269
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Hexavalent Chromium Pollution and its Sustainable Management through Bioremediation

, , &
Pages 324-334 | Received 15 Mar 2023, Accepted 10 May 2023, Published online: 14 Jun 2023

References

  • Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881.
  • Antony GS, Manna A, Baskaran S, Puhazhendi P, Ramchary A, Niraikulam A, Ramudu KN. 2020. Non-enzymatic reduction of Cr (VI) and it's effective biosorption using heat-inactivated biomass: A fermentation waste material. J Hazard Mater. 392:122257.
  • Arishi A, Mashhour I. 2021. Microbial mechanisms for remediation of hexavalent chromium and their large-scale applications; current research and future directions. J Pure Appl Microbiol 15(1):53–67.
  • Aslani H, Ebrahimi Kosari T, Naseri S, Nabizadeh R, Khazaei M. 2018. Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing. Environ Sci Pollut Res 25(20):20154–20168.
  • Ayele A, Godeto YG. 2021. Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. J Chem 2021:1–21.
  • Bal B, Ghosh S, Das AP. 2019. Microbial recovery and recycling of manganese waste and their future application: a review. Geomicrobiol J. 36(1):85–96.
  • Ballen Segura M, Hernandez Rodriguez L, Parra Ospina D, Vega Bolaños A, Perez K. 2016. Using Scenedesmus Sp. for the phycoremediation of tannery wastewater. TECCIENCIA 11(21):69–75.
  • Banerjee S, Misra A, Chaudhury S, Dam B. 2019. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. J Hazard Mater. 367:215–223.
  • Bedabati Chanu L, Gupta A. 2016. Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere 156:407–411.
  • Bhattacharjee J, Mishra S, Das AP. 2022. Recent advances in sensor-based detection of toxic dyes for bioremediation application: a review. Appl Biochem Biotechnol 194(10):4745–4764.
  • Bhattacharya A, Gupta A, Kaur A, Malik D. 2019. Alleviation of hexavalent chromium by using microorganisms: insight into the strategies and complications. Water Sci Technol 79(3):411–424.
  • Biswal P, Ghosh S, Pal A, Das AP. 2022. Exploration of probiotic microbial biodiversity in acidic environments (curd) and their futuristic pharmaceutical applications. Geomicrobiol J. 39(3–5):176–185.
  • Biswal P, Pal A, Das AP. 2021. Screening for probiotic potential of Lactobacillus Rhamnosus strain CRD4. Biointerface Res Appl Chem 11:10147–10184.
  • Biswal P, Pal A, Das AP. 2019. Molecular identification of native lactic acid bacteria isolated from curd samples with probiotic potential. Biointerf Res Appl Chem 9(6):4591–4597.
  • Bonanno G, Cirelli GL. 2017. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicol Environ Safety 143:92–101.
  • Chakraborty V, Das P. 2023. Synthesis of nano-silica-coated biochar from thermal conversion of sawdust and its application for Cr removal: kinetic modelling using linear and nonlinear method and modelling using artificial neural network analysis. Biomass Conv Bioref 13(2):821–831.
  • Chakraborty V, Sengupta S, Chaudhuri P, Das P. 2018. Assessment on removal efficiency of chromium by the isolated manglicolous fungi from Indian Sundarban mangrove forest: removal and optimization using response surface methodology. Environ Technol Innovation 10:335–344.
  • Chen Y, An D, Sun S, Gao J, Qian L. 2018. Reduction and removal of chromium VI in water by powdered activated carbon. Materials. 11(2):269.
  • Chen Y, Wu H, Sun P, Liu J, Qiao S, Zhang D, Zhang Z. 2021. Remediation of chromium-contaminated soil based on Bacillus cereus WHX-1 immobilized on biochar: Cr(VI) transformation and functional microbial enrichment. Front Microbiol 12:641913.
  • da Rocha Ferreira GL, Vendruscolo F, Antoniosi Filho NR. 2019. Biosorption of hexavalent chromium by Pleurotus Ostreatus. Heliyon. 5(3):e01450.
  • Dai Z. 2020. Cadmium hyperaccumulation as an inexpensive metal armor against disease in Crofton weed. Environ. Pollut. 267.
