291
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Neutralization of iron oxide magnetic nanoparticle aquatoxicity on Oncorhynchus mykiss via supplementation with ulexite

, , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 274-286 | Received 14 Sep 2022, Accepted 27 Dec 2022, Published online: 05 Jan 2023

References

  • Abdel-Latif, H.M., et al., 2021. Copper oxide nanoparticles alter serum biochemical indices, induce histopathological alterations, and modulate transcription of cytokines, HSP70, and oxidative stress genes in Oreochromis niloticus. Animals, 11 (3), 652.
  • Aebi, H., 1984. Catalase in vitro. Methods in Enzymology, 105, 121–126.
  • Afifi, M., Saddick, S., and Abu Zinada, O.A., 2016. Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi Journal of Biological Sciences, 23 (6), 754–760.
  • Agayeva, N.J., et al., 2020. Exposure of rainbow trout (Oncorhynchus mykiss) to magnetite (Fe3O4) nanoparticles in simplified food chain: study on ultrastructural characterization. Saudi Journal of Biological Sciences, 27 (12), 3258–3266.
  • Ahmed, I., Reshi, Q.M., and Fazio, F., 2020. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquaculture International, 28, 869–899.
  • Alak, G., et al., 2019b. Neurophysiological responses in the brain tissues of rainbow trout (Oncorhynchus mykiss) treated with bio-pesticide. Drug and Chemical Toxicology, 42 (2), 203–209.
  • Alak, G., et al., 2018. Neuroprotective effects of dietary borax in the brain tissue of rainbow trout (Oncorhynchus mykiss) exposed to copper-induced toxicity. Fish Physiology and Biochemistry, 44 (5), 1409–1420.
  • Alak, G., et al., 2019a. Therapeutic effect of N-acetyl cysteine as an antioxidant on rainbow trout’s brain in cypermethrin toxicity. Chemosphere, 221, 30–36.
  • Bacchetta, C., et al., 2017. Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecological Indicators., 76, 230–239.
  • Beutler, E., 1984. Glutathione peroxidase (GSH-Px). Red cell metabolism: A manual of biochemical methods. United States: Grune & Stratton.
  • Beutler, E., and Kelly, B.M., 1963. The effect of sodium nitrite on red cell GSH. Experientia, 19 (2), 96–97.
  • Bolognesi, C., et al., 2006. Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquatic Toxicology., 78, S93–S98.
  • Bradley, P.P., et al., 1982. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology, 78 (3), 206–209.
  • Brown, D., et al., 2004. Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286 (2), L344–53.
  • Buchmann, K., 2014. Evolution of innate immunity: clues from invertebrates via fish to mammals. Frontiers in Immunology, 5, 459.
  • Čaloudová, H., Čaloudová, J., and Svobodová, Z., 2021. A review of the effects of metallic nanoparticles on fish. Acta Veterinaria Brno, 90 (3), 331–347.
  • Canli, E.G., and Canli, M., 2017. Effects of aluminum, copper, and titanium nanoparticles on some blood parameters in Wistar rats. Turkısh Journal of Zoology, 41 (2), 259–266.
  • Canli, E.G., Dogan, A., and Canli, M., 2018. Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environmental Toxicology and Pharmacology, 62, 181–187.
  • Carmo, T.L., et al., 2019. Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a neotropical detritivorous fish. Environmental Toxicology, 34 (4), 457–468.
  • Culcasi, M., et al., 2012. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chemico-Biological İnteractions, 199 (3), 161–176.
  • Das, P., et al., 2004. Nitrite toxicity in Cirrhinus mrigala (Ham.): acute toxicity and sublethal effect on selected hematological parameters. Aquaculture, 235 (1–4), 633–644.
  • de Oliveira, L.F., et al., 2018. Triple‐mixture of Zn, Mn, and Fe increases bioaccumulation and causes oxidative stress in freshwater neotropical fish. Environmental Toxicology and Chemistry, 37 (6), 1749–1756.
  • Delmond, K.A., et al., 2019. Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO2) and inorganic lead (PbII). Environmental Toxicology and Pharmacology, 67, 42–52.
  • Eom, H.J., and Choi, J., 2010. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environmental Science & Technology, 44 (21), 8337–8342.
  • Fazio, F., 2019. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture, 500, 237–242.
