50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical analysis of polyethylene based nano-enhanced phase change material in cylindrical storage system

ORCID Icon, &
Article: 2349882 | Received 23 Jan 2024, Accepted 21 Apr 2024, Published online: 15 May 2024

References

  • Ahmadi, R., M. J. Hosseini, A. A. Ranjbar, and R. Bahrampoury. 2018. “Phase Change in Spiral Coil Heat Storage Systems.” Sustainable Cities and Society 38: 145–157. https://doi.org/10.1016/j.scs.2017.12.026.
  • Al-abidi, A. A., S. Bin Mat, K. Sopian, M. Y. Sulaiman, and A.Th. Mohammed. 2013. “CFD Applications for Latent Heat Thermal Energy Storage: A Review.” Renewable and Sustainable Energy Reviews 20: 353–363. https://doi.org/10.1016/j.rser.2012.11.079.
  • Benmoussa, F., A. Benzaoui, and H. Benmoussa. 2017. “Thermal Behavior of Latent Thermal Energy Storage Unit Using Two Phase Change Materials: Effects of HTF Inlet Temperature.” Case Studies in Thermal Engineering 10: 475–483. https://doi.org/10.1016/j.csite.2017.10.010.
  • Bezyan, B., S. Porkhial, and A. A. Mehrizi. 2015. “3-D Simulation of Heat Transfer Rate in Geothermal Pile-Foundation Heat Exchangers with Spiral Pipe Configuration.” Applied Thermal Engineering 87: 655–668. https://doi.org/10.1016/j.applthermaleng.2015.05.051.
  • Bhagat, K., and S. K. Saha. 2016. “Numerical Analysis of Latent Heat Thermal Energy Storage Using Encapsulated Phase Change Material for Solar Thermal Power Plant.” Renewable Energy 95: 323–336. https://doi.org/10.1016/j.renene.2016.04.018.
  • Boujelbene, M., H. I. Mohammed, H. S. Sultan, M. Eisapour, Z. Chen, J. M. Mahdi, A. Cairns, and P. Talebizadehsardari. 2024. “A Comparative Study of Twisted and Straight Fins in Enhancing the Melting and Solidifying Rates of PCM in Horizontal Double-Tube Heat Exchangers.” International Communications in Heat and Mass Transfer 151: 107224. https://doi.org/10.1016/j.icheatmasstransfer.2023.107224.
  • Chavan, S., and V. Gumtapure. 2020. “Numerical and Experimental Analysis on Thermal Energy Storage of Polyethylene/Functionalized Graphene Composite Phase Change Materials.” Journal of Energy Storage 27: 101045. https://doi.org/10.1016/j.est.2019.101045.
  • Chavan, S., V. Gumtapure, and D. A. Perumal. 2018. “A Review on Thermal Energy Storage Using Composite Phase Change Materials.” Recent Patents on Mechanical Engineering 11: 298–310. https://doi.org/10.2174/2212797611666181009153110.
  • Chavan, S., V. Gumtapure, and D. A. Perumal. 2019. “Characterization of Linear Low-Density Polyethylene with Graphene as Thermal Energy Storage Material Characterization of Linear Low-Density Polyethylene with Graphene as Thermal Energy Storage Material.” Materials Research Express 6: 1–9.
  • Chen, Z., W. Wei, B.-J. Ni, and H. Chen. 2022. “Plastic Wastes Derived Carbon Materials for Green Energy and Sustainable Environmental Applications.” Environmental Functional Materials 1: 34–48. https://doi.org/10.1016/j.efmat.2022.05.005.
  • Cheng, W., R. Zhang, K. Xie, N. Liu, and J. Wang. 2010. “Heat Conduction Enhanced Shape-Stabilized Paraffin/HDPE Composite PCMs by Graphite Addition: Preparation and Thermal Properties.” Solar Energy Materials and Solar Cells 94: 1636–1642. https://doi.org/10.1016/j.solmat.2010.05.020.
  • Dhaidan, N. S., A. F. Hassan, A. M. Rasheed Al-Gaheeshi, F. N. Al-Mousawi, and R. Z. Homod. 2023. “Experimental Investigation of Thermal Characteristics of Phase Change Material in Finned Heat Exchangers.” Journal of Energy Storage 71: 108162. https://doi.org/10.1016/j.est.2023.108162.
  • Dhaidan, N. S., A. F. Khalaf, and J. M. Khodadadi. 2021. “Numerical and Experimental Investigation of Melting of Paraffin in a Hemicylindrical Capsule.” Journal of Thermal Science and Engineering Applications 13: 051008. https://doi.org/10.1115/1.4049873.