  • Das AP, Singh S. 2011. Occupational health assessment of chromite toxicity among Indian miners. Indian J Occup Environ Med 15(1):6.
  • Das AP, Bal B, Mahapatra PS. 2015. Chromogenic biosensors for pathogen detection. In: Polina Prokopovich, editor. Biological and Pharmaceutical Applications of Nanomaterials. CRC Press, Taylor & Francis.
  • Das BK, Das PK, Das BP, Dash P. 2021. Green technology to limit the effects of hexavalent chromium contaminated water bodies on public health and vegetation at industrial sites. J App Biol Biotech 9(2):28–35.
  • Das PK, Das BP, Dash P. 2017. Hexavalent chromium induced; toxicity and its remediation using macrophytes. Pollut Res 36(1):92–98.
  • Das AP, Ghosh S. 2018. Bioleaching of manganese from mining waste materials. Mater Today Proc 5(1):2381–2390.
  • Das AP, Ghosh S. 2022. Role of microorganisms in extenuation of mining and industrial wastes. Geomicrobiol J 39(3–5):173–175.
  • Das AP, Ghosh S, Mohanty S, Sukla LB. 2015. Advances in manganese pollution and its bioremediation. In: Environmental Microbe Biotechnology. Cham: Springer, p313–328.
  • Das AP, Ghosh S, Mohanty S, Sukla LB. 2014. Consequences of manganese compounds: a review. Toxicol Environ Chem 96(7):981–997.
  • Das A, Mishra S. 2010. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain. J Carcinog 9(1):6.
  • Das AP, Bissoyi A. 2011. Computational approach for comparative phylogenetic analysis of isolated chromium resistant strain Brevibacterium Casei. J Eng Technol Res 3(3):82–87.
  • Das AP, Sukla LB, Pradhan N. 2012. Microbial recovery of manganese using Staphylococcus epidermidis. IJNM 01(02):9–12.
  • Das AP, Sukla LB, Pradhan N, Nayak S. 2011. Manganese biomining: a review. Bioresour Technol 102(16):7381–7387.
  • Das AP, Swain S, Panda S, Pradhan N, Sukla LB. 2012. Reductive acid leaching of low grade manganese ores. GM 02(04):70–72.
  • Das AP, Swain S. 2013. Algal biosorption of toxic dye methylene blue. A potential source of food, feed, biochemicals, biofuels and biofertilizers. International Conference on Algal Biorefinery, Indian Institute of Technology 13.1, Kharagpur
  • Das AP, Swain S, Pradhan N, Sukla LB. 2013. Bioremediation and bioleaching potential of multimetal resistant microorganism. International Seminar On Mineral Processing Technology. https://www.researchgate.net/publication/259229545_Bioremediation_and_bioleaching_potential_of_multimetal_resistant_microorganism.
  • Dey S, Tripathy B, Kumar MS, Das AP. 2023. Ecotoxicological consequences of manganese mining pollutants and their biological remediation. Environ Chem Ecotoxicol 5(January):55–61.
  • Dheeba B, Sampathkumar P, Kannan K. 2015. Fertilizers and mixed crop cultivation of chromium tolerant and sensitive plants under chromium toxicity. J Toxicol 2015:1–9.
  • Dula T, Siraj K, Kitte SA. 2014. Adsorption of hexavalent chromium from aqueous solution using chemically activated carbon prepared from locally available waste of bamboo (Oxytenanthera Abyssinica). ISRN Environ Chem 2014:1–9.
  • El-Naggar NEA, El-Khateeb AY, Ghoniem AA, El-Hersh MS, Saber WEIA. 2020. Innovative low-cost biosorption process of Cr6+ by Pseudomonas alcaliphila NEWG-2. Sci Rep 10(1):14043.
  • Ghosh S, Bal B, Das AP. 2018. Enhancing manganese recovery from low-grade ores by using mixed culture of indigenously isolated bacterial strains. Geomicrobiol J 35(3):242–246.
  • Ghosh S, Das AP. 2015. Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol Environ Chem 97(5):491–514.
  • Ghosh S, Das AP. 2017. Bioleaching of manganese from mining waste residues using Acinetobacter Sp. Geol Ecol Landscape 1(2):77–83.
