233
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Application of Microorganisms in Biotransformation and Bioremediation of Environmental Contaminant: A Review

, , , , , , , & show all
Pages 374-391 | Received 18 Apr 2023, Accepted 18 Aug 2023, Published online: 06 Oct 2023

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M. 2017. Application of microorganisms in bioremediation. In: Singh, SP, Upadhyay, SK, editors. Bioprospecting of Microorganism‐Based Industrial Molecules. Hoboken, NJ: John Wiley & Sons, Inc., p77–103.
  • Amaral-Zettler LA, Zettler ER, Mincer TJ. 2020. Ecology of the plastisphere. Nat Rev Microbiol 18(3):139–151.
  • Adenipekun CO, Lawal R. 2012. Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7(3):62–68. https://doi.org/10.5897/BMBR12.006.
  • Azubuike CC, Chikere CB, Okpokwasili GC. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180. https://doi.org/10.1007/s11274-016-2137-x.
  • Bal B, Das AP. 2020. Recovery of manganese from low grade ferromanganese ores using Bacillus safensis. In: Biological and Pharmaceutical Applications of Nanomaterials. Cham: Springer, p273–288.
  • Bal B, Armstrong PB, Das AP. 2016. Development of indigenous bio-sensing methodology for rapid and low cost endotoxin detection system. Sens Netw Data Commun. S1:005.
  • Bal B, Nayak S, Das AP. 2017. Recent advances in molecular techniques for the diagnosis of foodborne diseases. In: Oprea, AE, editor. Nanotechnology Applications in Food. Amsterdam: Elsevier.
  • Bhattacharjee J, Mishra S, Das AP. 2022. Recent advances in sensor-based detection of toxic dyes for bioremediation application: a review. Appl Biochem Biotechnol 194(10):4745–4764.
  • Biswal P, Ghosh S, Pal A, Das AP. 2022. Exploration of probiotic microbial biodiversity in acidic environments (curd) and their futuristic pharmaceutical applications. Geomicrobiol J 39(3–5):176–185.
  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. 2014. Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? J Hazard Mater 266:141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018.
  • Burgess JE, Parsons SA, Stuetz RM. 2001. Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19(1):35–63.
  • Cardenas E, Wu W-M, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, et al. 2008. Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microbiol 74(12):3718–3729. https://doi.org/10.1128/AEM.02308-07.
  • Cecchin I, Thomé A, Reginatto C, Colla L. 2014. Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J Environ Eng 140
  • Cerqueira VS, Peralba M, do CR, Camargo FAO, Bento FM. 2014. Comparison of bioremediation strategies for soil impacted with petrochemical oily sludge. Int Biodeterior Biodegrad 95:338–345. https://doi.org/10.1016/j.ibiod.2014.08.015.
  • Chen Y, Murrell JC. 2010. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18(4):157–163. https://doi.org/10.1016/j.tim.2010.02.002.
  • Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P. 2005. Metagenomic gene discovery: past, present and future. Trends Biotechnol 23(6):321–329. https://doi.org/10.1016/j.tibtech.2005.04.001.
  • Damodaran D, Suresh G, Mohan R. 2011. Bioremediation of Soil by Removing Heavy Metals Using Saccharomyces cerevisiae. 2nd International Conference on Environmental Science and Technology IPCBEE, 6, 22–27.
  • Daniel R. 2005. The metagenomics of soil. Nat Rev Microbiol 3(6):470–478. https://doi.org/10.1038/nrmicro1160.
  • Das A, Panda SK. 2022. Molecular tools for monitoring and validating bioremediation. In: Malik, JA, editor. Advances in Bioremediation and Phytoremediation for Sustainable Soil Management: Principles, Monitoring and Remediation. Cham: Springer International Publishing, p349–364. https://doi.org/10.1007/978-3-030-89984-4_22.
  • Das AP, Ghosh S, Mohanty S, Sukla, LB. 2015a. Consequences of manganese compounds: a review. Toxicol Environ Chem 96(7):981–997.
  • Das AP, Ghosh S, Mohanty S, Sukla LB. 2015b. Advances in manganese pollution and its bioremediation. In: Sukla, L, Pradhan, N, Panda, S, Mishra, B, editors. Environmental Microbial Biotechnology. Soil Biology. Singapore: Springer.
