72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the simulations of micromagnetorotation (MMR) effects within micropolar conducting liquids

& ORCID Icon
Article: 2318627 | Received 22 Sep 2023, Accepted 30 Jan 2024, Published online: 26 Feb 2024

References

  • Akter, S, M. Ferdows, M. D. Shamshuddin, and Z. Siri. 2022. “Similarity Solution for Induced Magnetic Field Boundary Layer Flow of Metallic Nanofluids Via Convectively Inclined Stationary/moving Flat Plate: Spectral Relaxation Computation.” Journal of Applied Mathematics and Mechanics 102 (4): e202100179.
  • Almakki, M., H. Mondal, and P. Sibanda. 2021. “Onset of Unsteady MHD Micropolar Nanofluid Flow with Entropy Generation.” International Journal of Ambient Energy 43:1–22.
  • Ariman, T., M. A. Turk, and N. D. Sylvester. 1973. “Microcontinuum Fluid Mechanics–A Review.” International Journal of Engineering Science 11 (8): 905–930. https://doi.org/10.1016/0020-7225(73)90038-4.
  • Atkinson, K., W. Han, and D. Stewart. 2009. Numerical Solution of Ordinary Differential Equations. Iowa City, IA: John Wiley Sons.
  • Ayele, T. 2023. “Analysis of Magnetohydrodynamic Micropolar Nanofluid Flow Due to Radially Stretchable Rotating Disk Employing Spectral Method.” Advances in Mathematical Physics2023:5283475.
  • Aziz, M. A., and A. A. Afify. 2018. “nfluences of Slip Velocity and Induced Magnetic Field on MHD Stagnation-Point Flow and Heat Transfer of Casson Fluid Over a Stretching Sheet.” Mathematical Problems in Engineering 2018:9402836.
  • Chamkha, A. J., T. Groşan, and I. Pop. 2002. “Fully Developed Free Convection of a Micropolar Fluid in a Vertical Channel.” International Communications in Heat and Mass Transfer 29 (8): 1119–1127. https://doi.org/10.1016/S0735-1933(02)00440-2.
  • Cosserat, E., and F. Cosserat. 1909. “Theories Des Corps Deformables.” Nature 81:67.
  • Eringen, A. C. 1966. “Theory of Micropolar Fluids.” Journal of Mathematics and Mechanics 16:1–18.
  • Eringen, A. C. 1999. Microcontinuum Field Theories: I. Foundations and Solids. New York, NY: Springer. 1–325.
  • Goud, B. S. 2020. “Heat Generation/absorption Influence on Steady Stretched Permeable Surface on MHD Flow of a Micropolar Fluid Through a Porous Medium in the Presence of Variable Suction/injection.” International Journal of Thermofluids 7 (8): 100044. https://doi.org/10.1016/j.ijft.2020.100044.
  • Karvelas, E., G. Sofiadis, T. Papathanasiou, and I. Sarris. 2020. “Effect of Micropolar Fluid Properties on the Blood Flow in a Human Carotid Model.” Fluids 5 (3): 125. https://doi.org/10.3390/fluids5030125.
  • Khan, W. A. 2022. “Impact of Time Dependent Heat and Mass Transfer Phenomenon for Magnetized Sutterby Nanofluid Flow.” Waves in Random and Complex Media 2022: 1–15.
  • Khan, W. A. 2023a. “Dynamics of Gyrotactic Microorganisms for Modified Eyring Powell Nanofluid Flow with Bioconvection and Nonlinear Radiation Aspects.” Waves in Random and Complex Media 2023: 1–11.
  • Khan, Waqar A. 2023b. “Significance of Magnetized Williamson Nanofluid Flow for Ferromagnetic Nanoparticles.” Waves in Random and Complex Media 2023: 1–20.
  • Khan, M. S., and K. Hackl. 2018. “Modeling of Microstructures in a Cosserat Continuum Using Relaxed Energies.” In Trends in Applications of Mathematics to Mechanics, edited by E. Rocca, U. Stefanelli, L. Truskinovsky, A. Visintin, Vol. 27. 103–125. Cham: Springer. 
