34
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microbial Conversion of Sulfur-Containing Compounds Contributed the Natural Biodegradation of Bituminous Coals

ORCID Icon, , , &
Pages 231-242 | Received 31 Oct 2023, Accepted 09 Jan 2024, Published online: 22 Jan 2024

References

  • Akhtar N, Ghauri MA, Akhtar K, Parveen S, Farooq M, Ali A, Schierack P. 2019. Comparative analysis of draft genome sequence of Rhodococcus sp. Eu-32 with other rhodococcus species for its taxonomic status and sulfur metabolism potential. Curr Microbiol 76(10):1207–1214.
  • Akimbekov NS, Digel I, Tastambek KT, Marat AK, Turaliyeva MA, Kaiyrmanova GK. 2022. Biotechnology of microorganisms from coal environments: from environmental remediation to energy production. Biology (Basel) 11(9):1306.
  • Barreto MM, Ziegler M, Venn A, Tambutté E, Zoccola D, Tambutté S, Allemand D, Antony CP, Voolstra CR, Aranda M. 2021. Effects of ocean acidification on resident and active microbial communities of Stylophora pistillata. Front Microbiol 12:707674.
  • Baysal M, Yürüm A, Yıldız B, Yürüm Y. 2016. Structure of some western Anatolia coals investigated by FTIR, Raman, C-13 solid state NMR spectroscopy and X-ray diffraction. Int J Coal Geol 163:166–176.
  • Chen L, Li WG, Zhao Y, Zhang SM, Meng LQ. 2022. Evaluation of bacterial agent/nitrate coupling on enhancing sulfur conversion and bacterial community succession during aerobic composting. Bioresour Technol 362:127848.
  • Chou CL. 2012. Sulfur in coals: A review of geochemistry and origins. Int J Coal Geol 100:1–13.
  • Detman A, Bucha M, Simoneit BR, Mielecki D, Piwowarczyk C, Chojnacka A, Błaszczyk MK, Jędrysek MO, Marynowski L, Sikora A. 2018. Lignite biodegradation under conditions of acidic molasses fermentation. Int J Coal Geol 196:274–287.
  • Du WW, Parker W. 2013. Characterization of sulfur in raw and anaerobically digested municipal wastewater treatment sludges. Water Environ Res 85(2):124–132.
  • Fernandez-Gonzalez N, Sierra-Alvarez R, Field JA, Amils R, Sanz JL. 2019. Adaptation of granular sludge microbial communities to nitrate, sulfide, and/or p-cresol removal. Int Microbiol 22(3):305–316.
  • Fu L, Lai S, Zhou Z, Chen Z, Cheng L. 2023. Seasonal variation of microbial community and methane metabolism in coalbed water in the Erlian Basin, China. Front Microbiol 14:1114201.
  • Guo HG, Yu ZS, Zhang HX. 2015. Phylogenetic diversity of microbial communities associated with coalbed methane gas from Eastern Ordos Basin, China. Int J Coal Geol 150–151:120–126.
  • Hamidović S, Cvijović GG, Waisi H, Životić L, Šoja SJ, Raičević V, Lalević B. 2020. Response of microbial community composition in soils affected by coal mine exploitation. Environ Monit Assess 192(6):364.
  • Han DF, Hu ZY, Li DP, Tang R. 2022. Nitrogen removal of water and sediment in grass carp aquaculture ponds by mixed nitrifying and denitrifying bacteria and its effects on bacterial community. Water 14(12):1855.
  • Haritash AK, Kaushik CP. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15.
  • Holechek JL, Geli HME, Sawalhah MN, Valdez R. 2022. A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability 14(8):4792.
  • Hou J, Deng HK, Liu ZX, Xu P, Wang LJ. 2023. Sulfur metabolism in Rhodococcus species and their application in desulfurization of fossil fuels. J Appl Microbiol 134(3):1–9.
  • Keshav A, Murarka P, Srivastava P. 2022. Bending is required for activation of dsz operon by the TetR family protein (DszGR). Gene 810:146061.
  • Kharwar S, Bhattacharjee S, Chakraborty S, Mishra AK. 2021. Regulation of sulfur metabolism, homeostasis and adaptive responses to sulfur limitation in cyanobacteria. Biologia 76(10):2811–2835.
  • Kotelnikov VI, Saryglar CA, Chysyma RB. 2020. Microorganisms in coal desulfurization (review). Appl Biochem Microbiol 56(5):521–525.
  • Kropp KG, Fedorak PM. 1998. A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can J Microbiol 44(7):605–622.
  • Liamleam W, Annachhatre AP. 2007. Electron donors for biological sulfate reduction. Biotechnol Adv 25(5):452–463.
  • Li Y, Liu BJ, Chen J, Yue XL. 2022. Carbon-nitrogen-sulfur-related microbial taxa and genes maintained the stability of microbial communities in coals. ACS Omega 7(26):22671–22681.
  • Li Y, Liu BJ, Tu QY, Xue S, Liu XZ, Wu ZJ, An SK, Chen J, Wang ZG. 2022. The ecological roles of assembling genomes for Bacillales and Clostridiales in coal seams. FEMS Microbiol Lett 369(1):1–9.