  • Ghosh S, Gandhi M, van Hullebusch ED, Das AP. 2021. Proteomic insights into Lysinibacillus Sp.–mediated biosolubilization of manganese. Environ Sci Pollut Res 28(30):40249–40263.
  • Ghosh S, Kumar MS, Bal B, Das AP. 2018. Application of bioengineering in revamping human health. In: Ghosh, S, Kumar, MS, Bal, B, Das, AP, editors. Synthetic Biology: Omics Tools and Their Applications. Singapore: Springer, p21–37.
  • Ghosh S, Mohanty S, Akcil A, Sukla LB, Das AP. 2016. A greener approach for resource recycling: manganese bioleaching. Chemosphere 154(July):628–639.
  • Hossan S, Hossain S, Islam MR, Kabir MH, Ali S, Islam MS, Imran KM, Moniruzzaman M, Mou TJ, Parvez AK, et al. 2020. Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. IJERPH 17(17):6013.
  • Huang Y, Zeng Q, Hu L, Zhong H, He Z. 2021. Bioreduction performances and mechanisms of Cr(VI) by Sporosarcina saromensis W5, a novel Cr(VI)-reducing facultative anaerobic bacteria. J Hazard Mater. 413:125411.
  • Jaafari J, Yaghmaeian K. 2019. Optimization of heavy metal biosorption onto freshwater algae (Chlorella Coloniales) using response surface methodology (RSM). Chemosphere 217:447–455.
  • Jang M-H, Lim M, Hwang YS. 2014. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ Health Toxicol 29:e2014022.
  • Jobby R, Jha P, Kumar Yadav A, Desai N. 2018. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere 207:255–266.
  • Kabi SK, Dhal NK, Kumar M, Rout NC, Meher K, Pattanaik DK. 2021. Phytoremediation of chromium through plant-soil-microbe interaction: a review. www.icontrolpollluction.com.
  • Kayode OT, Ogunyemi EF, Odukoya AM, Aizebeokhai AP. 2022. Assessment of chromium and nickel in agricultural soil: implications for sustainable agriculture. IOP Conf Ser Earth Environ Sci 993(1):012014.
  • Kerur SS, Bandekar S, Hanagadakar MS, Nandi SS, Ratnamala GM, Hegde PG. 2021. Removal of hexavalent chromium-industry treated water and wastewater: a review. Mater Today Proc 42:1112–1121.
  • Khalid KM. 2021. Native aquatic plants for phytoremediation of metals in outdoor experiments: implications of metal accumulation mechanisms,Soran city- Erbil, Iraq. Int. J. Phytorem. 23(4).
  • Kumar Das P, Das BP, Dash P. 2017. Hexavalent chromium induced toxicity and its remediation using macrophytes. Poll Res. 36(1):92–98.
  • Kumar MS, Das AP. 2016. Molecular identification of multi drug resistant bacteria from urinary tract infected urine samples. Microb Pathog. 98(September):37–44.
  • Kumar MS, Das AP. 2017. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: a review. Adv Colloid Interface Sci 249(November):53–65.
  • Lahiri D, Nag M, Dey A, Sarkar T, Joshi S, Pandit S, Das AP, Pati S, Pattanaik S, Tilak VK, et al. 2022. Biofilm mediated degradation of petroleum products. Geomicrobiol J 39(3–5):389–398.
  • Li H, Huang S, Zhang Y. 2016. Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals. J Microbiol. 54(9):602–610.
  • Liu Y, Zhou Q, Wang Y, Cheng S, Hao W. 2021. Deriving soil quality criteria of chromium based on species sensitivity distribution methodology. Toxics. 9(3):58.
  • Liu YN, Guo ZH, Sun Y, Shi W, Han ZY, Xiao XY, Zeng P. 2017. Stabilization of heavy metals in biochar pyrolyzed from phytoremediated giant reed (Arundo donax) biomass. Transac Nonferrous Metals Soc China (English Ed) 27(3):656–665.
  • Madhavi V, Prasad TN, Bhaskar Reddy AV, Reddy BR, Madhavi G. 2013. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochimica Acta A 116:17–25.
  • Mishra S, Das AP. 2021. Current treatment technologies for removal of microplastic and microfiber pollutants from wastewater. In: Maulin P. shah, editor. Wastewater Treatment: Cutting-Edge Molecular Tools, Techniques and Applied Aspects., US.