  • García-Medina, S., et al., 2022. Bioaccumulation and oxidative stress caused by aluminium nanoparticles and the integrated biomarker responses in the common carp (Cyprinus carpio). Chemosphere, 288 (Pt 2), 132462.
  • Habib, G.M., Shi, Z.Z., and Lieberman, M.W., 2007. Glutathione protects cells against arsenite-induced toxicity. Free Radical Biology & Medicine, 42 (2), 191–201.
  • Handy, R.D., et al., 2008. Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology (London, England), 17 (5), 396–409.
  • Harabawy, A.S., and Ibrahim, A.T.A., 2014. Sublethal toxicity of carbofuran pesticide on the African catfish Clarias gariepinus (Burchell, 1822): hematological, biochemical and cytogenetic response. Ecotoxicology and Environmental Safety, 103, 61–67.
  • Hoseini, S.M., et al., 2016. Toxic effects of copper sulfate and copper nanoparticles on minerals, enzymes, thyroid hormones and protein fractions of plasma and histopathology in common carp Cyprinus carpio. Experimental and Toxicologic Pathology : Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 68 (9), 493–503.
  • Huang, T.C., et al., 2011. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PloS One, 6 (12), e29102.
  • Huang, W., Tang, Y., and Li, L., 2010. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine, 51 (2), 119–126.
  • Ibrahim, A.T.A., 2020. Toxicological impact of green synthesized silver nanoparticles and protective role of different selenium type on Oreochromis niloticus: hematological and biochemical response. Journal of Trace Elements in Medicine and Biology : organ of the Society for Minerals and Trace Elements (GMS), 61, 126507.
  • Kaewamatawong, T., et al., 2006. Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. Toxicologic Pathology, 34 (7), 958–965.
  • Kaloyianni, M., et al., 2020. Magnetite nanoparticles effects on adverse responses of aquatic and terrestrial animal models. Journal of Hazardous Materials, 383, 121204.
  • Kaviyarasu, K., et al., 2020. High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. Journal of King Saud University, Science, 32 (2), 1516–1522.
  • Kazemian, M., and Bakhshi, M., 2019. Performance of different levels of ZnO nanoparticles on the amount of antioxidant enzymes in the liver of Koi fish (Cyprinus carpio). J. Anim. Environ. Sci, 11 (4), 243–248.
  • Kim, J.E., Shin, J.Y., and Cho, M.H., 2012. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Archives of Toxicology, 86 (5), 685–700.
  • Kumar, R., and Banerjee, T.K., 2016. Arsenic induced hematological and biochemical responses in nutritionally important catfish Clarias batrachus (L.). Toxicology Reports, 3, 148–152.
  • Kurian, A., and Elumalai, P., 2021. Study on the impacts of chemical and green synthesized (Leucas aspera and oxy-cyclodextrin complex) dietary zinc oxide nanoparticles in Nile tilapia (Oreochromis niloticus). Environmental Science and Pollution Research, 28 (16), 20344–20361.
  • Li, Y., et al., 2013. Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environmental Science & Technology, 47 (18), 10293–10301.
  • Li, N., et al., 2010. Berberine attenuates pro-inflammatory cytokine-induced tight junction disruption in an in vitro model of intestinal epithelial cells. European Journal of Pharmaceutical Sciences., 40 (1), 1–8.
  • Li, N., Xia, T., and Nel, A.E., 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology & Medicine, 44 (9), 1689–1699.
  • Liu, X., et al., 2004. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. Journal of Magnetism and Magnetic Materials., 270 (1-2), 1–6. 1–6.
  • Liu, J., et al., 2020. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet. Superconductor Science and Technology, 33 (3), 03LT01.
  • Liu, L., et al., 2019. Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for Caspase-9 activity detection in vitro and in vivo. Biosensors & Bioelectronics, 141, 111403.
  • Luo, Y., et al., 2006. 2-chlorophenol induced ROS generation in fish Carassius auratus based on the EPR method. Chemosphere, 65 (6), 1064–1073.
  • Mahmoud, A.M., et al., 2021. The role of natural and synthetic antioxidants in modulating oxidative stress in drug-induced injury and metabolic disorders. Oxidative Medicine and Cellular Longevity, 2021, 1–3. 2021.
  • Malhotra, N., et al., 2020. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules, 25 (14), 3159.
  • Marano, F., et al., 2011. Nanoparticles: molecular targets and cell signalling. Archives of Toxicology, 85 (7), 733–741.
