65
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Hepatoprotective Role of Zinc in Lead-Treated, Protein-Deficient Rats

, , &
Pages 11-24 | Published online: 09 Oct 2008

REFERENCES

  • Bauman P. F., Swith T. K., Bray T. M. The effect of dietary protein and sulphur amino acids on hepatic glutathione dependent enzyme activities in the rat. Can. J. Physiol. Pharmacol. 1998; 66: 1048–1052
  • Bettger W. J., O'Dell B. L. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci. 1981; 28: 1425–1438, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cabre M., Ferre N., Folch J., Paternain J. L., Hernandez M., Castillo D., Joven G., Camps J. Inhibition of hepatic cell nuclear DNA fragmentation by zinc in carbon tetrachloride-treated rats. J. Hepatol. 1999; 31: 228–234, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Cabre M., Folch J., Gimenez A., Matas C., Pares A., Caballeria J., Paternain J. C., Rodes J., Joven G., Camps J. Influence of zinc intake on hepatic lipid peroxidation and metallothionein in alcoholic rats: Relationship to Collagen Synthesis. Int. J. Vit. Nutr. Res. 1995; 65: 45–50
  • Cagen S. Z., Klassen C. D. Protection of carbon tetrachloride induced hepatotoxicity by zinc: role of metallothionein. Toxicol. App. Pharmacol. 1979; 51: 107–116, [CROSSREF]
  • Camps J., Bargallo T., Gimenez A., Alie S., Caballeria J., Pares A., Rodes J., Joven G. Relationship between hepatic lipid peroxidation and fibrogenesis in carbon tetrachloride treated rats. Effect of zinc administration. Clin. Sci. 1999; 83: 695–700
  • Cathcart R. F., III. Vitamin C: the nontoxic, nonrate-limited, antioxidant free radical scavanger. Med Hypothesis 1985; 18: 67–74, [CROSSREF]
  • Chvapil M., Ryan J. N., Zukoski C. F. Effect of zinc on lipid peroxidation in liver microsomes and mitochondria. Proc. Soc. Exp. Biol. Med. 1972; 140: 642–646, [PUBMED], [INFOTRIEVE]
  • Crogan N. L., Pasvogel A. The influence of protein-calorie malnutrition on quality of life in nursing homes. J. Gerontol. A Biol. Sci. Med. Sci. 2003; 58: 159–164, [PUBMED], [INFOTRIEVE]
  • Der R., Fahim Z., Hilderbrand D., Mostafa F. Combined effects of lead and low protein diet on the growth, sexual developments and metabolism in the female rats. Res. Comu. In. Chem. 1974; 9(4)185–187
  • Dhawan D. K., Goel A. Protective role of zinc on rat liver function in long-term toxicity induced by carbon tetrachloride. J. Trace Elem. Exp. Med. 1994; 7: 1–9
  • Dhawan M., Flora S. J. S., Tandon S. K. Biochemical changes and essential metals concentrations in lead-intoxicated rats preexposed to ethanol. Alcohol 1982; 9: 241, [CROSSREF]
  • Dhawan D., Goel A., Gautam C. S. Effects of zinc intake on liver enzymes in carbon tetrachloride induced liver injury. Med. Sci. Res. 1992; 20: 55–56
  • Dhawan D., Singh B., Chand B., Singh N., Mangal P. C., Trehan P. N. X-ray fluorescence in the assessment of inter-elemental interactions in rat liver following lead treatment. Biometals 1995; 8: 105–110, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Dhawan D. K., Goel A., Chauhan D. P. Protective effects of zinc in chlorpyrifos induced hepatotoxicity: a biochemical and trace elemental study. Biol. Trace Elem. Res. 2000; 74(2)171–183, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Easterbauer H., Schaur R. J., Zollner H. Chemistry and biochemistry of hydroxynonal, malondialdehyde, and related aldehydes. Free Rad; Biol. Med. 1991; 11: 81–128, [CROSSREF]
  • Failla M. L., Kiser R. A. Hepatic and renal metabolism of copper and zinc in the diabetic rat. Am. J. Physiol. 1983; 244: E113–121
  • Flanagan P. R., Hamilton D. L., Haist J., Valberg L. S. Interrelationships between iron and lead absorption in iron-deficient mice. Gastroenterology 1979; 77: 1074–1081, [PUBMED], [INFOTRIEVE]
  • Flohe J., Gunzler W. A. Array of glutathione peroxidase. Methods in Enzymology, S. P. Calowick, N. O. Kaplan. Academic Press, New York 1984; 105: 114–126
  • Fridovich I. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem. 1995; 64: 97–112, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Goel A., Chauhan D. P., Dhawan D. Protective effect of zinc in chlorpyrifos induced hepatotoxicity — A biochemical and trace elemental study. Biol. Trace Elem. Res. 2002; 74: 71–183
  • Goyer R. A., Mahaffey K. R. Susceptibility to lead toxicity. Environ. Health Perspect. 1972; 2: 73–80, [PUBMED], [INFOTRIEVE]
  • Hochstein P., Nordenbrand K., Ernster L. Evidence for the involvement of iron in the ADP-activated peroxidation of lipids in microsomes and mitochondria. Biochem. Biophys. Res. Commun. 1964; 14: 323–328, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Huang C. J., Fwu M. L. Degree of protein deficiency affects the extent of the depression of antioxidative enzyme activities and the enhancement of tissue lipid peroxidation in rats. J. Nutr. 1993; 123: 803–810, [PUBMED], [INFOTRIEVE]
