146
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Bioremediation Potential of Cr(VI) by Lysinibacillus cavernae CR-2 Isolated from Chromite-Polluted Soil: A Promising Approach for Cr(VI) Detoxification

ORCID Icon, , , , , & show all
Pages 459-473 | Received 12 Apr 2023, Accepted 03 Aug 2023, Published online: 17 Aug 2023

References

  • Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K. 2001. Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23(24):2027–2034.
  • Ahemad M. 2014. Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol 59(4):321–332.
  • Ahmad WA, Ahmad WHW, Karim NA, Raj ASS, Zakaria ZA. 2013. Cr(VI) reduction in naturally rich growth medium and sugarcane bagasse by Acinetobacter haemolyticus. Int Biodete Biodegr 85:571–576.
  • Ahmadi S, Mesbah M, Igwegbe CA, Ezeliora CD, Osagie C, Khan NA, Dotto GL, Salari M, Dehghani MH. 2021. Sono electro-chemical synthesis of LaFeO3 nanoparticles for the removal of fluoride: optimization and modeling using RSM, ANN and GA tools. J Environ Chem Eng 9(4):105320.
  • Alam MZ, Malik A. 2008. Chromate resistance, transport and bioreduction by Exiguobacterium sp. ZM-2 isolated from agricultural soil irrigated with tannery effluent. J Basic Microbiol 48(5):416–420.
  • Anand U, Ray S, Ghosh S, Banerjee R, Mukherjee S. 2015. Structural aspects of a protein-surfactant assembly: native and reduced states of human serum albumin. Protein J 34(2):147–157.
  • APHA. 1998. Standard Methods for the Examination of Water and Wastewater, Twentieth. Washington, DC: American Public Health Association.
  • Bai YN, Lu YZ, Shen N, Lau TC, Zeng RJ. 2018. Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. J Hazard Mater 344:585–592.
  • Batool R, Yrjala K, Hasnain S. 2012. Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22(4):547–554.
  • Boone DR, Castenholz RW. 2001. Bergey’s Manual of Systematic Bacteriology. New York: Springer, p33–65.
  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT. 2003. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62(5–6):569–573.
  • Camargo FAO, Bento FM, Okeke BC, Frankenberger WT. 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32(4):1228–1233.
  • Chang JJ, Deng SJ, Liang Y, Chen JQ. 2019. Cr(VI) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from mine soil: characterization of both Cr(VI) bioreduction and total Cr biosorption processes. Environ Sci Pollut Res Int 26(27):28135–28145.
  • Chen J, Li XG, Gan LZ, Jiang GY, Zhang RS, Xu Z, Tian YQ. 2021. Mechanism of Cr(VI) reduction by Lysinibacillus sp. HST-98, a newly isolated Cr (VI)-reducing strain. Environ Sci Pollut Res Int 28(46):66121–66132.
  • Cheng J, Gao J, Zhang J, Yuan W, Yan S, Zhou J, Zhao J, Feng S. 2021. Optimization of hexavalent chromium biosorption by Shewanella putrefaciens using the Box-Behnken design. Water Air Soil Poll 232(3):92.
  • Cheng YJ, Yan FB, Huang F, Chu WS, Pan DM, Chen Z, Zheng JS, Yu MJ, Lin Z, Wu ZY. 2010. Bioremediation of Cr(VI) and immobilization as Cr(III) by Ochrobactrum anthropi. Environ Sci Technol 44(16):6357–6363.
  • Cheung KH, Gu JD. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59(1):8–15.
  • Das S, Behera BC, Mohapatra RK, Pradhan B, Sudarshan M, Chakraborty A, Thatoi H. 2021. Reduction of hexavalent chromium by Exiguobacterium mexicanum isolated from chromite mines soil. Chemosphere 282:131135.
  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H. 2014. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121.
  • Daulton TL, Little BJ, Jones-Meehan J, Blom DA, Allard LF. 2007. Microbial reduction of chromium from the hexavalent to divalent state. Geochim Cosmochim Ac 71(3):556–565.
  • Desai C, Jain K, Madamwar D. 2008. Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43(7):713–721.
  • Dhal B, Thatoi H, Das N, Pandey BD. 2010. Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biot 85(11):1471–1479.
  • Dhal B, Das NN, Thatoi HN, Pandey BD. 2013. Characterizing toxic Cr(VI) contamination in chromite mine overburden dump and its bacterial remediation. J Hazard Mater 260:141–149.
  • Donati E, Oliver C, Curutchet G. 2003. Reduction of chromium(VI) by the indirect action of Thiobacillus thioparus. Braz J Chem Eng 20(1):69–73.
  • Duan YQ, He ST, Li QQ, Wang MF, Wang WY, Zhe W, Cao YH, Mo MH, Zhai YL, Li WJ. 2013. Lysinibacillus tabacifolii sp. nov., a novel endophytic bacterium isolated from Nicotiana tabacum leaves. J Microbiol 51(3):289–294.
