://doi.org/10.1007/BF01587695.
  • Cuce, P. M., E. Cuce, T. Guclu, S. Shaik, S. Alshahrani, and C. A. Saleel. 2022. “Effect of Using Hybrid Nanofluids as a Coolant on the Thermal Performance of Portable Thermoelectric Refrigerators.” Sustainable Energy Technologies and Assessments 53:102685. https://doi.org/10.1016/j.seta.2022.102685.
  • Cuce, E., T. Guclu, and P. M. Cuce. 2020. “Improving Thermal Performance of Thermoelectric Coolers (TECs) Through a Nanofluid Driven Water to Air Heat Exchanger Design: An Experimental Research.” Energy Conversion and Management 214:112893. https://doi.org/10.1016/j.enconman.2020.112893.
  • Dehnad, K. 2012. Quality Control, Robust Design, and the Taguchi Method. Springer Science & Business Media.
  • Farooq, M., A. Anjum, T. Hayat, and A. Alsaedi. 2016. “Melting Heat Transfer in the Flow Over a Variable Thicked Riga Plate with Homogeneous-Heterogeneous Reactions.” Journal of Molecular Liquids 224:1341–1347. https://doi.org/10.1016/j.molliq.2016.10.123.
  • Gailitis, A., and O. Lielausis. 1961. “On the Possibility of Drag Reduction of a Flat Plate in An Electrolyte.” Appl. Magnetohydrodyn. Trudy Inst. Fisiky AN Latvia SSR 12:143.
  • Gangadhar, K., K. Bhanu Lakshmi, S. El-Sapa, M. Venkata Subba Rao, and A. J. Chamkha. 2022. “Thermal Energy Transport of Radioactive Nanofluid Flow Submerged with Microorganisms with Zero Mass Flux Condition.” Waves in Random and Complex Media 1–23.
  • Gangadhar, K., K. Bhanu Lakshmi, T. Kannan, and A. J. Chamkha. 2022. “Bioconvective Magnetised Oldroyd-B Nanofluid Flow in the Presence of Joule Heating with Gyrotactic Microorganisms.” Waves in Random and Complex Media 1–21.
  • Gangadhar, K., and A. J. Chamkha. 2021. “Entropy Minimisation on Magnetized Boussinesq Couple Stress Fluid with Non-Uniform Heat Generation.” Physica Scripta 96 (9): 095205. https://doi.org/10.1088/1402-4896/ac03de.
  • Gangadhar, K., R. Edukondala Nayak, M. Venkata Subba Rao, and T. Kannan. 2021. “Nodal/Saddle Stagnation Point Slip Flow of an Aqueous Convectional Magnesium Oxide–Gold Hybrid Nanofluid with Viscous Dissipation.” Arabian Journal for Science and Engineering 46 (3): 2701–2710. https://doi.org/10.1007/s13369-020-05195-x.
  • Gangadhar, K., M. A. Kumari, and A. J. Chamkha. 2022. “EMHD Flow of Radiative Second-Grade Nanofluid Over a Riga Plate Due to Convective Heating: Revised Buongiorno's Nanofluid Model.” Arabian Journal for Science and Engineering 47 (7): 8093–8103. https://doi.org/10.1007/s13369-021-06092-7.
  • Gangadhar, K., M. A. Kumari, M. Venkata Subba Rao, and A. J. Chamkha. 2022. “Oldroyd-B Nanoliquid Flow Through a Triple Stratified Medium Submerged with Gyrotactic Bioconvection and Nonlinear Radiations.” Arabian Journal for Science and Engineering 47: 1–13.
  • Gangadhar, K., E. Mary Victoria, and A. J. Chamkha. 2022. “Hydrothermal Features in the Swirling Flow of Radiated Graphene–Fe3O4 Hybrid Nanofluids Through a Rotating Cylinder with Exponential Space-Dependent Heat Generation.” Waves in Random and Complex Media 1–24.
  • Gangadhar, K., M. Prameela, and A. J. Chamkha. 2023. “Exponential Space-Dependent Heat Generation on Powell–Eyring Hybrid Nanoliquid Under Nonlinear Thermal Radiation.” Indian Journal of Physics 97: 1–13.
  • Gangadhar, K., M. Rupa Lavanya, and A. J. Chamkha. 2023. “Multiple Convected Conditions in Williamson Nanofluidic Flow with Variable Thermal Conductivity: Revised Bioconvection Model.” International Journal of Modern Physics B2450069. https://doi.org/10.1142/S0217979224500693.
  • Gangadhar, K., K. Shashidhar Reddy, and A. Wakif. 2023. “Wall Jet Plasma Fluid Flow Problem for Hybrid Nanofluids with Joule Heating.” International Journal of Ambient Energy 44 (1): 2459–2468. https://doi.org/10.1080/01430750.2023.2251482.