  • Das AP, Ghosh S, Mohanty S, Sukla LB. 2015c. Biometallurgy: greener technology for mineral recovery from wastes. Appl Ind Biotechnol.
  • Das AP, Bal B, Mahapatra PS. 2015a. Chromogenic biosensors for pathogen detection. In: Prokopovich, P, editor. Biological and Pharmaceutical Applications of Nanomaterials. Boca Raton, FL: CRC Press, p273–288.
  • Das AP, Bal B, Mahapatra PS. 2015b. Horseshoe crabs in modern day biotechnological applications. In: Carmichael, R, Botton, M, Shin, P, Cheung, S, editors. Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management. Cham: Springer.
  • Das AP. 2016. Biosensors: the future of diagnostics. Sens Netw Data Commun.
  • Das AP, Mishra S. 2008. Hexavalent chromium (VI): environment pollutant and health hazard. J Environ Res Dev 2(3):386–392.
  • Das AP, Mishra S. 2010. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain. J Carcinog 9(1):6.
  • Das AP, Singh S. 2011. Occupational health assessment of chromite toxicity among Indian miners. Indian J Occup Environ Med 15(1):6–13.
  • Das AP, Sukla LB, Pradhan N, Nayak S. 2011. Manganese biomining: a review. Bioresour Technol 102(16):7381–7387.
  • Dasgupta D, Ghosh R, Sengupta TK. 2013. Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol 2013:250749–250713. https://doi.org/10.5402/2013/250749.
  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, Martinez A, Sullivan MB, Edwards R, Brito BR, et al. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311(5760):496–503. https://doi.org/10.1126/science.1120250.
  • Dias RL, Ruberto L, Calabró A, Balbo AL, Del Panno MT, Mac Cormack WP. 2015. Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38(5):677–687. https://doi.org/10.1007/s00300-014-1630-7.
  • Edgington DN, Gordon SA, Thommes MM, Almodovar LR. 1968. The concentration of radium, thorium, and uranium by tropical algae. ANL-7615. ANL, 3–18.
  • Edwards SJ, Kjellerup BV. 2013. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97(23):9909–9921. https://doi.org/10.1007/s00253-013-5216-z.
  • Fomina M, Gadd GM. 2014. Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. https://doi.org/10.1016/j.biortech.2013.12.102.
  • Frascari D, Zanaroli G, Danko AS. 2015. In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399. https://doi.org/10.1016/j.jhazmat.2014.09.041.
  • French CE, Nicklin S, Bruce NC. 1998. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64(8):2864–2868. https://doi.org/10.1128/AEM.64.8.2864-2868.1998.
  • García Frutos FJ, Escolano O, García S, Babín M, Fernández MD. 2010. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183(1–3):806–813. https://doi.org/10.1016/j.jhazmat.2010.07.098.
  • Ghosh S, Mohanty S, Nayak S, Sukla L, Das AP. 2015. Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits. J Basic Microbiol 56(3):254–262.
  • Ghosh S, Das AP. 2015. Modified titanium oxide (TiO2) nanocomposites and its array of applications. A review. Toxicol Environ Chem 97(5):491–514.
  • Ghosh S, Mohanty S, Akcil A, Sukla LB, Das AP. 2016. A greener approach for resource recycling: manganese bioleaching. Chemosphere 154:628–639.
  • Ghosh S, Bal B, Das AP. 2018. Enhancing manganese recovery from low grade ores by using mixed culture of indigenously isolated bacterial strains. Geomicrobiol J 35(3):242–246.
  • Ghosh S, Das AP. 2017. Bioleaching of manganese from mining waste residues using Acinetobacter sp. Geol Ecol Landsc 1(2):77–83.
  • Ghosh S, Das AP. 2022. Role of microorganisms in extenuation of mining and industrial wastes. Geomicrobiology.
  • Ghosh S, Gandhi M, van Hullebusch ED, Das AP. 2021. Proteomic insights into Lysinibacillus sp. mediated biosolubilisation of manganese. Environ Sci Pollut Res 28(30):40249–40263.
  • Ghosh S, Das AP. 2018. Metagenomic insights into the microbial diversity in manganese-contaminated mine tailings and their role in biogeochemical cycling of manganese. Sci Rep 8(1):8257.