  • El-Naggar AH, El-Sheekh MM. 1998. Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid, calcium, glucose, and reduced glutathione. Environ Pollut 101(2):169–174.
  • Fernandez PM, Vinarta SC, Bernal AR, Cruz EL, Figueroa LIC. 2018. Bioremediation strategies for chromium removal: current research, scale-up approach, and future perspectives. Chemosphere 208:139–148.
  • He ZG, Gao FL, Sha T, Hu YH, He C. 2009. Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp strain CSCr-3 from chromium landfill. J Hazard Mater 163(2–3):869–873.
  • Huang YJ, Zeng Q, Hu L, Zhong H, He ZG. 2021. Bioreduction performances and mechanisms of Cr(VI) by Sporosarcina saromensis W5, a novel Cr(VI)-reducing facultative anaerobic bacteria. J Hazard Mater 413:125411.
  • Jin RF, Wang BB, Liu GF, Wang YQ, Zhou JT, Wang J. 2017. Bioreduction of Cr(VI) by Acinetobacter sp WB-1 during simultaneous nitrification/denitrification process. J Chem Technol Biot 92(3):639–646.
  • Joutey NT, Bahafid W, Sayel H, Ananou S, El Ghachtouli N. 2014. Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ Sci Pollut Res Int 21(4):3060–3072.
  • Kan Y, Niu XK, Rao MPN, Dong ZY, Xie YG, Kang YQ, Li WJ. 2020. Lysinibacillus cavernae sp. nov., isolated from cave soil. Arch Microbiol 202(6):1529–1534.
  • Labied R, Benturki O, Hamitouche AE, Donnot A. 2018. Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study. Adsorpt Sci Technol 36(3–4):1066–1099.
  • Li MK, He ZG, Hu YT, Hu L, Zhong H. 2019. Both cell envelope and cytoplasm were the locations for chromium(VI) reduction by Bacillus sp. M6. Bioresour Technol 273:130–135.
  • Li YH, Wang HM, Wu PX, Yu LF, Rehman S, Wang JF, Yang SS, Zhu NW. 2020. Bioreduction of hexavalent chromium on goethite in the presence of Pseudomonas aeruginosa. Environ Pollut 265(Pt B):114765.
  • Losi ME, Amrhein C, Frankenberger WT. 1994. Factors affecting chemical and biological reduction of hexavalent chromium in soil. Environ Toxicol Chem 13(11):1727–1735.
  • Luo Y, Ye B, Ye J, Pang J, Xu Q, Shi J, Long B, Shi J. 2020. Ca2+ and SO42- accelerate the reduction of Cr(VI) by Penicillium oxalicum SL2. J Hazard Mater 382:121072.
  • Ma Y, Zhong H, He ZG. 2019. Cr(VI) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr(VI)-reducing thermophile isolated from Tengchong geothermal region, China. Chem Eng J 371:524–534.
  • Mala JGS, Sujatha D, Rose C. 2015. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res 170:235–241.
  • Mangaiyarkarasi MSM, Vincent S, Janarthanan S, Rao TS, Tata BVR. 2011. Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci 18(2):157–167.
  • Mao LQ, Gao BY, Deng N, Zhai JP, Zhao YB, Li Q, Cui H. 2015. The role of temperature on Cr(VI) formation and reduction during heating of chromium-containing sludge in the presence of CaO. Chemosphere 138:197–204.
  • Mengke L, Yuting Z, Yuting H, Shuzhen L, Liang H, Hui Z, Zhiguo H. 2019. Exploration on the bioreduction mechanism of Cr(VI) by a gram-positive bacterium: Pseudochrobactrum saccharolyticum W1. Ecotox Environ Saf 184:109636.
  • Mishra S, Chen S, Saratale GD, Saratale RG, Romanholo Ferreira LF, Bilal M, Bharagava RN. 2021. Reduction of hexavalent chromium by Microbacterium paraoxydans isolated from tannery wastewater and characterization of its reduced products. J Water Process Eng 39:101748.
  • Murugavelh S, Mohanty K. 2013. Bioreduction of Cr(VI) using live and immobilized Phanerochaete chrysosporium. Desalin Water Treat 51(16–18):3482–3488.
  • Narayani M, Shetty KV. 2013. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Env Sci Tec 43(9):955–1009.
  • Narayani M, Shetty KV. 2014. Reduction of hexavalent chromium by a novel Ochrobactrum sp-microbial characteristics and reduction kinetics. J Basic Microbiol 54(4):296–305.
  • Okeke BC, Laymon J, Crenshaw S, Oji C. 2008. Environmental and kinetic parameters for Cr(VI) bioreduction by a bacterial monoculture purified from Cr(VI)-resistant consortium. Biol Trace Elem Res 123(1-3):229–241.
  • Opperman DJ, van Heerden E. 2008. A membrane-associated protein with Cr(VI)-reducing activity from Thermus scotoductus SA-01. FEMS Microbiol Lett 280(2):210–218.
  • Pan XH, Liu ZJ, Chen Z, Cheng YJ, Pan DM, Shao JN, Lin Z, Guan X. 2014. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Res 55:21–29.
