47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CFD analysis of artificially roughened solar air heater: a comparative study of C-Shape, reverse C-Shape, and reverse R-Shape roughness element

ORCID Icon, , , &
Article: 2331240 | Received 13 Oct 2023, Accepted 11 Mar 2024, Published online: 26 Mar 2024

References

  • Arulanandam, S. J., K. T. Hollands, and E. Brundrett. 1999. “A CFD Heat Transfer Analysis of the Transpired Solar Collector Under No-Wind Conditions.” Solar Energy 67 (1-3): 93–100. https://doi.org/10.1016/S0038092X(00)00042-6.
  • Bisht, V. S., A. K. Patil, and A. Gupta. 2020. “Thermo-Hydraulic Performance of Solar Air Heater Roughened with V-Shaped Ribs Combined with V-Shaped Perforated Baffles.” In Advances in Energy Research, Vol. 2: Selected Papers from ICAER 2017, 123–132. Springer Singapore.
  • Bopche, S. B., and M. S. Tandale. 2009. “Experimental Investigations on Heat Transfer and Frictional Characteristics of a Turbulator Roughened Solar Air Heater Duct.” International Journal of Heat and Mass Transfer 52 (11-12): 2834–2848. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.039.
  • Chaube, A., P. K. Sahoo, and S. C. Solanki. 2006. “Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater.” Renewable Energy 31 (3): 317–331. https://doi.org/10.1016/j.renene.2005.01.012.
  • Chaudhari, M., S. L. Sharma, and A. Debbarma. 2023. “Exergetic Performance Analysis of Solar Air Heater with Inverted L-Shape Ribs as Roughness Element.” Archives of Thermodynamics 44 (3): 1–27. https://doi.org/10.24425/ather.2023.147546.
  • Cho, H. H., Y. Y. Kim, D. H. Rhee, S. Y. Lee, S. J. Wu, and C. K. Choi. 2003. “The Effects of Gap Position in Discrete Ribs on Local Heat/Mass Transfer in a Square Duct.” Journal of Enhanced Heat Transfer 10 (3): 287–300. https://doi.org/10.1615/JEnhHeatTransf.v10.i3.40.
  • Cuce, P. M., E. Cuce, S. Alshahrani, S. Saboor, H. Sen, I. Veza, and C. A. Saleel. 2022. “Performance Evaluation of Solar Chimney Power Plants with Bayburt Stone and Basalt on the Ground as Natural Energy Storage Material.” Sustainability 14 (17): 10960. https://doi.org/10.3390/su141710960.
  • Cuce, P. M., ŞEN Harun, and C. U. C. E. Erdem. 2021. “Güneş Bacası Güç Santrallerinde Kule Çapının Çıkış Gücüne Etkisi.” Gazi Mühendislik Bilimleri Dergisi 7 (3): 253–263. https://doi.org/10.30855/gmbd.2021.03.08.
  • Duffie, J. A., and W. A. Beckman. 2013. Solar Engineering of Thermal Processes. John Wiley & Sons.
  • Dwivedi, A., H. Mishra, and V. Nagrath. 2020. “A Review on Different Performance Enhancement Techniques for Solar Air Heaters.” Recent Advances in Mechanical Engineering: Select Proceedings of ITME 2019: 1–9.
  • Fox, W., P. Pritchard, and A. McDonald. 2010. Introduction to Fluid Mechanics, 754. New York: John Wiley & Sons.
  • Gabhane, M. G., and A. B. Kanase-Patil. 2017. “Experimental Analysis of Double Flow Solar air Heater with Multiple C Shape Roughness.” Solar Energy 155: 1411–1416. https://doi.org/10.1016/j.solener.2017.07.038.
  • Goel, V., A. Dwivedi, and A. K. Choudhary. 2023. “Parametric Optimization of Hybrid Artificial Roughness Used in Solar Air Heaters Using Multiple Criteria Decision-Making Techniques.” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 09576509231183037. https://doi.org/10.1177/09576509231183037.
  • Goel, V., V. S. Hans, S. Singh, R. Kumar, S. K. Pathak, M. Singla, and R. P. Saini. 2021. “A Comprehensive Study on the Progressive Development and Applications of Solar Air Heaters.” Solar Energy 229: 112–147. https://doi.org/10.1016/j.solener.2021.07.040.
  • Hans, V. S., R. P. Saini, and J. S. Saini. 2010. “Heat Transfer and Friction Factor Correlations for a Solar air Heater Duct Roughened Artificially with Multiple v-Ribs.” Solar Energy 84 (6): 898–911. https://doi.org/10.1016/j.solener.2010.02.004.
  • Harun, ŞEN, A. P. M. Cüce, and CÜCE Erdem. 2021. “Impacts of Collector Radius and Height on Performance Parameters of Solar Chimney Power Plants: A Case Study for Manzanares, Spain.” Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 2 (2): 83–104. https://doi.org/10.53501/rteufemud.1017909.