  • Naeemi, A.S., et al., 2020. Copper oxide nanoparticles induce oxidative stress mediated apoptosis in carp (Cyprinus carpio) larva. Gene Reports, 19, 100676.
  • Neumann, N.F., Stafford, J.L., and Belosevic, M., 2000. Biochemical and functional characterisation of macrophage stimulating factors secreted by mitogen-induced goldfish kidney leucocytes. Fish & Shellfish Immunology, 10 (2), 167–186.
  • Oliveira, M., et al., 2010. Evaluation of oxidative DNA lesions in plasma and nuclear abnormalities in erythrocytes of wild fish (Liza aurata) as an integrated approach to genotoxicity assessment. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 703 (2), 83–89.
  • Öz, M., Tatil, T., and Dikel, S., 2021. Effects of boric acid on the growth performance and nutritional content of rainbow trout (Oncorhynchus mykiss). Chemosphere, 272, 129895.
  • Parveen, N., and Shadab, G.G.H.A., 2012. Cytogenetic evaluation of cadmium chloride on Channa punctatus. Journal of Environmental Biology, 33 (3), 663–666.
  • Perrier, F., et al., 2018. Gold nanoparticle trophic transfer from natural biofilm to grazer fish. Gold Bulletin, 51 (4), 163–173.
  • Radwan, M.A., El-Gendy, K.S., and Gad, A.F., 2020. Biomarker responses in terrestrial gastropods exposed to pollutants: a comprehensive review. Chemosphere, 257, 127218.
  • Rahman, I., et al., 2005. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxidants & Redox Signaling, 7 (1–2), 42–59.
  • Sawhney, A.K., and Johal, M.S., 2000. Effect of an organophosphorus insecticide, malathion on pavement cells of the gill epithelia of Channa punctatus (Bloch) Pollut. Arch. Hydrobiol, 47, 195–203.
  • Shen, Y., et al., 2018. Fish red blood cells express immune genes and responses. Aquaculture and Fisheries, 3 (1), 14–21.
  • Singh, M., et al., 2019. Iron mediated hematological, oxidative and histological alterations in freshwater fish Labeo rohita. Ecotoxicology and Environmental Safety, 170, 87–97.
  • Singh, N., et al., 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Reviews, 1 (1), 5358.
  • Souza, I.D.C., et al., 2019. Nanoparticle transport and sequestration: intracellular titanium dioxide nanoparticles in a neotropical fish. Science of the Total Environment., 658, 798–808.
  • Sönmez, E., et al., 2016. Cytotoxicity and genotoxicity of iron oxide nanoparticles: an in vitro biosafety study. Archives of Biological Sciences, 68 (1), 41–50.
  • Sun, L., et al., 2020. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biology, 37, 101759.
  • Sun, Y., Oberley, L.W., and Li, Y., 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34 (3), 497–500.
  • Tamilmathi, D., and Rajan, M.R., 2021. Genotoxic effect of iron oxide nanoparticles treated tannery effluent on Zebrafish Danio rerio. Nature Environment and Pollution Technology, 20 (1), 211–219.
  • Tavares-Dias, M., Schalch, S. E. C., and Moraes, F. R., 2003. Hematological characteristics of Brazilian teleosts. VII. Parameters of seven species collected in Guariba, São Paulo State, Brazil. Boletim do Instituo de Pesca, São Paulo, 29, 109–115.
  • Terzi, E., et al., 2017. Biological performance of particleboard incorporated with boron minerals. Journal of Forestry Research, 28 (1), 195–203.
  • TÜİK 2019. http://tuik.gov.tr/UstMenu.do?metod=temelist.01.10(2019)
  • Uçar, A., et al., 2021. Assesment of hematotoxic, oxidative and genotoxic damage potentials of fipronil in rainbow trout Oncorhynchus mykiss. Toxicology Mechanisms and Methods, 31 (1), 73–80.
  • Watanabe, M., et al., 2013. Effects of Fe3O4 magnetic nanoparticles on A549 cells. International Journal of Molecular Sciences, 14 (8), 15546–15560.
  • Zemheri-Navruz, F., Acar, Ü., and Yılmaz, S., 2019. Dietary supplementation of olive leaf extract increases haematological, serum biochemical parameters and immune related genes expression level in common carp (Cyprinus carpio) juveniles. Fish & Shellfish İmmunology, 89, 672–676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.