  • Dhaidan, N. S., S. A. Kokz, F. L. Rashid, A. K. Hussein, O. Younis, and F. N. Al-Mousawi. 2022. “Review of Solidification of Phase Change Materials Dispersed with Nanoparticles in Different Containers.” Journal of Energy Storage 51: 104271. https://doi.org/10.1016/j.est.2022.104271.
  • Diaconu, B. M., M. Cruceru, and L. Anghelescu. 2023. “A Critical Review on Heat Transfer Enhancement Techniques in Latent Heat Storage Systems Based on Phase Change Materials. Passive and Active Techniques, System Designs and Optimization.” Journal of Energy Storage 61: 106830. https://doi.org/10.1016/j.est.2023.106830.
  • Divi, S., R. Chellappa, and D. Chandra. 2006. “Heat Capacity Measurement of Organic Thermal Energy Storage Materials.” The Journal of Chemical Thermodynamics 38: 1312–1326. https://doi.org/10.1016/j.jct.2006.02.005.
  • Eanest Jebasingh, B., and A. Valan Arasu. 2020. “A Comprehensive Review on Latent Heat and Thermal Conductivity of Nanoparticle Dispersed Phase Change Material for Low-Temperature Applications.” Energy Storage Materials 24: 52–74. https://doi.org/10.1016/j.ensm.2019.07.031.
  • Fallah Najafabadi, M., M. Farhadi, and H. Talebi Rostami. 2022. “Numerically Analysis of a Phase-Change Material in Concentric Double-Pipe Helical Coil with Turbulent Flow as Thermal Storage Unit in Solar Water Heaters.” Journal of Energy Storage 55: 105712. https://doi.org/10.1016/j.est.2022.105712.
  • Gil, A., G. Peiró, E. Oró, and L. F. Cabeza. 2018. “Experimental Analysis of the Effective Thermal Conductivity Enhancement of PCM Using Finned Tubes in High Temperature Bulk Tanks.” Applied Thermal Engineering 142: 736–744. https://doi.org/10.1016/j.applthermaleng.2018.07.029.
  • Hosseini, M. J., M. Rahimi, and R. Bahrampoury. 2014. “Experimental and Computational Evolution of a Shell and Tube Heat Exchanger as a PCM Thermal Storage System.” International Communications in Heat and Mass Transfer 50: 128–136. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.008.
  • Jayathunga, D. S., H. P. Karunathilake, M. Narayana, and S. Witharana. 2024. “Phase Change Material (PCM) Candidates for Latent Heat Thermal Energy Storage (LHTES) in Concentrated Solar Power (CSP) Based Thermal Applications – A Review.” Renewable and Sustainable Energy Reviews 189: 113904. https://doi.org/10.1016/j.rser.2023.113904.
  • Keilany, M. A., S. Vannerem, M. Milhé, Q. Falcoz, J.-J. Bézian, and G. Flamant. 2022. “Experimental and Numerical Study of Combining Encapsulated Phase Change Material to Sensible Heat Storage Material in One-Tank Pilot Scale Thermal Energy Storage.” Journal of Energy Storage 51: 104504. https://doi.org/10.1016/j.est.2022.104504.
  • Khan, Z., Z. Khan, and A. Ghafoor. 2016. “A Review of Performance Enhancement of PCM Based Latent Heat Storage System Within the Context of Materials, Thermal Stability and Compatibility.” Energy Conversion and Management 115: 132–158. https://doi.org/10.1016/j.enconman.2016.02.045.
  • Khedher, N. B., K. Hosseinzadeh, A. M. Abed, K. Khosravi, J. M. Mahdi, H. S. Sultan, H. I. Mohammed, and P. Talebizadehsardari. 2024. “Accelerated Charging of PCM in Coil Heat Exchangers Via Central Return Tube and Inlet Positioning: A 3D Analysis.” International Communications in Heat and Mass Transfer 152: 107275. https://doi.org/10.1016/j.icheatmasstransfer.2024.107275.
  • Kibria, Md.G., Md.S. Mohtasim, U. K. Paul, B. K. Das, and R. Saidur. 2024. “Impact of Hybrid Nano PCM (Paraffin Wax With Al2O3 and ZnO Nanoparticles) on Photovoltaic Thermal System: Energy, Exergy, Exergoeconomic and Enviroeconomic Analysis.” Journal of Cleaner Production 436: 140577. https://doi.org/10.1016/j.jclepro.2024.140577.
  • Kober, T., H.-W. Schiffer, M. Densing, and E. Panos. 2020. “Global Energy Perspectives to 2060 – WEC’s World Energy Scenarios 2019.” Energy Strategy Reviews 31: 100523. https://doi.org/10.1016/j.esr.2020.100523.