  • Jasyal, N. K., S. L. Sharma, and A. Debbarma. 2023. “Performance Analysis of Solar air Heater Using Triangular Corrugated Absorber Under Jet Impingement.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (3): 9063–9080. https://doi.org/10.1080/15567036.2023.2230932.
  • Jaurker, A. R., J. S. Saini, and B. K. Gandhi. 2006. “Heat Transfer and Friction Characteristics of Rectangular Solar Air Heater Duct Using Rib-Grooved Artificial Roughness.” Solar Energy 80 (8): 895–907. https://doi.org/10.1016/j.solener.2005.08.006.
  • Karmare, S. V., and A. N. Tikekar. 2010. “Analysis of Fluid Flow and Heat Transfer in a Rib Grit Roughened Surface Solar Air Heater Using CFD.” Solar Energy 84 (3): 409–417. https://doi.org/10.1016/j.solener.2009.12.011.
  • Komolafe, C. A., I. O. Oluwaleye, O. Awogbemi, and C. O. Osueke. 2019. “Experimental Investigation and Thermal Analysis of Solar Air Heater Having Rectangular Rib Roughness on the Absorber Plate.” Case Studies in Thermal Engineering 14: 100442. https://doi.org/10.1016/j.csite.2019.100442.
  • Kumar, R., A. S. Kashyap, P. Singh, V. Goel, and K. Kumar. 2020. “Innovatively Arranged Curved-Ribbed Solar-Assisted air Heater: Performance and Correlation Development for Heat and Flow Characteristics.” Journal of Solar Energy Engineering 142 (3): 031011. https://doi.org/10.1115/1.4045827.
  • Kumar, R., A. Kumar, and V. Goel. 2017. “A Parametric Analysis of Rectangular rib Roughened Triangular Duct Solar Air Heater Using Computational Fluid Dynamics.” Solar Energy 157: 1095–1107. https://doi.org/10.1016/j.solener.2017.08.071.
  • Lanjewar, A., J. L. Bhagoria, and R. M. Sarviya. 2011. “Experimental Study of Augmented Heat Transfer and Friction in Solar Air Heater with Different Orientations of W-Rib Roughness.” Experimental Thermal and Fluid Science 35 (6): 986–995. https://doi.org/10.1016/j.expthermflusci.2011.01.019.
  • Launder, B. E., and D. B. Spalding. 1972. Lectures in Mathematical Models of Turbulence. London, England: Academic Press.
  • Mahanand, Y., and J. R. Senapati. 2021. “Thermo-hydraulic Performance Analysis of a Solar Air Heater (SAH) with Quarter-Circular Ribs on the Absorber Plate: A Comparative Study.” International Journal of Thermal Sciences 161: 106747. https://doi.org/10.1016/j.ijthermalsci.2020.10674.
  • McAdams, W. H. 1942. Heat Transmission. New York: McGraw-Hill.
  • Momin, A. M. E., J. S. Saini, and S. C. Solanki. 2002. “Heat Transfer and Friction in Solar Air Heater Duct with V-Shaped Rib Roughness on Absorber Plate.” International Journal of Heat and Mass Transfer 45 (16): 3383–3396. https://doi.org/10.1016/S0017-9310(02)00046-7.
  • Patankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. USA: Hemisphere Publishing Corporation.
  • Rautela, M., S. L. Sharma, V. S. Bisht, A. Debbarma, and R. Bahuguna. 2023. “Numerical Analysis of Solar Air Heater Roughened with B-Shape and D-Shape Roughness Geometry.” Journal of Heat and Mass Transfer Research 10 (1): 101–120. https://doi.org/10.22075/jhmtr.2023.30710.1445.
  • Sahu, M. M., and J. L. Bhagoria. 2005. “Augmentation of Heat Transfer Coefficient by Using 90 Broken Transverse Ribs on Absorber Plate of Solar Air Heater.” Renewable Energy 30 (13): 2057–2073. https://doi.org/10.1016/j.renene.2004.10.016.
  • Saini, R. P., and J. Verma. 2008. “Heat Transfer and Friction Factor Correlations for a Duct Having Dimple-Shape Artificial Roughness for Solar air Heaters.” Energy 33 (8): 1277–1287. https://doi.org/10.1016/j.energy.2008.02.017.
  • Saurav, S., and V. N. Bartaria. 2013. “CFD Analysis of Heat Transfer Through Artificially Roughened Solar Duct.” International Journal of Engineering Trends and Technology 4 (9): 3937–3944.
  • Semalty, A., V. S. Bisht, P. Bhandari, K. Rawat, J. Singh, K. Kumar, and A. K. Dixit. 2022. “Thermodynamic Investigation on Solar Air Heater Having Roughness as Multiple Broken Arc and Circular Protrusion.” Materials Today: Proceedings 69: 181–186. https://doi.org/10.1016/j.matpr.2022.08.336.