  • Linder T. 2018. Assimilation of alternative sulfur sources in fungi. World J Microbiol Biotechnol. 34(4):51.
  • Li Y, Qin TQ, Feng FS, Zhang YY, Xue S. 2023. Nitrogen amendment enhances the biological methanogenic potential of bituminous coal. Fuel 351:128932.
  • Li Y, Zhang Y, Xue S, Liu B. 2023. Actinobacteria may influence biological methane generation in coal seams. Fuel 339:126917.
  • Ma Q, Kuzyakov Y, Pan W, Tang S, Chadwick DR, Wen Y, Hill PW, Macdonald A, Ge T, Si L, et al. 2021. Substrate control of sulphur utilisation and microbial stoichiometry in soil: results of C-13, N-15, C-14, and S-35 quad labelling. ISME J 15(11):3148–3158.
  • Martínez I, Mohamed ME-S, García JL, Díaz E. 2022. Enhancing biodesulfurization by engineering a synthetic dibenzothiophene mineralization pathway. Front Microbiol 13:987084.
  • Meng FR, Yu JL, Tahmasebi A, Han YN, Zhao H, Lucas J, Wall T. 2014. Characteristics of chars from low-temperature pyrolysis of lignite. Energy Fuels 28(1):275–284.
  • Mishra S, Pradhan N, Panda S, Akcil A. 2016. Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol 152:325–342.
  • Mohebali G, Ball AS, Rasekh B, Kaytash A. 2007. Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb Technol 40(4):578–584.
  • Patowary K, Patowary R, Kalita MC, Deka S. 2016. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front Microbiol 7:1092.
  • Ross DE, Lipus D, Gulliver D. 2022. Predominance of methanomicrobiales and diverse hydrocarbon-degrading taxa in the Appalachian coalbed biosphere revealed through metagenomics and genome-resolved metabolisms. Environ Microbiol 24(12):5984–5997.
  • Sass H, Wieringa E, Cypionka H, Babenzien HD, Overmann J. 1998. High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch Microbiol 170(4):243–251.
  • Schweitzer HD, Smith HJ, Barnhart EP, McKay LJ, Gerlach R, Cunningham AB, Malmstrom RR, Goudeau D, Fields MW. 2022. Subsurface hydrocarbon degradation strategies in low- and high-sulfate coal seam communities identified with activity-based metagenomics. NPJ Biofilms Microbiomes 8(1):7.
  • Shi W, Tang SH, Zhang SH. 2023. Microbiome of high-rank coal reservoirs in the high-production areas of the Southern Qinshui Basin. Microorganisms 11(2):497.
  • Sohrabi M, Kamyab H, Janalizadeh N, Huyop FZ. 2012. Bacterial desulfurization of organic sulfur compounds exist in fossil fuels. J Pure Appl Microbiol. 6(2):717–729.
  • Soleimani M, Bassi A, Margaritis A. 2007. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25(6):570–596.
  • Vick SHW, Gong S, Sestak S, Vergara TJ, Pinetown KL, Li ZS, Greenfield P, Tetu SG, Midgley DJ, Paulsen IT. 2019. Who eats what? Unravelling microbial conversion of coal to methane. FEMS Microbiol Ecol 95(7):fiz093.
  • Vick SHW, Greenfield P, Pinetown KL, Sherwood N, Gong S, Tetu SG, Midgley DJ, Paulsen IT. 2019. Succession patterns and physical niche partitioning in microbial communities from subsurface coal seams. iScience 12:152–167.
  • Wang YY, Bao Y, Hu YL. 2023. Recent progress in improving the yield of microbially enhanced coalbed methane production. Energy Rep 9:2810–2819.
  • Wang A, Shao P, Lan F, Jin H. 2018. Organic chemicals in coal available to microbes to produce biogenic coalbed methane: a review of current knowledge. J Nat Gas Sci Eng 60:40–48.
  • Wei Q, Hu BL, Fang HH, Chen S, Feng SB, Wu CC, Zheng CS. 2022. Composition, origin, and accumulation model of coalbed methane in the Panxie Coal Mining Area, Anhui Province, China. ACS Omega 7(21):17929–17940.
  • Wu B, Liu FF, Fang WW, Yang T, Chen GH, He ZL, Wang SQ. 2021. Microbial sulfur metabolism and environmental implications. Sci Total Environ 778:146085.
  • Xia DP, Gu PT, Chen ZH, Chen LY, Wei GQ, Wang ZZ, Cheng S, Zhang YW. 2023. Control mechanism of microbial degradation on the physical properties of a coal reservoir. Processes 11(5):1347.
  • Xia DP, Huang S, Gao ZX, Su XB. 2021. Effect of different inorganic iron compounds on the biological methanation of CO2 sequestered in coal seams. Renew Energy 164:948–955.
  • Young RF, Cheng SM, Fedorak PM. 2006. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites. Appl Environ Microbiol 72(1):491–496.
  • Zhang YM, Yu ZS, Zhang YM, Zhang HX. 2020. Regeneration of unconventional natural gas by methanogens co-existing with sulfate-reducing prokaryotes in deep shale wells in China. Sci Rep 10(1):16042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.