  • Gilbert JA, Dupont CL. 2011. Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 3(1):347–371. https://doi.org/10.1146/annurev-marine-120709-142811.
  • Gomez F, Sartaj M. 2014. Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegrad 89:103–109. https://doi.org/10.1016/j.ibiod.2014.01.010.
  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–9. https://doi.org/10.1016/s1074-5521(98)90108-9.
  • He Z, Van Nostrand JD, Deng Y, Zhou J. 2011. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Front Environ Sci Eng China 5(1):1–20. https://doi.org/10.1007/s11783-011-0301-y.
  • Hobson AM, Frederickson J, Dise NB. 2005. CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag 25(4):345–352. https://doi.org/10.1016/j.wasman.2005.02.015.
  • Höhener P, Ponsin V. 2014. In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7. https://doi.org/10.1016/j.copbio.2013.08.018.
  • Huertas MJ, Matilla MA. 2020. Training bacteria to produce environmentally friendly polymers of industrial and medical relevance. Microb Biotechnol 13(1):14–16. https://doi.org/10.1111/1751-7915.13470.
  • Isildak Ö, Turkekul I, Elmastas M, Tuzen M. 2004. Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem 86(4):547–552. https://doi.org/10.1016/j.foodchem.2003.09.007.
  • Jonsson CM, Paraiba LC, Mendoza MT, Sabater C, Carrasco JM. 2001. Bioconcentration of the insecticide pyridaphenthion by the green algae Chlorella saccharophila. Chemosphere 43(3):321–325. https://doi.org/10.1016/s0045-6535(00)00145-4.
  • Kao CM, Chen CY, Chen SC, Chien HY, Chen YL. 2008. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70(8):1492–1499. https://doi.org/10.1016/j.chemosphere.2007.08.029.
  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20.
  • Kosaric N. 2010. ChemInform abstract: biosurfactants. ChemInform 22(12):no–no. https://doi.org/10.1002/chin.199112362.
  • Kumar A, Bisht BS, Joshi VD, Dhewa T. 2011. Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093.
  • Kumar R, Goyal D. 2010. Waste water treatment and metal (Pb2+, Zn2+) removal by microalgal based stabilization pond system. Indian J Microbiol 50(Suppl 1):34–40. https://doi.org/10.1007/s12088-010-0063-4.
  • Lal S, Lal R, Saxena DM. 1987. Bioconcentration and metabolism of DDT, fenitrothion and chlorpyrifos by the blue-green algae Anabaena sp. and Aulosira fertilissima. Environ Pollut 46(3):187–196. https://doi.org/10.1016/0269-7491(87)90076-5.
  • Lam KN, Cheng J, Engel K, Neufeld JD, Charles TC. 2015. Current and future resources for functional metagenomics. Front Microbiol 6:1196. https://doi.org/10.3389/fmicb.2015.01196.
  • Lei AP, Wong YS, Tam NFY. 2002. Removal of pyrene by different microalgal species. Water Sci Technol 46(11–12):195–201.
  • Li C-H, Wong Y-S, Tam NF-Y. 2010. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry. Bioresour Technol 101(21):8083–8092. https://doi.org/10.1016/j.biortech.2010.06.005.
  • Liu W, Wang A, Cheng S, Logan BE, Yu H, Deng Y, Nostrand JD, Van Wu L, He Z, Zhou J, et al. 2010. Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes. Environ Sci Technol 44(19):7729–7735. https://doi.org/10.1021/es100608a.
  • Lovley DR. 2003. Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1(1):35–44. https://doi.org/10.1038/nrmicro731.
  • Luan TG, Jin J, Chan SMN, Wong YS, Tam NFY. 2006. Biosorption and biodegradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris beads in several treatment cycles. Process Biochem 41(7):1560–1565. https://doi.org/10.1016/j.procbio.2006.02.020.
  • Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF. 2018. Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132. https://doi.org/10.3389/fmicb.2018.01132.
  • Megharaj M, Venkateswarlu K, Rao AS. 1987. Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39(2):251–256. https://doi.org/10.1007/BF01689414.
  • Mei L, Xitao X, Renhao X, Zhili L. 2006. Effects of strontium-induced stress on marine microalgae Platymonas subcordiformis (Chlorophyta: Volvocales). Chin J Ocean Limnol 24(2):154–160. https://doi.org/10.1007/BF02842815.
  • Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN. 2022. Degradation of xenobiotic pollutants: an environmentally sustainable approach. Metabolites 12(9):818. https://doi.org/10.3390/metabo12090818.
  • Mishra S, Swain S, Sahoo M, Mishra S, Das AP. 2021. Microbial colonization and degradation of microplastics in aquatic ecosystem: a review. Geomicrobiol J :1–11.
  • Mishra S, Rout M, Das AP. 2021. Emerging microfiber pollution and its remediation. In: Microbial Biotechnology and Environmental Issues/Remediation. Singapore: Springer.
  • Mishra S, Dash D, Subhadarsini S. 2018. Antibacterial activity assessment of native fungus isolated from chromite mines of Sukinda, Odisha. Int J Sci Res 8:1628–1631.
  • Mishra S, Rath CC, Das AP. 2019. Marine microfiber pollution: a review on present status and future challenges. Mar Pollut Bull 140:188–197.
  • Mishra S, Rout PK, Das AP. 2019. Solar photovoltaic panels as next generation waste: a review. Biointerface Res Appl Chem 9(6):4539–4546.
  • Mishra S, Singh RP, Rath CC, Das AP. 2020. Synthetic microfibers: source, transport and their remediation. J Water Process Eng 38:101612.
  • Mishra S, Singh RP, Rout PK, Das AP. 2022. Membrane bioreactor (MBRa) as an advanced wastewater treatment technology for removal of synthetic microplastics. In: Development in Wastewater Treatment Research and Processes. Amsterdam: Elsevier. 02350–9
  • Mishra S, Dash DA, Tawaha ARMS, Das AP. 2022. A review on heavy metal ion adsorption on synthetic microfber surface in aquatic environments. Appl Biochem Biotechnol 194(10):4639–4654. https://doi.org/10.1007/s12010-022-04029-w.
  • Mishra S, Dash D, Das AP. 2022. Detection, characterization and possible biofragmentation of synthetic microfibers released from domestic laundering wastewater as an emerging source of marine pollution. Mar Pollut Bull 185(Pt A):114254.
  • Mishra S, Ghosh S, van Hullebusch ED, Singh S, Das AP. 2023. A critical review on the recovery of base and critical elements from electronic waste-contaminated streams using microbial biotechnology. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-023-04440-x.
  • Mohanty S, Ghosh S, Bal B, Das AP. 2018. A review of biotechnology processes applied for manganese recovery from wastes. Rev Environ Sci Biotechnol 17(4):791–811.
  • Mohanty S, Ghosh S, Nayak S, Das AP. 2016. Bioleaching of manganese by Aspergillus oryzae isolated from mining deposits. Chemosphere 172:302–309.
  • Mohanty S, Ghosh S, Nayak S, Das AP. 2017. Isolation, identification and screening of manganese solubilizing fungi from low grade manganese ore deposits. Geomicrobiol J 34(4):309–316.
  • Musah BI, Wan P, Xu Y, Liang C, Peng L. 2022. Contrastive analysis of nickel (II), iron (II), copper (II), and chromium (VI) removal using modified Chlorella vulgaris and Spirulina platensis: characterization and recovery studies. J Environ Chem Eng 10(5):108422. https://doi.org/10.1016/j.jece.2022.108422.
  • Mustafa YA, Abdul-Hameed HM, Razak ZA. 2015. Biodegradation of 2,4-dichlorophenoxyacetic acid contaminated soil in a roller slurry bioreactor. Clean Soil Air Water 43(8):1241–1247. https://doi.org/10.1002/clen.201400623.
  • Nadarajan M, Prasath CS. 2011. Biosorption of uranium and thorium by Marine micro algae. Indian J Geo-Mar Sci 40:121–124.
  • Narro ML, Cerniglia CE, Van Baalen C, Gibson DT. 1992. Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Environ Microbiol 58(4):1360–1363. https://doi.org/10.1128/aem.58.4.1360-1363.1992.
  • Nikolopoulou M, Pasadakis N, Norf H, Kalogerakis N. 2013. Enhanced ex situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Mar Pollut Bull 77(1–2):37–44. https://doi.org/10.1016/j.marpolbul.2013.10.038.