  • Largani, S. P. H., H. Salimi-Kenari, S. R. Nabavi, and A. A. R. Darzi. 2024. “Manipulation of the Thermo-Rheological Properties of Stable Fe3O4 Nanoparticles-Embedded PCM Nanoemulsions.” Journal of Energy Storage 80: 110351. https://doi.org/10.1016/j.est.2023.110351.
  • Liu, C., X. Ma, P. Du, and Z. Rao. 2020. “Fabrication of Highly Efficient Thermal Energy Storage Composite From Waste Polystyrenes.” Chemical Engineering Science 216: 115477. https://doi.org/10.1016/j.ces.2020.115477.
  • Ma, P.-C., N. A. Siddiqui, G. Marom, and J.-K. Kim. 2010. “Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review.” Composites Part A: Applied Science and Manufacturing 41: 1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003.
  • Mallya, N., and S. Haussener. 2021. “Buoyancy-Driven Melting and Solidification Heat Transfer Analysis in Encapsulated Phase Change Materials.” International Journal of Heat and Mass Transfer 164: 120525. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120525.
  • Narendran, G., and N. Gnanasekaran. 2022. “Investigation on Novel Inertial Minichannel to Mitigate Maldistribution Induced High Temperature Zones.” Energy Conversion and Management 271: 116300. https://doi.org/10.1016/j.enconman.2022.116300.
  • Narendran, G., N. Gnanasekaran, and D. A. Perumal. 2020. “Thermodynamic Irreversibility and Conjugate Effects of Integrated Microchannel Cooling Device Using TiO2 Nanofluid.” Heat and Mass Transfer 56: 489–505.
  • Nguyen, T. P., Z. Ramadan, S. J. Hong, and C. W. Park. 2022. “Effect of Graphite Fin on Heat Transfer Enhancement of Rectangular Shell and Tube Latent Heat Storage.” International Journal of Heat and Mass Transfer 194: 123018. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123018.
  • Nithyanandam, K., and R. Pitchumani. 2014. “Optimization of an Encapsulated Phase Change Material Thermal Energy Storage System.” Solar Energy 107: 770–788. https://doi.org/10.1016/j.solener.2014.06.011.
  • Nižetić, S., M. Jurčević, M. Arıcı, A. V. Arasu, and G. Xie. 2020. “Nano-Enhanced Phase Change Materials and Fluids in Energy Applications: A Review.” Renewable and Sustainable Energy Reviews 129: 109931. https://doi.org/10.1016/j.rser.2020.109931.
  • Pani, S. K., and A. A. Pathak. 2021. “Managing Plastic Packaging Waste in Emerging Economies: The Case of EPR in India.” Journal of Environmental Management 288: 112405. https://doi.org/10.1016/j.jenvman.2021.112405.
  • Parsazadeh, M., and X. Duan. 2018. “Numerical Study on the Effects of Fins and Nanoparticles in a Shell and Tube Phase Change Thermal Energy Storage Unit.” Applied Energy 216: 142–156. https://doi.org/10.1016/j.apenergy.2018.02.052.
  • Pathak, G., and M. Nichter. 2021. “Ecocommunicability, Citizenship, and Discourses on Plastic Control in India.” Geoforum 125: 132–139. https://doi.org/10.1016/j.geoforum.2021.04.027.
  • Pielichowska, K., and K. Pielichowski. 2014. “Phase Change Materials for Thermal Energy Storage.” Progress in Materials Science 65: 67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005.
  • Pop, O., L. F. Tutunaru, and M. Balan. 2017. “Numerical Model for Solidification and Melting of PCM Encapsulated in Spherical Shells.” Energy Procedia 112: 336–343. https://doi.org/10.1016/j.egypro.2017.03.1060.
  • Rahimi, M., S. S. Ardahaie, M. J. Hosseini, and M. Gorzin. 2020. “Energy and Exergy Analysis of an Experimentally Examined Latent Heat Thermal Energy Storage System.” Renewable Energy 147: 1845–1860. https://doi.org/10.1016/j.renene.2019.09.121.
  • Rao, C. R. C., H. Niyas, and P. Muthukumar. 2018. “Performance Tests on Lab–Scale Sensible Heat Storage Prototypes.” Applied Thermal Engineering 129: 953–967. https://doi.org/10.1016/j.applthermaleng.2017.10.085.