  • Gangadhar, K., T. Sujana Sree, and T. Thumma. 2023. “Impact of Arrhenius Energy and Irregular Heat Absorption on Generalized Second Grade Fluid MHD Flow Over Nonlinear Elongating Surface with Thermal Radiation and Cattaneo–christov Heat Flux Theory.” Modern Physics Letters B 38: 2450077.
  • Gangadhar, K., S. Venkata Krishna Sarma, and A. J. Chamkha. 2023. “Unsteady Squeezed Flow of Radiated Rheological Fluid in a Channel with Activation Energy.” Indian Journal of Physics 97: 1–11.
  • Hayat, T., T. Abbas, M. Ayub, M. Farooq, and A. Alsaedi. 2016. “Flow of Nanofluid Due to Convectively Heated Riga Plate with Variable Thickness.” Journal of Molecular Liquids 222:854–862. https://doi.org/10.1016/j.molliq.2016.07.111.
  • Hiemenz, K. 1911. “Die Grenzschicht an Einem in Den Gleichformigen Flussigkeitsstrom Eingetauchten Geraden Kreiszylinder.” Dinglers Polytechnisches Journal 326:321–324.
  • Homann, F. 1936. “Der Einfluss Grosser Zähigkeit Bei Der Strömung Um Den Zylinder Und Um Die Kugel.” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik 16 (3): 153–164. https://doi.org/10.1002/zamm.v16:3.
  • Hoshizaki, H., Y. Chou, N. Kulgein, and J. Meyer. n.d. Critical Review of Stagnation Point Heat Transfer Theory.
  • Iqbal, Z., E. Azhar, Z. Mehmood, and E. Maraj. 2017. “Melting Heat Transport of Nanofluidic Problem Over a Riga Plate with Erratic Thickness: Use of Keller Box Scheme.” Results in Physics 7:3648–3658. https://doi.org/10.1016/j.rinp.2017.09.047.
  • Javadpour, S. M., E. A. J. Abadi, O. A. Akbari, and M. Goharimanesh. 2020. “Optimization of Geometry and Nano-Fluid Properties on Microchannel Performance Using Taguchi Method and Genetic Algorithm.” International Communications in Heat and Mass Transfer 119:104952. https://doi.org/10.1016/j.icheatmasstransfer.2020.104952.
  • Khan, A. A., H. Usman, K. Vafai, and R. Ellahi. 2016. “Study of Peristaltic Flow of Magnetohydrodynamics Walter's B Fluid with Slip and Heat Transfer.” Scientia Iranica 23 (6): 2650–2662. https://doi.org/10.24200/sci.2016.3974.
  • Kotha, G., V. R. Kolipaula, M. Venkata Subba Rao, S. Penki, and A. J. Chamkha. 2020. “Internal Heat Generation on Bioconvection of an MHD Nanofluid Flow Due to Gyrotactic Microorganisms.” The European Physical Journal Plus 135 (7): 1–19. https://doi.org/10.1140/epjp/s13360-020-00606-2.
  • Kuznetsov, A., and D. Nield. 2010. “Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate.” International Journal of Thermal Sciences 49 (2): 243–247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
  • Liao, S. 2010. “An Optimal Homotopy-Analysis Approach for Strongly Nonlinear Differential Equations.” Communications in Nonlinear Science and Numerical Simulation 15 (8): 2003–2016. https://doi.org/10.1016/j.cnsns.2009.09.002.
  • Liao, S. 2013. Advances in the Homotopy Analysis Method. World Scientific.
  • Magyari, E., and A. Pantokratoras. 2011. “Aiding and Opposing Mixed Convection Flows Over the Riga-Plate.” Communications in Nonlinear Science and Numerical Simulation 16 (8): 3158–3167. https://doi.org/10.1016/j.cnsns.2010.12.003.
  • Makinde, O. D., W. A. Khan, and Z. H. Khan. 2013. “Buoyancy Effects on MHD Stagnation Point Flow and Heat Transfer of a Nanofluid Past a Convectively Heated Stretching/shrinking Sheet.” International Journal of Heat and Mass Transfer 62:526–533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049.
  • Mishra, M., G. Seth, and R. Sharma. 2019. “Navier's Slip Effect on Mixed Convection Flow of Non-Newtonian Nanofluid: Buongiorno's Model with Passive Control Approach.” International Journal of Applied and Computational Mathematics 5 (4): 107. https://doi.org/10.1007/s40819-019-0686-z.