  • Niu G-L, Zhang J-J, Zhao S, Liu H, Boon N, Zhou N-Y. 2009. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ Pollut 157(3):763–771. https://doi.org/10.1016/j.envpol.2008.11.024.
  • Nocelli N, Bogino PC, Banchio E, Giordano W. 2016. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials 9(6):418. https://doi.org/10.3390/ma9060418.
  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. 2011. Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654. https://doi.org/10.3390/ijms12010633.
  • Pessoa-Filho M, Barreto CC, dos Reis Junior FB, Fragoso RR, Costa FS, de Carvalho Mendes I, de Andrade LRM. 2015. Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie Van Leeuwenhoek 107(4):935–949. https://doi.org/10.1007/s10482-015-0386-6.
  • Philp JC, Atlas RM. 2005. Bioremediation of contaminated soils and aquifers. In: Atlas, RM, Philip, J, editors. Bioremediation. Hoboken, NJ: John Wiley & Sons, Inc., p139–236. https://doi.org/10.1128/9781555817596.ch5.
  • Pokhrel D, Viraraghavan T. 2006. Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res 40(3):549–552. https://doi.org/10.1016/j.watres.2005.11.040.
  • Popova M, Martin C, Morgavi DP. 2010. Improved protocol for high-quality co-extraction of DNA and RNA from rumen digesta. Folia Microbiol 55(4):368–372. https://doi.org/10.1007/s12223-010-0060-3.
  • Rao MA, Scelza R, Scotti R, Gianfreda L. 2010. Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353.
  • Rayner JL, Snape I, Walworth JL, Harvey PM, Ferguson SH. 2007. Petroleum–hydrocarbon contamination and remediation by microbioventing at sub-Antarctic Macquarie Island. Cold Reg Sci Technol 48(2):139–153. https://doi.org/10.1016/j.coldregions.2006.11.001.
  • Riesenfeld CS, Schloss PD, Handelsman J. 2004. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38(1):525–552. https://doi.org/10.1146/annurev.genet.38.072902.091216.
  • Rujnić-Sokele M, Pilipović A. 2017. Challenges and opportunities of biodegradable plastics: a mini review. Waste Manage Res 35(2):132–140. https://doi.org/10.1177/0734242×16683272
  • Saharan B, Sahu R, Sharma D. 2011. A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol 29:1–39.
  • Sanscartier D, Zeeb B, Koch I, Reimer K. 2009. Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55(1):167–173. https://doi.org/10.1016/j.coldregions.2008.07.004.
  • Santos ALS, Dos Galdino ACM, Mello TPd, Ramos LdS, Branquinha MH, Bolognese AM, Columbano Neto J, Roudbary M. 2018. What are the advantages of living in a community? A microbial biofilm perspective! Mem Inst Oswaldo Cruz 113(9):e180212–e180212. https://doi.org/10.1590/0074-02760180212.
  • Sar P, Islam E. 2012. Metagenomic approaches in microbial bioremediation of metals and radionuclides. In: Satyanarayana, T, Johri BN, editors. Microorganisms in Environmental Management: Microbes and Environment. Amsterdam: Springer Netherlands, p525–546. https://doi.org/10.1007/978-94-007-2229-3_23.
  • Shiau BJ, Sabatini DA, Harwell JH. 1995. Properties of food grade (edible) surfactants affecting subsurface remediation of chlorinated solvents. Environ Sci Technol 29(12):2929–2935. https://doi.org/10.1021/es00012a007.
  • Siddhapura PK, Vanparia S, Purohit MK, Singh SP. 2010. Comparative studies on the extraction of metagenomic DNA from the saline habitats of Coastal Gujarat and Sambhar Lake, Rajasthan (India) in prospect of molecular diversity and search for novel biocatalysts. Int J Biol Macromol 47(3):375–379. https://doi.org/10.1016/j.ijbiomac.2010.06.004.
  • Silva-Castro GA, Uad I, Rodríguez-Calvo A, González-López J, Calvo C. 2015. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environ Res 137:49–58. https://doi.org/10.1016/j.envres.2014.11.009.
  • Singh N, Megharaj M, Gates WP, Churchman GJ, Anderson J, Kookana RS, Naidu R, Chen Z, Slade PG, Sethunathan N. 2003. Bioavailability of an organophosphorus pesticide, fenamiphos, sorbed on an organo clay. J Agric Food Chem 51(9):2653–2658. https://doi.org/10.1021/jf025978p.
