1,437
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The administration of methyl and butyl parabens interferes with the enzymatic antioxidant system and induces genotoxicity in rat testis: possible relation to male infertility

, , , & ORCID Icon
Pages 322-329 | Received 25 Jul 2022, Accepted 28 Jan 2023, Published online: 08 Feb 2023

References

  • Adoamnei, E., et al., 2018. Urinary concentrations of parabens and reproductive parameters in young men. The Science of the Total Environment, 621, 201–209.
  • Ara, C., et al., 2021. Abnormal steroidogenesis, oxidative stress, and reprotoxicity following prepubertal exposure to butylparaben in mice and protective effect of Curcuma longa. Environmental Science and Pollution Research International, 28 (5), 6111–6121.
  • Artacho-Cordón, F., et al., 2019. Adipose tissue concentrations of non-persistent environmental phenols and local redox balance in adults from Southern Spain. Environment International, 133 (Pt A), 105118.
  • Aydemir, D., et al., 2019. Effects of butylparaben on antioxidant enzyme activities and histopathological changes in rat tissues. Arhiv Za Higijenu Rada i Toksikologiju, 70 (4), 315–324.
  • Azqueta, A., Shaposhnikov, S., and Collins, A.R., 2009. DNA oxidation: investigating its key role in environmental mutagenesis with the comet assay. Mutation Research, 674 (1–2), 101–108.
  • Bayülken, D.G., et al., 2019. Investigation of genotoxic effects of paraben in cultured human lymphocytes. Drug and Chemical Toxicology., 42, 349–356.
  • Bayülken, D.G., and Tüylü, B.A., 2019. In vitro genotoxic and cytotoxic effects of some paraben esters on human peripheral lymphocytes. Drug and Chemical Toxicology., 42, 386–393.
  • Chen, J., et al., 2007. Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicology and Applied Pharmacology, 221 (3), 278–284.
  • Choi, C.Y., An, K.W., and An, M.I., 2008. Molecular characterization and mRNA expression of glutathione peroxidase and glutathione S-transferase during osmotic stress in olive flounder (Paralichthys olivaceus). Comparative Biochemistry and Physiology, 149 (3), 330–337.
  • Chung, F.L., et al., 2005. Glutathione depletion enhances the formation of endogenous cyclic DNA adducts derived from t-4-hydroxy-2-nonenal in rat liver. Chemical Research in Toxicology, 18 (1), 24–27.
  • Collins, A.R., 2004. The comet assay for DNA damage and repair. Molecular Biotechnology, 26 (3), 249–261.
  • Devasagayam, T., Boloor, K., and Ramasarma, T., 2003. Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian Journal of Biochemistry & Biophysics, 40 (5), 300–308.
  • Ding, K., et al., 2017. Side chains of parabens modulate antiandrogenic activity: in vitro and molecular docking studies. Environmental Science & Technology, 51 (11), 6452–6460.
  • Engeli, R.T., et al., 2017. Interference of paraben compounds with estrogen metabolism by inhibition of 17β-hydroxysteroid dehydrogenases. International Journal of Molecular Sciences., 18, 1–13.
  • Fransway, A.F., et al., 2019. Parabens. Dermatitis, 30 (1), 3–31.
  • Garcia, T., et al., 2017. Effects on the reproductive system of young male rats of subcutaneous exposure to n-butylparaben. Food and Chemical Toxicology, 106 (Pt A), 47–57.
  • Golestanzadeh, M., et al., 2022. Association between parabens concentrations in human amniotic fluid and the offspring birth size: a sub-study of the PERSIAN birth cohort. Environmental Research, 212 (Pt D), 113502.
  • Hair, J.F., et al., 2014. Multivariate data analysis, 7th ed. Upper Saddle River: Pearson Education, Printice-Hall.
  • Handa, O., et al., 2006. Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology, 227 (1–2), 62–72.
  • Ighodaro, O.M., and Akinloye, O.A., 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54 (4), 287–293.
  • Jurewicz, J., et al., 2017. Human semen quality, sperm DNA damage, and the level of reproductive hormones in relation to urinary concentrations of parabens. Journal of Occupational and Environmental Medicine, 59 (11), 1034–1040.