  • Khan, M. S., and K. Hackl. 2021. “Modeling of Microstructures in a Cosserat Continuum Using Relaxed Energies: Analytical and Numerical Aspects.” In Variational Views in Mechanics. Vol. 46 of Advances in Mechanics and Mathematics, edited by P. M. Mariano, 57–87. Cham: Birkhäuser.
  • Khan, M. S., and I. Hameed. 2023. “A New Magneto-Micropolar Boundary Layer Model for Liquid Flows – Effect of Micromagnetorotation (MMR).” arXiv:2308.08457.
  • Khan, M. S., M. Hammad, S. Batool, and H. Kaneez. 2017. “Investigation of MHD Effects and Heat Transfer for the Upper-convected Maxwell (UCM-M) Micropolar Fluid with Joule Heating and Thermal Radiation Using a Hyperbolic Heat Flux.” The European Physical Journal Plus 132 (1): 1–12. https://doi.org/10.1140/epjp/i2017-11277-3.
  • Khan, M. S., M. A. Memon, I. Khan, and S. M. Eldin. 2023. “Finite Element Based Direct and Iterative Approach to Investigate a Magneto-micropolar Flow Through a Rectangular Channel.” Alexandria Engineering Journal 75:55–66. https://doi.org/10.1016/j.aej.2023.05.038.
  • Krishna, M. V., P. V. S. Anand, and A. J. Chamkha. 2019. “Heat and Mass Transfer on Free Convective Flow of a Micro-polar Fluid Through a Porous Surface with Inclined Magnetic Field and Hall Effects.” Journal of Porous Media 10 (3): 203–223.
  • Krishna, M. V., and A. J. Chamkha. 2020. “Hall and Ion Slip Effects on Unsteady MHD Convective Rotating Flow of Nanofluids–Application in Biomedical Engineering.” Journal of the Egyptian Mathematical Society 28 (1): 1–15. https://doi.org/10.1186/s42787-019-0065-2.
  • Krishna, M. V., K. Jyothi, and A. J. Chamkha. 2020. “Heat and Mass Transfer on MHD Flow of Second Grade Fluid Through Porous Medium Over a Semi-infinite Vertical Stretching Sheet.” Journal of Porous Media 23 (8): 751–765. https://doi.org/10.1615/JPorMedia.v23.i8.
  • Krishna, M. V., B. V. Swarnalathamma, and A. J. Chamkha. 2019. “Investigations of Soret, Joule and Hall Effects on MHD Rotating Mixed Convective Flow Past An Infinite Vertical Porous Plate.” Journal of Ocean Engineering and Science 4 (3): 263–275. https://doi.org/10.1016/j.joes.2019.05.002.
  • Kumar, B., G. S. Seth, R. Nandkeolyar, and A. J. Chamkha. 2019. “Outlining the Impact of Induced Magnetic Field and Thermal Radiation on Magneto-convection Flow of Dissipative Fluid.” International Journal of Thermal Sciences 146:106101. https://doi.org/10.1016/j.ijthermalsci.2019.106101.
  • Magyari, E., and A. J. Chamkha. 2010. “Combined Effect of Heat Generation Or Absorption and First-order Chemical Reaction on Micropolar Fluid Flows Over a Uniformly Stretched Permeable Surface: The Full Analytical Solution.” International Journal of Thermal Sciences 49 (9): 1821–1828. https://doi.org/10.1016/j.ijthermalsci.2010.04.007.
  • Mamatha Upadhya, S., C.S.K. Raju, S. Saleem, A.A. Alderremy, and Mahesha. 2018. “Modified Fourier Heat Flux on MHD Flow Over Stretched Cylinder Filled with Dust, Graphene Adn Silver Nanoparticles.” Results in Physics 9:1377–1385. https://doi.org/10.1016/j.rinp.2018.04.038.
  • Saleem, S., M. M. AlQarni, S. Nadeem, and N. Sandeep. 2018. “Convective Heat and Mass Transfer in Magneto Jeffrey Fluid Flow on a Rotating Cone with Heat Source and Chemical Reaction.” Communications in Theoretical Physics 70 (5): 534–540. https://doi.org/10.1088/0253-6102/70/5/534.