  • Mishra S, Das AP. 2022. Treatment of the wastewater polluted with synthetic microfiber released from washing machine. In: Das, BB, Hettiarachchi, H, Sahu, PK and Nanda, S, editors. Lecture Notes in Civil Engineering, Vol. 207. India: Springer Science and Business Media Deutschland GmbH, p109–117.
  • Mishra S, Das AP. 2008. Hexavalent chromium reduction and 16S RDNA identification of bacteria isolated from a Cr (VI) contaminated site. Inter J Microbiol 7(1):1–6.
  • Mishra S, Dash D, Al-Tawaha ARMS, Das AP. 2022. A review on heavy metal ion adsorption on synthetic microfiber surface in aquatic environments. Appl Biochem Biotechnol 194(10):4639–4654.
  • Mishra S, Das AP, Seragadam P. 2009. Microbial remediation of hexavalent chromium from chromite contaminated mines of Sukinda Valley, Orissa (India). J Environ Res Dev 47:1122–1127..
  • Mishra S, Kumar Rout P, Das AP. 2021. Emerging microfiber pollution and its remediation, p247–266.
  • Mishra S, Rath C c, Das AP. 2019. Marine microfiber pollution: a review on present status and future challenges. Mar Pollut Bull 140:188–197.
  • Mishra S, Singh RP, Charan Rath C, Das AP. 2020. Synthetic microfibers: source, transport and their remediation. J Water Process Eng. 38(December):101612.
  • Mishra S, Singh RP, Kumar Rout P, Das AP. 2021. Membrane bioreactor (MBR) as an advanced wastewater treatment technology for removal of synthetic microplastics. In: Mishra, S, Singh, RP, Kumar Rout, P, Das, AP, editors. Development in Wastewater Treatment Research and Processes: Removal of Emerging Contaminants from Wastewater through Bio-Nanotechnology, India.
  • Mishra S, Swain S, Sahoo M, Mishra S, Das AP. 2022. Microbial colonization and degradation of microplastics in aquatic ecosystem: a review. Geomicrobiol J 39(3–5):259–269.
  • Moffat I, Martinova N, Seidel C, Thompson CM. 2018. Hexavalent chromium in drinking water. J Am Water Works Assoc 110(5):E22–E35.
  • Mohanty S, Bal B, Das AP. 2014. Adsorption of hexavalent chromium onto activated carbon. Austin J Biotechnol Bioeng 1(2):5
  • Mohanty SS, Das AP. 2022. A systematic study on the microbial degradation of glyphosate: a review. Geomicrobiol J 39(3–5):316–327.
  • Mohanty S, Ghosh S, Bal B, Das AP. 2018. A review of biotechnology processes applied for manganese recovery from wastes. Rev Environ Sci Biotechnol 17(4):791–811.
  • Mohanty S, Ghosh S, Nayak S, Das AP. 2017. Isolation, identification and screening of manganese solubilizing fungi from low-grade manganese ore deposits. Geomicrobiol J 34(4):309–316.
  • Monga A, Fulke AB, Dasgupta D. 2022. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: implications on human health and remediation strategies. J Hazard Mater Adv. 7(August):100113.
  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK. 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359.
  • Pan R, Bu J, Ren G, Zhang Z, Li K, Ding A. 2022. Mechanism of removal of hexavalent chromium from aqueous solution by fe-modified biochar and its application. Appl Sci 12(3):1238.
  • Park JE, Shin JH, Oh W, Choi SJ, Kim J, Kim C, Jeon J. 2022. Removal of hexavalent chromium (VI) from wastewater using chitosan-coated iron oxide nanocomposite membranes. Toxics 10(2):98.
  • Peng H, Leng Y, Guo J. 2019. Electrochemical Removal of Chromium (VI) from Wastewater. Applied Sciences. 9(6):1156.
  • Prabhakaran DC, Bolaños-Benitez V, Sivry Y, Gelabert A, Riotte J, Subramanian S. 2019. Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochem. Eng. J. 150:107292.