  • Kang, K.-S., et al., 2002. Decreased sperm number and motile activity on the F1 offspring maternally exposed to butyl p-hydroxybenzoic acid (Butyl Paraben). The Journal of Veterinary Medical Science, 64 (3), 227–235.
  • Kizhedath, A., Wilkinson, S., and Glassey, J., 2019. Assessment of hepatotoxicity and dermal toxicity of butyl paraben and methyl paraben using HepG2 and HDFn in vitro models. Toxicology In Vitro, 55, 108–115.
  • Lee, J., et al., 2017. Phototoxicity and chronic toxicity of methyl paraben and 1,2-hexanediol in Daphnia magna. Ecotoxicology, 26 (1), 81–89.
  • Liao, Q., et al., 2022. Assessment of health risk and dose-effect of DNA oxidative damage for the thirty chemicals mixture of parabens, triclosan, benzophenones, and phthalate esters. Chemosphere, 308 (Pt 2), 136394.
  • Ma, W.-L., et al., 2016. A survey of parabens in commercial pharmaceuticals from China and its implications for human exposure. Environment International, 95, 30–35.
  • Martín, J.M.P., et al., 2010. Oxidative DNA damage contributes to the toxic activity of propylparaben in mammalian cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 702 (1), 86–91.
  • Martins, F.C., et al., 2021. Parabens enhance the calcium-dependent testicular mitochondrial permeability transition: their relevance on the reproductive capacity in male animals. Journal of Biochemical and Molecular Toxicology, 35 (3), 1–8.
  • Mínguez-Alarcón, L., et al., 2016. Urinary paraben concentrations and in vitro fertilization outcomes among women from a fertility clinic. Fertility and Sterility, 105 (3), 714–721.
  • Oishi, S., 2001. Effects of butylparaben on the male reproductive system in rats. Toxicology and Industrial Health, 17 (1), 31–39.
  • Oishi, S., 2002. Effects of propyl paraben on the male reproductive system. Food and Chemical Toxicology., 40 (12), 1807–1813.
  • Oliveira, M.M., et al., 2020. Use of Parabens (Methyl and Butyl) during the Gestation Period: mitochondrial bioenergetics of the testes and antioxidant capacity alterations in testes and other vital organs of the F1 Generation. Antioxidants, 9 (12), 1302.
  • Petric, Z., Ružić, J., and Žuntar, I., 2021. The controversies of parabens – an overview nowadays. Acta Pharmaceutica, 71 (1), 17–32.
  • Rodriguez, C., et al., 1986. Short-term effects of various phenols and acids on the fischer 344 male rat forestomach epithelium. Toxicology, 38 (1), 103–117.
  • Samarasinghe, S.V.A.C., et al., 2018. Parabens generate reactive oxygen species in human spermatozoa. Andrology, 6 (4), 532–541.
  • Satoh, K., et al., 2005. Androgenic and antiandrogenic effects of alkylphenols and parabens assessed using the reporter gene assay with stably transfected CHO-K1 cells (AR-EcoScreen System). Journal of Health Science, 51 (5), 557–568.
  • Schreiber, E., et al., 2019. Oxidative stress in testes of rats exposed to n-butylparaben. Food and Chemical Toxicology, 131, 110573.
  • Shah, K., and Verma, R., 2011. Butyl p-hydroxybenzoic acid induces oxidative stress in mice liver – an in vivo study. Acta Poloniae Pharmaceutica, 68, 875–879.
  • Shah, K., and Verma, R., 2012. Protection against butyl p-hydroxybenzoic acid induced oxidative stress by Ocimum sanctum extract in mice liver. Acta Poloniae Pharmaceutica, 69 (5), 865–870.
  • Sipinen, V., et al., 2010. In vitro evaluation of baseline and induced DNA damage in human sperm exposed to benzo[a]pyrene or its metabolite benzo[a]pyrene-7,8-diol-9,10-epoxide, using the comet assay. Mutagenesis, 25 (4), 417–425.
  • Tayama, S., Nakagawa, Y., and Tayama, K., 2008. Genotoxic effects of environmental estrogen-like compounds in CHO-K1 cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 649 (1–2), 114–125.
  • Todorovac, E., et al., 2021. Evaluation of DNA and cellular damage caused bymethyl-, ethyl- and butylparaben in vitro. Toxicological and Environmental Chemistry., 103 (1), 85–103.