28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy generation and Arrhenius activation energy mechanisms in EMHD radiative Carreau nanofluid flow due to Brownian motion and thermophoresis with infinite shear rate viscosity: solar energy application and regression analysis

Article: 2334401 | Received 30 Oct 2023, Accepted 20 Mar 2024, Published online: 29 Apr 2024

References

  • Abbasi, A., K. Al-Khaled, F. Zouidi, S. Ullah Khan, M. Ijaz Khan, O. T. Bafakeeh, W. Farooq, and R. Choudhari. 2023. “Blood-based Electro-Osmotic Flow of non-Newtonian Nanofluid (Carreau-Yasuda) in a Tapered Channel with Entropy Generation.” Zeitschrift fu¨r Angewandte Mathematik und Mechanik (ZAMM) 103 (5): e202100351. https://doi.org/10.1002/zamm.202100351
  • Akbar, N. S., S. Nadeem, Rizwan Ul Haq, and Shiwei Ye. 2014. “MHD Stagnation Point Flow of Carreau Fluid Toward a Permeable Shrinking Sheet: Dual Solutions.” Ain Shams Engineering Journal 5 (4): 1233–1239. https://doi.org/10.1016/j.asej.2014.05.006
  • Akbar, N. S., S. Nadeem, and Z. H. Khan. 2013. “Numerical Simulation of Peristaltic Flow of a Carreau Nanofluid in an Asymmetric Channel.” Alexandria Engineering Journal 53: 191–197. https://doi.org/10.1016/j.aej.2013.10.003
  • Batool, S., K. Al-Khaled, T. Abbas, Q. M. Ul Hassan, K. A. Khan, K. Ghachem, and S. Ullah Khan. 2023. “Double Diffusion Forchheimer Flow of Carreau-Yasuda Nanofluid with Bioconvection and Entropy Generation: Thermal Optimized Analysis via non-Fourier Model.” Case Studies in Thermal Engineering 48 (8): 103172. https://doi.org/10.1016/j.csite.2023.103172
  • Bég, O. A., M. S. Khan, I. Karim, I. M. M. Alam, and M. Ferdows. 2014. “Explicit Numerical Study of Unsteady Hydromagnetic Mixed Convective Nanofluid Flow from an Exponentially Stretching Sheet in Porous Media.” Applied Nanoscience 4 (8): 943–957. https://doi.org/10.1007/s13204-013-0275-0
  • Bejan, A. 1980. “Second law Analysis in Heat Transfer.” Energy 5 (8–9): 720–732. https://doi.org/10.1016/0360-5442(80)90091-2
  • Bejan, A. 1982. Entropy Generation Through Heat and Fluid Flow . New York: Wiley.
  • Bejan, A. 1996. Entropy Generation Minimization . New York: CRC Press.
  • Bhatti, M. M., T. Abbas, M. M. Rashidi, and M. E. Ali. 2016. “Numerical Simulation of Entropy Generation with Thermal Radiation on MHD Carreau Nanofluid Towards a Shrinking Sheet.” Entropy 18: 200–214. https://doi.org/10.3390/e18060200
  • Buongiorno, J. 2006. “Convective Transport in Nanofluids.” Journal of Heat Transfer 128 (3): 240–250. https://doi.org/10.1115/1.2150834
  • Carreau, P. J. 1972. “Rheological Equations from Molecular Network Theories.” Transactions of the Society of Rheology 16 (1): 99–127. https://doi.org/10.1122/1.549276
  • Choi, S. U. S., and J. A. Eastman. 1995. “Enhancing Thermal Conductivity of Fluids with Nanoparticles.” ASME Pub. Fed 231 (1): 99–105.