  • Raut, D., S. Lanjewar, and V. R. Kalamkar. 2022. “Effect of Geometrical and Operational Parameters on Paraffin’s Melting Performance in Helical Coiled Latent Heat Storage for Solar Application: A Numerical Study.” International Journal of Thermal Sciences 176: 107509. https://doi.org/10.1016/j.ijthermalsci.2022.107509.
  • Rehman, T., U. Sajjad, B. Lamrani, A. Shahsavar, H. M. Ali, W.-M. Yan, and C. W. Park. 2024. “Investigation on the Thermal Control and Performance of PCM–Porous Media-Integrated Heat Sink Systems: Deep Neural Network Modelling Employing Experimental Correlations.” Renewable Energy 220: 119719. https://doi.org/10.1016/j.renene.2023.119719.
  • Said, M. A., K. Hosseinzadeh, A. Bahlekeh, A. Rahbari, M. E. Tiji, J. M. Mahdi, A. Cairns, and P. Talebizadehsardari. 2024. “Accelerated Charging Dynamics in Shell-and-Multi-Tube Latent Heat Storage Systems for Building Applications.” Journal of Energy Storage 81: 110286. https://doi.org/10.1016/j.est.2023.110286.
  • Selvaraj, Vishnuprasad, and H. Krishnan. 2022. “Acidic Functionalized Graphene Dispersed Polyethylene Glycol Nano-Phase Change Material for the Active Cooling of a Simulated Heat-Generating Electronic System.” Journal of Energy Storage 45: 103774. https://doi.org/10.1016/j.est.2021.103774.
  • Shanker, R., D. Khan, R. Hossain, Md.T. Islam, K. Locock, A. Ghose, V. Sahajwalla, H. Schandl, and R. Dhodapkar. 2022. “Plastic Waste Recycling: Existing Indian Scenario and Future Opportunities.” International Journal of Environmental Science and Technology, https://doi.org/10.1007/s13762-022-04079-x.
  • Soni, V., A. Kumar, and V. K. Jain. 2018. “Performance Evaluation of Nano-Enhanced Phase Change Materials During Discharge Stage in Waste Heat Recovery.” Renewable Energy 127: 587–601. https://doi.org/10.1016/j.renene.2018.05.009.
  • Stan, F., N.-V. Stanciu, C. Fetecau, and I.-L. Sandu. 2019. “Mechanical Recycling of Low-Density Polyethylene/Carbon Nanotube Composites and Its Effect on Material Properties.” Journal of Manufacturing Science and Engineering 141. https://doi.org/10.1115/1.4044101.
  • Trp, A. 2005. “An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit.” Solar Energy 79: 648–660. https://doi.org/10.1016/j.solener.2005.03.006.
  • Trp, A., K. Lenic, and B. Frankovic. 2006. “Analysis of the Influence of Operating Conditions and Geometric Parameters on Heat Transfer in Water-Paraffin Shell-and-Tube Latent Thermal Energy Storage Unit.” Applied Thermal Engineering 26: 1830–1839. https://doi.org/10.1016/j.applthermaleng.2006.02.004.
  • Valizadeh, K., S. Farahbakhsh, A. Bateni, A. Zargarian, A. Davarpanah, A. Alizadeh, and M. Zarei. 2019. “A Parametric Study to Simulate the Non-Newtonian Turbulent Flow in Spiral Tubes.” Energy Science & Engineering 8. https://doi.org/10.1002/ese3.514.
  • Vigneswaran, V. S., G. Kumaresan, B. V. Dinakar, K. K. Kamal, and R. Velraj. 2019. “Augmenting the Productivity of Solar Still Using Multiple PCMs as Heat Energy Storage.” Journal of Energy Storage 26: 101019. https://doi.org/10.1016/j.est.2019.101019.
  • Voller, V. R., and C. Prakash. 1987. “A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems.” International Journal of Heat and Mass Transfer 30: 1709–1719. https://doi.org/10.1016/0017-9310(87)90317-6.
  • Yang, C., H. Navarro, B. Zhao, G. Leng, G. Xu, L. Wang, Y. Jin, and Y. Ding. 2016. “Thermal Conductivity Enhancement of Recycled High Density Polyethylene as a Storage Media for Latent Heat Thermal Energy Storage.” Solar Energy Materials and Solar Cells 152: 103–110. https://doi.org/10.1016/j.solmat.2016.02.022.
  • Zheng, X., N. Xie, C. Chen, X. Gao, Z. Huang, and Z. Zhang. 2018. “Numerical Investigation on Paraffin/Expanded Graphite Composite Phase Change Material Based Latent Thermal Energy Storage System with Double Spiral Coil Tube.” Applied Thermal Engineering 137: 164–172. https://doi.org/10.1016/j.applthermaleng.2018.03.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.