149
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Nitric oxide (NO), citrulline–NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acid–mediated excitotoxicity in rat brain

, &
Pages 326-331 | Received 21 Nov 2008, Accepted 19 Jun 2009, Published online: 01 Oct 2009

References

  • Alabadi, J., Thibault, J. L., Pinard, E., Seylaz, J., Lasbennes, F., (1999). 7-nitroindazole, a selective inhibitor of nNOS, increases hippocampal extracellular glutamate concentration in status epilepticus induced by kainic acid in rats. Brain Res 839:305–312.
  • Aldridge, C. R., Collard, K. J. (1996). The characteristics of arginine transport by rat cerebellar and cortical synaptosomes. Neurochem Res 21:1539–1546.
  • Barger, S. W., Goodwin, M. E., Porter, M. M., Beggs M. L. (2007). Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem 101: 1205–1213.
  • Bommarius, A. S., Makryaleas, K., Drauz, K. (1991). An enzymatic route to L-ornithine from L-arginine—activation and stabilization studies on L-arginase. Biomed Biochim Acta 50:S249–S255.
  • Carriedo, S. G., Sensi, S. L., Yin, H. Z., Weiss, J. H. (1998). Rapid Ca2+ entry through Ca2+-permeable AMPa/kainite channels triggers marked intracellular Ca2+ rises and consequent oxygen radical production. J Neurosci 18:7727–7738.
  • Carriedo, S. G., Sensi, S. L., Yin, H. Z., Weiss, J. H. (2000). AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J Neurosci 20:240–250.
  • Chatterjee, P. K., Cuzzocrea, S., Brown, P. A., Zacharowiski, K., Stewart, K. N., Motafilipe, H., et al. (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress–mediated renal dysfunction and injury in the rat. Kidney Int 58:658–673.
  • Coyle, J. T., Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695.
  • Dawson, R., Beal, M. F., Bondy, S. C., DiMonte, D. A., Isom, G. E. (1995). Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases. Toxicol Appl Pharm 134:1–17.
  • Doble, A. (1999). The role of excitotoxicity in neurodegenerative diseases implications for therapy. Pharmacol Ther 81:163–221.
  • Frantseva, M. K., Perezvelzquez, J. L., Tsoraklidis, G., Mendonca, A. J., Adamchik, Y., Mills, L. R., et al. (2000). Oxidative stress is involved in seizure-induced neurodegeneration in the kindling model of epilepsy. Neuroscience 97:431–435.
  • Girard, G., Giguere, J.-F., Butterworth, R. F. (1993). Region selective reductions in activities of glutamine synthetase in rat brain following portacaval anastomosis. Metab Brain Dis 8:207–215.
  • Guix, F. X., Uribesalgo, M., Coma, M., Munoz, F. J. (2005). The physiology and patophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152.
  • Herzfeld, A., Raper, S. M. (1976). The heterogeneity of arginase in rat tissues. Biochem J 153:469–478.
  • Hosokawa, H., Sawamura, T., Kobayashi, S., Ninomiya, H., Miwa, S., Masaki, T. (1997). Cloning and characterization of a brain-specific amino acid transporter. J Biol Chem 272:8717–8722.
  • Kawahara, K., Gotoh, T., Oyadomari, S., Kajizono, M., Kuniyasu, A., Ohsawa, K., et al. (2001). Co-induction of argininosuccinate synthetase, cationic amino acid transporter-2, and nitric oxide synthase in activated murine microglial cells. Mol Brain Res 90:165–173.
  • Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., Cosic, V. (2000). Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361.
  • Kosenko, E., Llansola, M., Montoliu, C., Monfort, P., Rodrigo, R., Hernandez-Viadel, M., et al. (2003). Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43:493–499.
  • Lapouble, E., Montecot, C., Sevestre, A., Pichon, J. (2002). Phosphinothricin induces epileptic activity via nitric oxide production through NMDA-receptor activation in adult mice. Brain Res 957:46–52.
  • Levin, B. (1971). In: Bodensky, O., Latner, A. L. ( Eds.), Hereditary metabolic disorders of the urea cycle. Avances in Clinical Chemistry, Vol 14 (p 66).New York:Academic Press.
  • Milatovic, D., Gupta, R. C., Dettbarn, W. D. (2002). Involvement of nitric oxide in kainic acid–induced excitotoxicity in rat brain. Brain Res 957:330–337.