  • Daniel, Y. S., Z. A. Aziz, Z. Ismail, and F. Salah. 2019. “Thermal Radiation on Unsteady Electrical MHD Flow of Nanofluid Over Stretching Sheet with Chemical Reaction.” Journal of King Saud University - Science 31 (4): 804–812. https://doi.org/10.1016/j.jksus.2017.10.002
  • Eid, M. R. 2016. “Chemical Reaction Effect on MHD Boundary-Layer Flow of two-Phase Nanofluid Model Over an Exponentially Stretching Sheet with a Heat Generation.” Journal of Molecular Liquids 220: 718–725. https://doi.org/10.1016/j.molliq.2016.05.005
  • Eid, M. R., K. L. Mahny, T. Muhammad, and M. Sheikholeslami. 2018. “Numerical Treatment for Carreau Nanofluid Flow Over a Porous Nonlinear Stretching Surface.” Results in Physics 8: 1185–1193. https://doi.org/10.1016/j.rinp.2018.01.070
  • Hashim, H., and M. Khan. 2016. “A Revised Model to Analyze the Heat and Mass Transfer Mechanisms in the Flow of Carreau Nanofluids.” International Journal of Heat and Mass Transfer 103: 291–297. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.049
  • Hayat, T., M. Imtiaz, and A. Alsaedi. 2016. “Unsteady Flow of Nanofluid with Double Stratification and Magnetohydrodynamics.” International Journal of Heat and Mass Transfer 92: 100–109. https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.013
  • Hsiao, K. L. 2017. “To Promote Radiation Electrical MHD Activation Energy Thermal Extrusion Manufacturing System Efficiency by Using Carreau Nanofluid with Parameters Control Method.” Energy 130: 486–499. https://doi.org/10.1016/j.energy.2017.05.004
  • Hussain, Z., K. Al-Khaled, U. Ashrif, A. Abbasi, S. U. Khan, W. Farooq, M. I. Khan, S. Farooq, and M. Y. Malik. 2022. “A Mathematical Model for Radiative Peristaltic Flow of Jeffrey Fluid in Curved Channel with Joule Heating and Different Walls: Shooting Technique Analysis.” Ain Shams Engineering Journal 13 (5): 101685. https://doi.org/10.1016/j.asej.2021.101685
  • Hussain, S., S. M. Atif, M. Sagheer, and M. A. Manzoor. 2022. “MHD Carreau Nanofluid with Arrhenius Activation Energy in a Porous Medium.” Scientia Iranica - Transactions F: Nanotechnology 29 (6): 3591–3602.
  • Ibrahim, W., and B. Shankar. 2013. “MHD Boundary Layer Flow and Heat Transfer of a Nanofluid Past a Permeable Stretching Sheet with Velocity, Thermal and Solutal Slip Boundary Conditions.” Computers & Fluids 75: 1–10. https://doi.org/10.1016/j.compfluid.2013.01.014
  • Irfan, M. 2021. “Study of Brownian Motion and Thermophoretic Diffusion on non-Linear Mixed Convection Flow of Carreau Nanofluid Subject to Variable Properties.” Surfaces and Interfaces 23: 100926. (10 pages). https://doi.org/10.1016/j.surfin.2021.100926
  • Irfan, M. 2023a. “Energy Transport Phenomenon via Joule Heating and Aspects of Arrhenius Activation Energy in Maxwell Nanofluid.” Waves in Random and Complex Media , https://doi.org/10.1080/17455030.2023.2196348.
  • Irfan, M. 2023b. “Influence of Thermophoretic Diffusion of Nanoparticles with Joule Heating in Flow of Maxwell Nanofluid.” Numerical Methods for Partial Differential Equations 39 (2): 1030–1041. https://doi.org/10.1002/num.22920
  • Irfan, M., R. Aftab, and M. Khan. 2021. “Thermal Performance of Joule Heating in Oldroyd-B Nanomaterials Considering Thermal-Solutal Convective Conditions.” Chinese Journal of Physics 71: 444–457. https://doi.org/10.1016/j.cjph.2021.03.010
  • Irfan, M., A. Hamid, M. Khan, A. Nadeem, W. A. Khan, and N. Nadeem. 2023. “Enhancement of Heat Transfer Considering Joule Heating and Variable Conductivity in Magneto Maxwell Nanofluid.” International Journal of Modern Physics B 37 (08): 2350076. https://doi.org/10.1142/S0217979223500765
  • Irfan, M., M. Khan, and W. A. Khan. 2019. “Impact of Nonuniform Heat Sink/Source and Convective Condition in Radiative Heat Transfer to Oldroyd-B Nanofluid: A Revised Proposed Relation.” Physics Letters A 383 (4): 376–382. https://doi.org/10.1016/j.physleta.2018.10.040
  • Irfan, M., M. Khan, T. Muhammad, and W. A. Khan. 2022. “Theory of Activation Energy and Thermophoretic Dispersion of Nanoparticles in Nonlinear Radiative Maxwell Nanofluid.” Waves in Random and Complex Media , Published online: 11 Apr 2022. https://doi.org/10.1080/17455030.2022.2056657.