  • Sharma, S. L., and A. Debbarma. 2022. “A Review on Thermal Performance and Heat Transfer Augmentation in Solar Air Heater.” International Journal of Sustainable Energy 41 (11): 1973–2019. https://doi.org/10.1080/14786451.2022.2125518.
  • Sharma, S. L., and A. Debbarma. 2024. “Numerical Investigation of Reversed Flow Solar Air Heater Roughened with Circular-and Triangular-Shaped Tubes.” Journal of Solar Energy Engineering 146 (2): 021003. https://doi.org/10.1115/1.4063184.
  • Sharma, S. L., S. Singh, A. Debbarma, and K. S. Mehra. 2022. “Experimental Assessment of Thermal Performance and Fluid Flow Characteristics of Perforated Hollow Elliptical Insert in a Tube Heat Exchanger.” Arabian Journal for Science and Engineering, 1–12. https://doi.org/10.1007/s13369-022-07501-1.
  • Singh, J., V. S. Bisht, P. Bhandari, K. Kumar, J. Singh, T. Alam, and R. Khusnutdinov. 2023. “Computational Parametric Investigation of Solar Air Heater with Dimple Roughness in S-Shaped Pattern.” International Journal on Interactive Design and Manufacturing (IJIDeM), 1–11. https://doi.org/10.1007/s12008-023-01392-8.
  • Singh, S., S. Chander, and J. S. Saini. 2011. “Heat Transfer and Friction Factor Correlations of Solar Air Heater Ducts Artificially Roughened with Discrete V-Down Ribs.” Energy 36 (8): 5053–5064. https://doi.org/10.1016/j.energy.2011.05.052.
  • Singh, I., and S. Singh. 2018. “CFD Analysis of Solar Air Heater Duct Having Square Wave Profiled Transverse Ribs as Roughness Elements.” Solar Energy 162: 442–453. https://doi.org/10.1016/j.solener.2018.01.019.
  • Singh, I., S. Vardhan, S. Singh, and A. Singh. 2019. “Experimental and CFD Analysis of Solar Air Heater Duct Roughened with Multiple Broken Transverse Ribs: A Comparative Study.” Solar Energy 188: 519–532. https://doi.org/10.1016/j.solener.2019.06.022.
  • Soi, A., R. Singh, and B. Bhushan. 2018. “Heat Transfer and Friction Characteristics of Solar Air Heater Duct Having Protruded Roughness Geometry on Absorber Plate.” Experimental Heat Transfer 31 (6): 571–585. https://doi.org/10.1080/08916152.2018.1468832.
  • Standard, A. S. H. R. A. E. 1977. “Methods of Testing to Determine the Thermal Performance of Solar Collectors.” American Society of Heating, 93–77.
  • Webb, R. L., and E. R. G. Eckert. 1972. “Application of Rough Surfaces to Heat Exchanger Design.” International Journal of Heat and Mass Transfer 15 (9): 1647–1658. https://doi.org/10.1016/0017-9310(72)90095-6.
  • Yadav, A. S., and J. L. Bhagoria. 2013a. “A CFD (Computational Fluid Dynamics) Based Heat Transfer and Fluid Flow Analysis of a Solar Air Heater Provided with Circular Transverse Wire Rib Roughness on the Absorber Plate.” Energy 55: 1127–1142. https://doi.org/10.1016/j.energy.2013.03.066.
  • Yadav, A. S., and J. L. Bhagoria. 2013b. “Heat Transfer and Fluid Flow Analysis of Solar air Heater: A Review of CFD Approach.” Renewable and Sustainable Energy Reviews 23: 60–79. https://doi.org/10.1016/j.rser.2013.02.035.
  • Yadav, A. S., and J. L. Bhagoria. 2013c. “Renewable Energy Sources-an Application Guide: Energy for Future.” International Journal of Energy Science 3 (2): 70–90.
  • Yadav, A. S., and J. L. Bhagoria. 2014a. “A CFD Based Thermo-Hydraulic Performance Analysis of an Artificially Roughened Solar Air Heater Having Equilateral Triangular Sectioned rib Roughness on the Absorber Plate.” International Journal of Heat and Mass Transfer 70: 1016–1039. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.074.
  • Yadav, A. S., and J. L. Bhagoria. 2014b. “A Numerical Investigation of Turbulent Flows Through an Artificially Roughened Solar Air Heater.” Numerical Heat Transfer, Part A: Applications 65 (7): 679–698. https://doi.org/10.1080/10407782.2013.846187.
  • Yadav, A. S., O. P. Shukla, A. Sharma, and I. A. Khan. 2022. “CFD Analysis of Heat Transfer Performance of Ribbed Solar Air Heater.” Materials Today: Proceedings 62: 1413–1419. https://doi.org/10.1016/j.matpr.2021.12.560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.