  • Singh RP, Mishra S, Das AP. 2020. Synthetic microfibers: pollution toxicity and remediation. Chemosphere 257:127199. https://doi.org/10.1016/j.chemosphere.2020.127199.
  • Smets BF, Barkay T. 2005. Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat Rev Microbiol 3(9):675–678. https://doi.org/10.1038/nrmicro1253.
  • Srivastava S, Thakur IS. 2006. Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour Technol 97(10):1167–1173. https://doi.org/10.1016/j.biortech.2005.05.012.
  • Sui H, Li X. 2011. Modeling for volatilization and bioremediation of toluene-contaminated soil by bioventing. Chin J Chem Eng 19(2):340–348.
  • Sulaymon A. 2014. Biosorption of heavy metals: a review. J Chem Sci Technol 3:74–102.
  • Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, et al. 2013. Identification of 100 fundamental ecological questions. J Ecol 101(1):58–67. https://doi.org/10.1111/1365-2745.12025.
  • Thapa B, Kc A, Ghimire A. 1970. A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu Univ J Sci En Technol 8(1):164–170. https://doi.org/10.3126/kuset.v8i1.6056.
  • Thomas T, Gilbert J, Meyer F. 2012. Metagenomics - a guide from sampling to data analysis. Microb Informatics Exp 2(1):3. https://doi.org/10.1186/2042-5783-2-3.
  • Tripathi M, Singh D, Vikram S, Singh V, Kumar S. 2018. Metagenomic approach towards bioprospection of novel biomolecule(s) and environmental bioremediation. ARRB 22(2):1–12. https://doi.org/10.9734/ARRB/2018/38385.
  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The human microbiome project. Nature 449(7164):804–810. https://doi.org/10.1038/nature06244.
  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF. 2005. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71(10):6319–6324. https://doi.org/10.1128/AEM.71.10.6319-6324.2005.
  • Umar Mustapha M, Halimoon N. 2015. Microorganisms and biosorption of heavy metals in the environment: a review paper. J Microb Biochem Technol 07(05):253–256. https://doi.org/10.4172/1948-5948.1000219.
  • van der Wal A, Norde W, Zehnder AJB, Lyklema J. 1997. Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids Surf B 9(1–2):81–100.
  • Velásquez L, Dussan J. 2009. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167(1–3):713–716. https://doi.org/10.1016/j.jhazmat.2009.01.044.
  • Wang CL, Ozuna SC, Clark DS, Keasling JD. 2002. A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd tolerance and precipitation. Biotechnol Lett 24(8):637–641. https://doi.org/10.1023/A:1015043324584.
  • Weiner JA, DeLorenzo ME, Fulton MH. 2004. Relationship between uptake capacity and differential toxicity of the herbicide atrazine in selected microalgal species. Aquat Toxicol 68(2):121–128. https://doi.org/10.1016/j.aquatox.2004.03.004.
  • Wengel M, Kothe E, Schmidt CM, Heide K, Gleixner G. 2006. Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci Total Environ 367(1):383–393. https://doi.org/10.1016/j.scitotenv.2005.12.012.
  • Yan H, Pan G. 2004. Increase in biodegradation of dimethyl phthalate by Closterium lunula using inorganic carbon. Chemosphere 55(9):1281–1285. https://doi.org/10.1016/j.chemosphere.2003.12.019.
  • Yee N, Fein J. 2001. Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta 65(13):2037–2042. https://doi.org/10.1016/S0016-7037(01)00587-7.
  • Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, et al. 2007. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5(3):e16. https://doi.org/10.1371/journal.pbio.0050016.
  • Yoshikawa M, Zhang M, Toyota K. 2017. Integrated anaerobic-aerobic biodegradation of multiple contaminants including chlorinated ethylenes, benzene, toluene, and dichloromethane. Water Air Soil Pollut 228(1):25. https://doi.org/10.1007/s11270-016-3216-1.
  • Zangi-Kotler M, Ben-Dov E, Tiehm A, Kushmaro A. 2015. Microbial community structure and dynamics in a membrane bioreactor supplemented with the flame retardant dibromoneopentyl glycol. Environ Sci Pollut Res Int 22(22):17615–17624. https://doi.org/10.1007/s11356-015-4975-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.