  • Moolya, S., and S. Anbalgan. 2021. “Optimization of the Effect of Prandtl Number, Inclination Angle, Magnetic Field, and Richardson Number on Double-Diffusive Mixed Convection Flow in a Rectangular Domain.” International Communications in Heat and Mass Transfer 126:105358. https://doi.org/10.1016/j.icheatmasstransfer.2021.105358.
  • Mukhopadhyay, S. 2013. “Casson Fluid Flow and Heat Transfer Over a Nonlinearly Stretching Surface.” Chinese Physics B 22 (7): 074701. https://doi.org/10.1088/1674-1056/22/7/074701.
  • Mukhopadhyay, S. 2013. “Effects of Thermal Radiation on Casson Fluid Flow and Heat Transfer Over an Unsteady Stretching Surface Subjected to Suction/blowing.” Chinese Physics B 22 (11): 114702. https://doi.org/10.1088/1674-1056/22/11/114702.
  • Mustafa, M., T. Hayat, I. Pop, and A. Aziz. 2011. “Unsteady Boundary Layer Flow of a Casson Fluid Due to an Impulsively Started Moving Flat Plate.” Heat Transfer–Asian Research 40 (6): 563–576. https://doi.org/10.1002/htj.v40.6.
  • Na, T.-Y., and I. Pop. 1996. “Flow and Heat Transfer Over a Longitudinal Circular Cylinder Moving in Parallel or Reversely to a Free Stream.” Acta Mechanica 118 (1-4): 185–195. https://doi.org/10.1007/BF01410516.
  • Pang, J., and K.-S. Choi. 2004. “Turbulent Drag Reduction by Lorentz Force Oscillation.” Physics of Fluids 16 (5): L35–L38. https://doi.org/10.1063/1.1689711.
  • Pantokratoras, A., and E. Magyari. 2009. “EMHD Free-Convection Boundary-Layer Flow from a Riga-Plate.” Journal of Engineering Mathematics 64 (3): 303–315. https://doi.org/10.1007/s10665-008-9259-6.
  • Rajagopal, K., and R. Bhatnagar. 1995. “Exact Solutions for Some Simple Flows of An Oldroyd-B Fluid.” Acta Mechanica 113 (1-4): 233–239. https://doi.org/10.1007/BF01212645.
  • Rostami, M. N., S. Dinarvand, and I. Pop. 2018. “Dual Solutions for Mixed Convective Stagnation-Point Flow of an Aqueous Silica–Alumina Hybrid Nanofluid.” Chinese Journal of Physics 56 (5): 2465–2478. https://doi.org/10.1016/j.cjph.2018.06.013.
  • Seth, G. S., and M. K. Mishra. 2017. “Analysis of Transient Flow of MHD Nanofluid Past a Non-Linear Stretching Sheet Considering Navier's Slip Boundary Condition.” Advanced Powder Technology 28 (2): 375–384. http://doi.org/10.1016/j.apt.2016.10.008.
  • Seth, G., M. Mishra, and R. Tripathi. 2018. “MHD Free Convective Heat Transfer in a Walter's Liquid-B Fluid Past a Convectively Heated Stretching Sheet with Partial Wall Slip.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (2): 1–11. https://doi.org/10.1007/s40430-018-1028-5.
  • Seth, G., M. Mishra, and R. Tripathi. 2018. “Modeling and Analysis of Mixed Convection Stagnation Point Flow of Nanofluid Towards a Stretching Surface: OHAM and FEM Approach.” Computational and Applied Mathematics 37 (4): 4081–4103. https://doi.org/10.1007/s40314-017-0565-3.
  • Seth, G. S., R. Sharma, B. Kumbhakar, and A. J. Chamkha. n.d. “Hydromagnetic Flow of Heat Absorbing and Radiating Fluid Over Exponentially Stretching Sheet with Partial Slip and Viscous and Joule Dissipation.” Engineering Computations 33 (3).
  • Ullah, I., S. Shafie, O. D. Makinde, and I. Khan. 2017. “Unsteady MHD Falkner-Skan Flow of Casson Nanofluid with Generative/Destructive Chemical Reaction.” Chemical Engineering Science 172:694–706. https://doi.org/10.1016/j.ces.2017.07.011.
  • Willenbacher, N., and K. Georgieva. 2013. Rheology of Disperse Systems.
  • Zaib, A., R. U. Haq, A. J. Chamkha, and M. M. Rashidi. 2019. “Impact of Partial Slip on Mixed Convective Flow Towards a Riga Plate Comprising Micropolar TiO2-Kerosene/Water Nanoparticles.” International Journal of Numerical Methods for Heat & Fluid Flow 29 (5): 1647–1662. https://doi.org/10.1108/HFF-06-2018-0258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.