  • Pei QH, Shahir S, Raj ASS, Zakaria ZA, Ahmad WA. 2009. Chromium(VI) resistance and removal by Acinetobacter haemolyticus. World J Microbiol Biotechnol 25(6):1085–1093.
  • Qamar M, Gondal MA, Yamani ZH. 2011. Synthesis of nanostructured NiO and its application in laser-induced photocatalytic reduction of Cr(VI) from water. J Mol Catal A-Chem 341(1–2):83–88.
  • Qiu TS, Yan HS, Li JF, Liu QS, Ai GH. 2018. Response surface method for optimization of leaching of a low-grade ionic rare earth ore. Powder Technol 330:330–338.
  • Qu MM, Chen JM, Huang QQ, Chen JL, Xu YB, Luo JS, Wang K, Gao WL, Zheng YY. 2018. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. Int Biodeter Biodegr 128:41–47.
  • Race M, Marotta R, Fabbricino M, Pirozzi F, Andreozzi R, Guida M, Siciliano A. 2019. Assessment of optimal conditions for the restoration and recovery of agricultural soil. J Hazard Mater 373:801–809.
  • Rahman A, Nahar N, Nawani NN, Jass J, Ghosh S, Olsson B, Mandal A. 2015. Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics. Genomics 106(6):384–392.
  • Sathishkumar K, Murugan K, Benelli G, Higuchi A, Rajasekar A. 2017. Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Ann Microbiol 67(1):91–98.
  • Sayel H, Bahafid W, Joutey NT, Derraz K, Benbrahim KF, Koraichi SI, El Ghachtouli N. 2012. Cr(VI) reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil. Ann Microbiol 62(3):1269–1277.
  • Shan B, Hao RX, Xu H, Li JN, Zhang JM, Li YH, Ye YB, Lu AH. 2023. Response of bacterial communities to heavy metal contamination in an abandoned chromate factory. Geomicrobiol J 40(5):462–472.
  • Shan B, Hao RX, Xu H, Zhang JM, Li JN, Li YH, Ye YB. 2022. Hexavalent chromium reduction and bioremediation potential of Fusarium proliferatum S4 isolated from chromium-contaminated soil. Environ Sci Pollut Res Int 29(52):78292–78302.
  • Shen H, Wang YT. 1994. Biological reduction of chromium by E. coli. J Environ Eng 120(3):560–572.
  • Shi JX, Zhang BG, Qiu R, Lai CY, Jiang YF, He C, Guo JH. 2019. Microbial chromate reduction coupled to anaerobic oxidation of elemental sulfur or zerovalent iron. Environ Sci Technol 53(6):3198–3207.
  • Singh V, Singh MP, Mishra V. 2020. Bioremediation of toxic metal ions from coal washery effluent. DWT 197:300–318.
  • Sultan S, Hasnain S. 2007. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour Technol 98(2):340–344.
  • Tan H, Wang C, Zeng GQ, Luo Y, Li H, Xu H. 2020. Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. J Hazard Mater 386:121628.
  • Thacker U, Parikh R, Shouche Y, Madamwar D. 2006. Hexavalent chromium reduction by Providencia sp. Process Biochem 41(6):1332–1337.
  • Tripathi M, Garg SK. 2013. Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: Spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activity. Process Biochem 48(3):496–509.
  • Troiano JM, Jordan DS, Hull CJ, Geiger FM. 2013. Interaction of Cr(III) and Cr(VI) with Hematite Studied by Second Harmonic Generation. J Phys Chem C 117(10):5164–5171.
  • Unceta N, Seby F, Malherbe J, Donard OFX. 2010. Chromium speciation in solid matrices and regulation: a review. Anal Bioanal Chem 397(3):1097–1111.
  • Xu H, Hao RX, Xu XY, Ding Y, Lu AH, Li YH. 2021. Removal of hexavalent chromium by Aspergillus niger through reduction and accumulation. Geomicrobiol J 38(1):20–28.
  • Xu K, Yuan ZM, Rayner S, Hu XM. 2015. Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 16(1):140.
  • Wani R, Kodam KM, Gawai KR, Dhakephalkar PK. 2007. Chromate reduction by Burkholderia cepacian MCMB-821, isolated from the pristine habitat of alkaline crater lake. Appl Microbiol Biotechnol 75(3):627–632.
  • Yuan YZ, Zhang YM, Liu T, Hu PC, Zheng QS. 2019. Optimization of microwave roasting-acid leaching process for vanadium extraction from shale via response surface methodology. J Clean Prod 234:494–502.
  • Zeng Q, Hu YT, Yang YR, Hu L, Zhong H, He ZG. 2019. Cell envelop is the key site for Cr(VI) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(VI) reducing bacterium. J Hazard Mater 368:149–155.
  • Zhao QF, Tong LL, Kamali AR, Sand W, Yang HY. 2020. Role of humic acid in bioleaching of copper from waste computer motherboards. Hydrometallurgy 197:105437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.