  • Nakaki, T., Mishima, A., Suzuki, E., Shintani, F., Fujii, T. (2000). Glufosinate ammonium stimulates nitric oxide production through N-methyl-D-aspartate receptors in rat cerebellum. Neurosci Lett 290:209–212.
  • Olney, J. W., Rhee, V., Ho, O. L. (1974). Kainic acid: a powerful neurotoxic analogue of glutamate. Brain Res 77:507–512.
  • Penix, L. P., Davis, W., Subramaniam, S. (1994). Inhibition of NO synthase increases the severity of kainic acid–induced seizures in rodents. Epilepsy Res 18:177–184.
  • Prast, H., Philippu, A. (2001). Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68.
  • Radenovic, L., Selakovic, V. (2005). Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection. Brain Res Bull 67:133–141.
  • Rodrigo, R., Felipo, V. (2007). Control of brain glutamine synthesis by NMDA receptors. Front Biosci 12:883–890.
  • Rose, C., Felipo, V. (2005). Limited capacity for ammonia removal by brain in chronic liver failure: potential role of nitric oxide. Metab Brain Dis 20:275–283.
  • Rothman, S. M., Olney, J. W. (1986). Glutamate and the pathophysiologyof hypoxic-ischemic brain damage. Ann Neurol 19:105–111.
  • Rowe, W. B., Ronzio, R. A., Wellner, V. P, Meister, A. (1970).Glutamine synthetase (sheep brain). In: Tabor, H., Tabor, C. W. ( Eds.), Methods in Enzymology, Vol XVII, Part A ( pp 900–910). New York: Academic Press.
  • Rundfeldt, C., Koch, R., Richter, A., Mevissen, M., Gerecke, U., Loscher, W. (1995). Dose-dependent anticonvulsant and proconvulsant effects of nitric oxide synthase inhibitors on seizure threshold in a cortical stimulation model in rats. Eur J Pharmacol 274:73–81
  • Sadasivudu, B., Lajtha, A. (1970). Metabolism of amino acids in incubated slices of mouse brain. J Neurochem 17:1299–1311.
  • Sadasivudu, B., Nasreen, Z., Swamy, M. (1985). Functional significance of the activities of glutaminase and ornithine-ω-aminotransferase in rat brain. Neurochem Int 7:449–454.
  • Schmidlin, A., Wiesinger, H. (1994). Transport of L-arginine in cultured glial cells. Glia 11:262–268.
  • Sperk, G. (1994). Kainic acid seizures in the rat. Prog Neurobiol 42:1–32.
  • Swamy M, Adlin, Z. Z, Chandran, G., Sirajudeen, K. N. S., Nadiger, H. A. (2005). Effect of acute ammonia toxicity on nitric oxide (NO), citrulline–NO cycle enzymes, arginase, and related metabolites in different regions of rat brain. Neurosci Res 53:116–122.
  • Swamy, M., Sirajudeen, K. N. S., Chandran G. (2007). Nitric oxide, lipid peroxidation, and total antioxidant status in different regions of rat brain in kainic acid–mediated excitotoxicity. MJMS 14(Suppl 1):169.
  • Szatkowski, M., Attwell, D. (1994). Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci 17:359–365.
  • Takahashi, M., Billups, B., Rossi, D., Sarantis, M., Hamann, M., Attwell, D. (1997). The role of glutamate transporters in glutamate homeostasis in the brain. J Exp Biol 200:401–409.
  • Van der berg, C. J., Garfinkel, D. (1971). A stimulation study of brain compartments, metabolism of glutamate, and related substances in mouse brain. Biochem J 123:211–218.
  • Wang, Q., Yu, S., Simonyi, A., Sun, G. Y., Sun, A. Y. (2005). Kainic acid–mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31:3–16.
  • Westergaard, N., Beart, P. M., Schousboe, A. (1993). Transport of L-[3H] arginine in cultured neurons: characteristics and inhibition by nitric oxide synthase inhibitors. J Neurochem 61:364–367.
  • Wiesinger, H. (2001). Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog Neurobiol 64:365–391.
  • Yui, Y., Hattori, R., Kosuga, K., Eizawa, H., Hiki, K., Ohkawa, S., et al. (1991). Calmodulin-independent nitric oxide synthase from rat polymorphonuclear neutrophils. J Biol Chem 266:3369–3371.
  • Zhang, W.Y., Gotoh, T., Oyadomari, S., Mori, M. (2000). Coinduction of inducible nitric oxide synthase and arginine recycling enzymes in cytokine-stimulated PC12 cells and high-output production of nitric oxide. Mol Brain Res 83:1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.