  • Sadasivuni KK, Rattan S, Waseem S, Brahme SK, Kondawar SB, Ghosh S, Das AP. 2019. Silver nanoparticles and its polymer nanocomposites—synthesis, optimization, biomedical usage, and its various applications. In: Satvinder kaur, editor. Lecture Notes in Bioengineering. Cham: Springer, p331–373.
  • Saha R, Nandi R, Saha B. 2011. Sources and toxicity of hexavalent chromium. J Coord Chem 64(10):1782–1806.
  • Saha P, Shinde O, Sarkar S. 2017. Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremed 19(1):87–96.
  • Sahoo PP, Singh S, Rout PK, Mishra S, Das AP. 2022. Microbial remediation of plastic pollutants generated from discarded and abandoned marine fishing nets. Biotechnol Genet Eng Rev 39:1–16.
  • Sanket AS, Ghosh S, Sahoo R, Nayak S, Das AP. 2017. Molecular identification of acidophilic manganese (Mn)-solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiol J 34(1):71–80.
  • Saraswat R, Saraswat D, Yadav M, Associate Professor, Department of Chemistry, Meerut College, Meerut, 250002, India. 2020. A review on bioremediation of heavy metals by microbes. IJAR 8(7):200–210.
  • Sharma P, Singh SP, Kishor Parakh S, Tong YW. 2022. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 13(3):4923–4938.
  • Shojaei V, Khoshdast H. Efficient chromium removal from aqueous solutions by precipitate flotation using rhamnolipid biosurfactants
  • Shi L, Xue J, Liu B, Dong P, Wen Z, Shen Z, Chen Y. 2018. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp1, are involved in the efficient removal of hexavalent chromium from waste water. Ecotoxicol Environ Safety 161:430–436.
  • Singh RP, Mishra S, Das AP. 2020. Synthetic microfibers: pollution toxicity and remediation. Chemosphere 257:127199.
  • Sinha V, Pakshirajan K, Chaturvedi R. 2018. Chromium tolerance, bioaccumulation and localization in plants: an overview. J Environ Manage 206:715–730.
  • Sinha R, Kumar R, Sharma P, Kant N, Shang J, Aminabhavi TM. 2022. Removal of hexavalent chromium via biochar-based adsorbents: state-of-the-art, challenges, and future perspectives. J Environ Manage 317:115356.
  • Sołtysiak J. 2020. Heavy metals tolerance in an invasive weed (fallopia japonica) under different levels of soils contamination. Journal of Ecological Engineering. 21(7).
  • Sumiahadi A, Acar R. 2018. A review of phytoremediation technology: heavy metals uptake by plants. In IOP Conference Series: Earth and Environmental Science, Vol. 142, Institute of Physics Publishing.
  • Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. 2009. Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43(21):8159–8165.
  • Thangagiri B, Sakthivel A, Jeyasubramanian K, Seenivasan S, Dhaveethu Raja J, Yun K. 2022. Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: batch and column studies. Chemosphere 286:131598.
  • Thatoi H, Das S, Mishra J, Rath BP, Das N. 2014. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage 146:383–399.
  • Tripathy B, Dash A, Das AP. 2022. Detection of environmental microfiber pollutants through vibrational spectroscopic techniques: recent advances of environmental monitoring and future prospects. Crit Rev Anal Chem :1–11.
  • Tumolo M, Ancona V, De Paola D, Losacco D, Campanale C, Massarelli C, Uricchio VF. 2020. Chromium pollution in European water, sources, health risk, and remediation strategies: an overview. IJERPH 17(15):5438.
  • Uysal Y. 2009. Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor. Int. J. Phytorem. 11(7)
  • Vidayanti V, Choesin D, Iriawati I. 2017. Phytoremediation of Chromium: Distribution and Speciation of Chromium in Typha angustifolia. IJPB. 8(1):6870 10.4081/pb.2017.6870.
  • Xue C. 2014. Phytoremediation potential of hybrids of the exotic plant Xanthium strumarium and its native congener Xanthium sibiricum for cadmium-contaminated soils. Int. J. Phytorem. 24(12)
  • Yang S. 2014. Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science and Engineering. 8(3)
  • Zahari N. 2021. Inoculation of Bacillus cereus enhance phytoremediation efficiency of Pistia stratiotes and Eichhornia crassipes in removing heavy metal Pb. IOP Conf. Ser.: Earth Environ. Sci. 847(1)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.