  • Irfan, M., A. Nadeem, N. Nasir, M. Waqas, and W. A. Khan. 2022. “Thermal Phenomenon of Joule Heating in the Radiative Flow of Carreau Nanofluid.” Pramana 96 (2): 90. (7 pages). https://doi.org/10.1007/s12043-022-02327-w
  • Kefayati, G. H. R., and H. Tang. 2018. “MHD Thermosolutal Natural Convection and Entropy Generation of Carreau Fluid in a Heated Enclosure with two Inner Circular Cold Cylinders, Using LBM.” International Journal of Heat and Mass Transfer 126: 508–530. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.026
  • Khan, M., and M. Azam. 2016. “Unsteady Boundary-Layer Flow of Carreau Fluid Over a Permeable Stretching Surface.” Results in Physics 6: 1168–1174. https://doi.org/10.1016/j.rinp.2016.11.035
  • Khan, M., and H. Hashim. 2015. “Boundary Layer Flow and Heat Transfer to Carreau Fluid Over a Nonlinear Stretching Sheet.” AIP Advances 5 (10): 107203. (14 pages). https://doi.org/10.1063/1.4932627
  • Khan, M., M. Irfan, and W. A. Khan. 2018. “Impact of Heat Source/Sink on Radiative Heat Transfer to Maxwell Nanofluid Subject to Revised Mass Flux Condition.” Results in Physics 9: 851–857. https://doi.org/10.1016/j.rinp.2018.03.034
  • Khan, M., M. Irfan, W. A. Khan, and A. S. Alshomrani. 2017. “A new Modeling for 3D Carreau Fluid Flow Considering Nonlinear Thermal Radiation.” Results in Physics 7: 2692–2704. https://doi.org/10.1016/j.rinp.2017.07.024
  • Khan, N. S., P. Kumam, and P. Thounthong. 2020. “Second law Analysis with Effects of Arrhenius Activation Energy and Binary Chemical Reaction on Nanofluid Flow.” Scientific Reports 10: 1226. (16 pages). https://doi.org/10.1038/s41598-020-57802-4
  • Khan, M. I., A. Kumar, T. Hayat, M. Waqas, and R. Singh. 2019. “Entropy Generation in Flow of Carreau Nanofluid.” Journal of Molecular Liquids 278: 677–687. https://doi.org/10.1016/j.molliq.2018.12.109
  • Khan, M., H. Sardar, M. M. Gulzar, and A. S. Alshomrani. 2018. “On Multiple Solutions of non-Newtonian Carreau Fluid Flow Over an Inclined Shrinking Sheet.” Results in Physics 8: 926–932. https://doi.org/10.1016/j.rinp.2018.01.021
  • Kuznetstov, A. V., and D. A. Nield. 2014. “Natural Convective Boundary Layer Flow of a Nanofluid Past a Vertical Plate: A Revised Model.” International Journal of Thermal Sciences 77: 126–129. https://doi.org/10.1016/j.ijthermalsci.2013.10.007
  • Lin, Y. H., S. W. Kang, and H. L. Chen. 2008. “Effect of Silver Nanofluid on Pulsating Heat Pipe Thermal Performance.” Applied Thermal Engineering 28 (11–12): 1312–1317. https://doi.org/10.1016/j.applthermaleng.2007.10.019
  • Mabood, F., W. Khan, and A. M. Ismail. 2015. “MHD Boundary Layer Flow and Heat Transfer of Nanofluids Over a Nonlinear Stretching Sheet: A Numerical Study.” Journal of Magnetism and Magnetic Materials 374: 569–576. https://doi.org/10.1016/j.jmmm.2014.09.013
  • Malashetty, M. S., D. Pal, and P. Kollur. 2010. “Double-diffusive Convection in a Darcy Porous Medium Saturated with a Couple-Stress Fluid.” Fluid Dynamics Research 42 (3): 035502. https://doi.org/10.1088/0169-5983/42/3/035502
  • Maleque, Kh. A. 2013. “Effects of Exothermic/Endothermic Chemical Reactions with Arrhenius Activation Energy on mhd Free Convection and Mass Transfer Flow in Presence of Thermal Radiation.” Journal of Thermodynamics 11: Article ID 692516. (11pages).