  • Kaur J., Jaswal V. M. S., Nagpaul J. P., Mahmord A. Chronic ethanol feeding and microvillous membrane glycosylation in normal and protein-malnourished rat intestine. Nutrition 1992; 8: 338–342, [PUBMED], [INFOTRIEVE]
  • Keusch G. T. The history of nutrition: malnutrition, infection and immunity. J Nutr. 2003; 133: 336–340
  • Kidd P. M. Glutathione: systemic protectant against oxidative and free radical damage. Alt. Med. Rev. 1997; 2(3)155–176
  • Kono. Generation of superoxide radical during auto-oxidation of hydroxylamine and an assay of superoxide dismutase. Arch Biochem. Biophys. 1978; 186: 189–195, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Kusal K. D., Shbantula D. Alteration of testicular biochemistry during protein restriction in nickel treated rats. Biol. Trace Elem. Res. 1997; 60: 243–249
  • Kyle M. E., Miccadie S., Nakae D., Farber J. L. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem. Biophys. Res. Commun. 1987; 149(3)889–96, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Lowry O. H., Rorebrough N. J., Farr A. L., Randall J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951; 93: 265–275
  • Luck H. Catalase. Methods of Enzymatic Analysis, H. O. Bergmeyer. Academic Press, New York 1971; 888–893
  • Moron M. J., DiPierre J. W., Mannerv K. B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat lung and rat liver. Biochem. Biophy. Acta. 1979; 582: 67–71
  • Mylori A. A., Moore L., Erobog. Toxicol. Appl. Pharmacol. 1977; 41: 361, [CROSSREF]
  • Pardeep Sidhu, Garg M. L., Dhawan D. K. Protective role of zinc in nickel induced hepatotoxicity in rats. Chemico-Biological Interactions 2004; 150: 199–209, [CROSSREF]
  • Pelissier M. A., Bosset M., Atteba S., Albreach R. Lipid peroxidation of rat liver microsomes membranes related to a protein deficiency and or a PCB treatment. Food Addit. Contam. 1990; 7(Suppl. 1)5172–5177
  • Poluten J., Kapila Jordi C., Lluis A. Nickel induced hyperglycemia: the role of insulin and glucagons. Toxicology 1992; 71: 181–192, [CROSSREF]
  • Raymond D., Hilderbrand D., Fahim Z., William T., Fahin M. S. Trace. Sub. In Env. Health. 1974; 417–431
  • Singh B., Dhawan D., Mangal P. C., Goel A. The influence of lead toxicity on the biological half-life I-131 Rose Bengal in rat liver. Med. Sci. Res. 1992; 20: 623–624
  • Singh B., Dhawan D., Chand B. Lead pollution-Its impact on the status of other hepatic trace metals in blood and alteration in the hepatic functions. Biol. Trace. Elem. Res. 1994; 40: 21–29, [PUBMED], [INFOTRIEVE]
  • Sorenson E. M. B., Moretti E. S., Lindebaum A. Chelation therapy and the tissue distribution and excretion of lead in mice. Arch. Environ. Contam. Toxicol. 1980; 9: 619, [CROSSREF]
  • Sreedhar B., Subramaniyan R., Nair K. M. A protective role for zinc on intestinal peroxidative damage during oral iron repletion. Biochem. Biophys. Res. Commun. 2004; 318(4)992–997, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Susan M. D., Berkley A. L., Fanburg B. L. Effects of low protein diets or feed restriction on rat lung glutathione and oxygen toxicity. J. Nutr. 1985; 115: 726–732
  • Tandon A., Nagpaul J. P., Bandhu H., Singh N., Dhawan D. Effect of lithium on hepatic and serum elemental status under different dietary protein regimens. Biol. Trace Element Rese. 1987; 68: 51–62
  • Tandon A., Dhawan D. K., Nagpaul J. P. Effect of lithium on hepatic lipid peroxidation and antioxidative enzymes under different dietary protein regimens. J. Appl. Toxicol. 1998; 18: 187–190, [PUBMED], [INFOTRIEVE], [CROSSREF]
  • Tower A. D., Balaper W. D., Thomas D. J., Gaynor J. J., Krigman M. R., Mashak P., Morell P. Myelin deficits produced by early postnatal exposure to in organic head to triethyltin are persistent. J. Neurochem. 1983; 41: 816–822
  • Wallwork J. C., Johnson L. K., Milne D. B., Sanstead H. H. The effect of interactions between dietary egg white protein and zinc on body weight, bone growth and tissue tracer metals in the 30 days old rat. J. Nutr. 1983; 113: 1307–1320, [PUBMED], [INFOTRIEVE]
  • Wang G., Yu S., Bao C. Effects of different levels of protein intake on metabolism of protein intake on metabolism of protein, zinc and copper in rats. Zhonguo Gonggong Weishing xulbao 1995; 14(2)90–93
  • Younes M., Siegers C. P. Mechanistic aspects of enhanced lipid peroxidation following glutathione depletion in vivo. Chem. Biol. Interact. 1981; 34: 257–266, [PUBMED], [INFOTRIEVE], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.