  • Saraswathy, M., D. Prakash, and P. Durgaprasad. 2022. “MHD Micropolar Fluid in a Porous Channel Provoked by Viscous Dissipation and Non-Linear Thermal Radiation: An Analytical Approach.” Mathematics 11 (1): 183. https://doi.org/10.3390/math11010183.
  • Shampine, L. F., and J. Kierzenka. 2001. “A BVP Solver Based on Residual Control and the MATLAB PSE.” ACM Transactions on Mathematical Software 27 (3): 3299–3161.
  • Shamshuddin, M. D., A. Ghaffari, and Usman. 2022. “Radiative Heat Energy Exploration on Casson-type Nanoliquid Induced by a Convectively Heated Porous Plate in Conjunction with Thermophoresis and Brownian Movements.” International Journal of Ambient Energy 43 (1): 6329–6340. https://doi.org/10.1080/01430750.2021.2014960.
  • Shamshuddin, M. D., F. Mabood, W. A. Khan, and G. R. Rajput. 2023. “Exploration of Thermal Péclet Number, Vortex Viscosity, and Reynolds Number on Two-dimensional Flow of Micropolar Fluid Through a Channel Due to Mixed Convection, Heat Transfer.” Heat Transfer 52 (1): 854–873. https://doi.org/10.1002/htj.v52.1.
  • Shamshuddin, M. D., G. R. Rajput, W. Jamshed, and V. S. Patil. 2022. “MHD Bioconvection Microorganism Nanofluid Driven by a Stretchable Plate Through Porous Media with An Induced Heat Source.” Waves in Random and Complex Media 2022: 1–25.
  • Shamshuddin, M. D., R. P. Sharma, A. Ghaffari, and S. R. Allipudi. 2023. “Induced Magnetic Transportation of Soret and Dissipative Effects on Casson Fluid Flow Towards a Vertical Plate with Thermal and Species Flux Conditions.” International Journal of Modern Physics B 2023: 1–18.
  • Sharma, S., V. Lambha, S. Mittal, and R. Verma. 2023. “Micropolar Lubricant Effects on the Performance of Partial Journal Bearings.” Journal of Engineering Tribology 237 (7): 1461–1470.
  • Shizawa, K., and T. Tanahashi. 1986. “New Constitutive Equations for Conducting Magnetic Fluids with Internal Rotation: Thermodynamical Discussions.” Bulletin of the JSME 29 (255): 2878–2884. https://doi.org/10.1299/jsme1958.29.2878.
  • Shliomis, M. 1972. “Effective Viscosity of Magnetic Suspensions.” Soviet Physics JETP 34:1291–1294.
  • Shu, J. J., and J. S. Lee. 2008. “Fundamental Solutions for Micropolar Fluids.” Journal of Engineering Mathematics 61 (1): 69–79. https://doi.org/10.1007/s10665-007-9160-8.
  • Takhar, H. S., A. J. Chamkha, and G. Nath. 2002. “MHD Flow Over a Moving Plate in a Rotating Fluid with Magnetic Field, Hall Currents and Free Stream Velocity.” International Journal of Engineering Science 40 (13): 1511–1527. https://doi.org/10.1016/S0020-7225(02)00016-2.
  • Tzirtzilakis, E., K. E. Aslani, L. Benos, and I. E. Sarris. 2020. “Micromagnetorotation of MHD Micropolar Flows.” Symmetry 12 (1): 148–160. https://doi.org/10.3390/sym12010148.
  • Venkataramana, B., P. V. S. Narayana, and S. Venkateswarlu. 2013. “Effects of Hall Current and Radiation Absorption on MHD Micropolar Uid in a Rotating System.” Ain Shams Engineering Journal4 (4): 843–854. https://doi.org/10.1016/j.asej.2013.02.002.
  • Waqas, M., W.A. Khan, A. A. Pasha, N. Islam, and M. M. Rahman. 2022. “Dynamics of Bioconvective Casson Nanoliquid From a Moving Surface Capturing Gyrotactic Microorganisms, Magnetohydrodynamics and Stratifications.” Thermal Science and Engineering Progress 36:101492. https://doi.org/10.1016/j.tsep.2022.101492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.