  • Mandal, G., and D. Pal. 2022. “Entropy Generation Analysis of Magnetohydrodynamic Darcy-Forchheimer Williamson Hybrid Nanofluid Flow Through Porous Medium with Nonlinear Thermal Radiation.” Special Topics & Reviews in Porous Media: An International Journal 13 (3): 57–79. https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2022043592
  • Mohamed, R. A., S. M. Abo-Dahab, and M. S. Soliman. 2022. “Effects of Nonlinear Thermal Radiation and Heat Generation/Absorption on Magnetohydrodynamic (MHD) Carreau Nanofluid Flow on a Nonlinear Stretching Surface Through a Porous Medium.” Journal of Nanofluids 11: 845–856. https://doi.org/10.1166/jon.2022.1884
  • Mondal, S. K., and D. Pal. 2022a. “Entropy Optimization and Heat Transfer Analysis of Magneto-Bioconvective Powell Eyring Nanofluid with Nonlinear Thermal Radiation and Chemical Reaction Over a Stretching Sheet.” Journal of Nanofluids 11: 996–1008. https://doi.org/10.1166/jon.2022.1886
  • Mondal, S. K., and D. Pal. 2022b. “Performance of Activation Energy and Variable Thermal Conductivity on Bioconvection Heat Transfer of Williamson Nanofluid Undergoing Binary Chemical Reaction with Multiple Slip.” International Journal of Ambient Energy 43 (1): 6108–6120. https://doi.org/10.1080/01430750.2021.1997811
  • Obalalu, A. M. 2021. “Heat and Mass Transfer in an Unsteady Squeezed Casson Fluid Flow with Novel Thermophysical Properties: Analytical and Numerical Solution.” Heat Transfer 50 (8): 7988–8011. https://doi.org/10.1002/htj.22263
  • Obalalu, A. M., F. A. Wahaab, and L. L. Adebayo. 2020. “Heat Transfer in an Unsteady Vertical Porous Channel with Injection/Suction in the Presence of Heat Generation.” Journal of Taibah University for Science 14 (1): 541–548. https://doi.org/10.1080/16583655.2020.1748844
  • Olajuwon, B. I. 2011. “Convection Heat and Mass Transfer in a Hydromagnetic Carreau Fluid Past a Vertical Porous Plate in Presence of Thermal Radiation and Thermal Diffusion.” Thermal Science 15 (suppl. 2): 241–252. https://doi.org/10.2298/TSCI101026060O
  • Olayemi, O. A., A. M. Obalalu, C. B. Odetunde, and A. O. Ajala. 2022. “Heat Transfer Enhancement of Magnetized Nanofluid Flow due to a Stretchable Rotating Disk with Variable Thermophysical Properties Effects.” The European Physical Journal Plus 137: 393. https://doi.org/10.1140/epjp/s13360-022-02579-w
  • Pal, D., and S. Chatterjee. 2012. “MHD Non-Darcy Mixed Convection Stagnation-Point Flow of a Micropolar Fluid Towards a Stretching Sheet with Radiation.” Chemical Engineering Communications 199 (9): 1169–1193. https://doi.org/10.1080/00986445.2011.647136
  • Pal, D., and G. Mandal. 2017. “Influence of Lorentz Force and Thermal Radiation on Heat Transfer of Nanofluids Over a Stretching Sheet with Velocitythermal Slip.” Int. J. Applied and Computational Mathematics 3: 30013020.
  • Pal, D., and G. Mandal. 2023. “Stability Analysis and Implication of Darcy Magnetic-Radiative Hybrid Reactive Nanofluid Heat Transfer Over a Shrinkable Surface with Ohmic Heating.” Journal of Thermal Analysis and Calorimetry 148 (5): 2087–2104. https://doi.org/10.1007/s10973-022-11797-4
  • Pal, D., G. Mandal, and K. Vajravelu. 2016. “Mixed Convective-Radiative Magnetohydrodynamics Heat and Mass Transfer of Nanofluids Over a Stretching/Shrinking Sheet with Viscous-Ohmic Dissipation and Heat Source/Sink.” Journal of Nanofluids 5: 340–350. https://doi.org/10.1166/jon.2016.1218
  • Pal, D., S. Mondal, and H. Mondal. 2021. “Entropy Generation on MHD Jeffrey Nanofluid Over a Stretching Sheet with Nonlinear Thermal Radiation Using Spectral Quasilinearisation Method.” International Journal of Ambient Energy 42 (15): 1712–1726. https://doi.org/10.1080/01430750.2019.1614984
  • Pal, D., S. Mondal, and K. Vajravelu. 2023. “Analysis of Entropy Generation and Activation Energy on Double Diffusive Magnetohydrodynamic Williamson Nanofluid Flow Featuring Nonlinear Thermal Radiation.” International Journal of Ambient Energy 44 (1): 351–362. https://doi.org/10.1080/01430750.2022.2127890
  • Pal, D., and B. Talukdar. 2012. “Influence of Fluctuating Thermal and Mass Diffusion on Unsteady MHD Buoyancy-Driven Convection Past a Vertical Surface with Chemical Reaction and Soret Effects.” Communications in Nonlinear Science and Numerical Simulation 17 (4): 1597–1614. https://doi.org/10.1016/j.cnsns.2011.08.038
  • Pal, D., and K. Vajravelu. 2014. “Convective-radiation Effects on Stagnation Point Flow of Nanofluids Over a Stretching/Shrinking Surface with Viscous Dissipation.” Journal of Mechanics 30 (3): 289–297. https://doi.org/10.1017/jmech.2014.8
  • Pusparaj, V., and P. De. 2023. “Bioconvection on non-Newtonian Magnetohydrodynamics Carreau Nanofluid with Activation Energy and Binary Chemical Reaction in Darcy Forchhiemer Porous Medium.” Journal of Nanofluids 12: 978–986. https://doi.org/10.1166/jon.2023.1986
  • Roy, N., and D. Pal. 2022. “Influence of Activation Energy and Nonlinear Thermal Radiation with Ohmic Dissipation on Heat and Mass Transfer of a Casson Nanofluid Over Stretching Sheet.” Journal of Nanofluids 11: 819832.
  • Sajid, T., W. Jamshed, R. W. Ibrahim, M. R. Eid, A. AbdElmonem, and M. Arshad. 2023. “Quadratic Regression Analysis for Nonlinear Heat Source/Sink and Mathematical Fourier Heat law Influences on Reiner-Philippoff Hybrid Nanofluid Flow Applying Galerkin Finite Element Method.” Journal of Magnetism and Magnetic Materials 568: 170383. https://doi.org/10.1016/j.jmmm.2023.170383
  • Sajid, T., Z. Sabir, S. Tanveer, A. Arbi, and G. C. Altamirano. 2021. “Upshot of Radiative Rotating Prandtl Fluid Flow Over a Slippery Surface Embedded with Variable Species Diffusivity and Multiple Convective Boundary Conditions.” Heat Transfer 50 (3): 2874–2894. https://doi.org/10.1002/htj.22010
  • Sajid, T., M. Sagheer, and S. Hussain. 2020. “Role of Maxwell Velocity and Smoluchowski Temperature Jump Slip Boundary Conditions to non-Newtonian Carreau Fluid.” Frontiers in Heat and Mass Transfer , 14. https://doi.org/10.5098/hmt.14.28.
  • Sajid, T., M. Sagheer, S. Hussain, and M. Bilal. 2018. “Darcy-Forchheimer Flow of Maxwell Nanofluid Flow with Nonlinear Thermal Radiation and Activation Energy.” AIP Advances 8 (3): 035102. https://doi.org/10.1063/1.5019218
  • Shahid, A., M. M. Bhatti, R. Ellahi, and Kh.S. Mekheimer. 2022. “Numerical Experiment to Examine Activation Energy and bi-Convection Carreau Nanofluid Flow on an Upper Paraboloid Porous Surface: Application in Solar Energy.” Sustainable Energy Technologies and Assessments 52: 102029. https://doi.org/10.1016/j.seta.2022.102029
  • Shanmugapriya, M., P. Sangeetha, and Bapuji Pullepu. 2021. “Evaluation of Entropy Generation with Thermal Radiation on MHD Carreau Fluid Stream Past a Wedge.” Materials Today: Proceedings 38: 3283–3290. https://doi.org/10.1016/j.matpr.2020.10.020
  • Song, Y. Q., H. Waqas, K. Al-Khaled, U. Farooq, S. Gouadria, M. Imran, S. U. Khan, M. I. Khan, S. Qayyum, and Q. H. Shi. 2022. “Aspects of Thermal Diffusivity and Melting Phenomenon in Carreau Nanofluid Flow Confined by Nonlinear Stretching Cylinder with Convective Marangoni Boundary Constraints.” Mathematics and Computers in Simulation 195: 138–150. https://doi.org/10.1016/j.matcom.2022.01.001
  • Ullah, S., I. Ullah, and A. Ali. 2023. “Soret and Dufour Effects on Dissipative Jeffrey Nanofluid Flow Over a Curved Surface with Nonlinear Slip, Activation Energy and Entropy Generation.” Waves in Random and Complex Media . Published online: 11 Aug 2023. https://doi.org/10.1080/17455030.2022.2164380.
  • Wong, K. V., and O. D. Leon. 2010. “Applications of Nanofluids: Current and Future.” Advances in Mechanical Engineering 2: Article ID 519659. 11pages. https://doi.org/10.1155/2010/519659

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.