251
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Heavy Metals Clean Up: The Application of Fungi for Biosorption

, , , , &
Pages 201-212 | Received 27 Oct 2023, Accepted 17 Jan 2024, Published online: 30 Jan 2024

References

  • Acosta-Rodríguez I, Cárdenas-González JF, Rodríguez Pérez AS, Oviedo JT, Martínez-Juárez VM. 2018. Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorg Chem Appl. 2018:3457196–3457197.
  • Akgul A, Akgul A. 2018. Mycoremediation of copper: exploring the metal tolerance of brown rot fungi. BioRes. 13(3):7155–7171.
  • Akhtar K, Akhtar MW, Khalid AM. 2007. Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum. Water Res. 41(6):1366–1378.
  • Akhtar K, Khalid AM, Akhtar MW, Ghauri MA. 2009. Removal and recovery of uranium from aqueous solutions by Ca-Alginate immobilized Trichoderma harzianum. Bioresour Technol. 100(20):4551–4558.
  • Aksu Z, Balibek E. 2007. Chromium (VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater. 145(1-2):210–220.
  • Ali EH, Hashem M. 2007. Removal efficiency of the heavy metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at different pH values and temperature degrees. Mycobiology. 35(3):135–144.
  • Ali H, Khan E. 2018. Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—concepts and implications for wildlife and human health. Hum Ecol Risk Assess: An Int J. 25(6):1353–1376.
  • Al-Saraj M, Abdel-Latif MS, El-Nahal I, Baraka R. 1999. Bioaccumulation of some hazardous metals by sol gel entrapped microorganisms. J Non-Crystalline Solids. 248(2-3):137–140.
  • Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. 2020. Back to nucleus: combating with cadmium toxicity using nrf2 signaling pathway as a promising therapeutic target. Biol Trace Elem Res. 197(1):52–62.
  • Babu AG, Shim J, Bang KS, Shea PJ, Oh BT. 2014. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manage. 132:129–134.
  • Bahafid W, Joutey NT, Asri M, Sayel H, Tirry N, Ghachtouli NE. 2017. Yeast biomass: an alternative for bioremediation of heavy metals. In: Morata A, Loira I, editors. Yeast – Industrial Applications. London, UK: IntechOpen Limited, p269–289.
  • Bala JD, Kuta F, Nasiru A, Adedeji AS, Al-Gheethi AAS, Fashola OH. 2020. Biosorption potential of lead tolerant fungi isolated from refuse dumpsite soil in Nigeria. Acta Sci Biol Sci. 42:e46753.
  • Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 12:643972.
  • Bapat PM, Kundu S, Wangikar PP. 2003. An optimized method for Aspergillus niger spore production on natural carrier substrates. Biotechnol Prog. 19(6):1683–1688.
  • Barwick M, Maher W. 2003. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie estuary, N.S.W., Australia. Mar Environ Res. 56(4):471–502.
  • Baysal Z, Cinar E, Bulut Y, Alkan H, Dogru M. 2009. Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass. J Hazard Mater. 161(1):62–67.
  • Bello TS, Adebola MO, Asemoloye MD. 2021. Modified filters with Penicillium chrysogenum culture enhance removal of copper and iron contaminants in water. Environ Technol. 43(23):3591–3599.
  • Berg MAVD. 2011. Impact of the Penicillium chrysogenum genome on industrial production of metabolites. Appl Microbiol Biotechnol. 92(1):45–53.
  • Bernhoft RA. 2013. Cadmium toxicity and treatment. ScientificWorldJournal. 2013:394652–394657.
  • Beyersmann D, Hartwig A. 2008. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol. 82(8):493–512.
  • Bhainsa KC, D’Souza SF. 1999. Biosorption of uranium(VI) by Aspergillus fumigatus. Biotechnol. Tech. 13(10):695–699.
  • Bhattachayya S, Pal TK, Basumajumdar A, Banik AK. 2002. Biosorption of heavy metals by Rhizopus arrhizus and Aspergillus niger. J Indian Chem Soc. 79:747–750.
  • Bibi M, Hussain M. 2005. Effect of copper and lead on photosynthesis and plant pigments in black gram [Vigna mungo (L.) Hepper]. Bull Environ Contam Toxicol. 74(6):1126–1133.
  • Bjørklund G, Tippairote T, Rahaman MS, Aaseth J. 2020. Developmental toxicity of arsenic: a drift from the classical dose-response relationship. Arch Toxicol. 94(1):67–75.
  • Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC. 2016. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric. 96(1):32–48.
  • Brown HE, Esher SK, Alspaugh AJ. 2020. Chitin: a ‘hidden figure’ in the fungal cell wall. Curr Top Microbiol Immunol. 425:83–111.
  • Brunnert H, Zadražil F. 1983. The translocation of mercury and cadmium into the fruiting bodies of six higher fungi. Eur J Appl Microbiol Biotechnol. 17(6):358–364.
  • Cárdenas González JF, Pérez ASR, Morales JMV, Juárez VMM, Rodríguez IA, Cuello CM, Fonseca GG, Chávez MEE, Morales AM. 2019. Bioremoval of cobalt(II) from aqueous solution by three different and resistant fungal biomasses. Bioinorg Chem Appl. 2019:8757149–8757148.
  • Chen C, Hu J, Wang J. 2020. Biosorption of uranium by immobilized Saccharomyces cerevisiae. J Environ Radioact. 213:106158.
  • Chen R, Xu Y, Xu C, Shu Y, Ma S, Lu C, Mo X. 2019a. Associations between mercury exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in US adolescents. Environ Sci Pollut Res Int. 26(30):31384–31391.
  • Chen X, Wang Z, Zhu G, Nordberg GF, Jin T, Ding X. 2019b. The association between cumulative cadmium intake and osteoporosis and risk of fracture in a Chinese population. J Expo Sci Environ Epidemiol. 29(3):435–443.
  • Coelho E, Reis TA, Cotrim M, Mullan TK, Corrêa B. 2020a. Resistant fungi isolated from contaminated uranium mine in Brazil shows a high capacity to uptake uranium from water. Chemosphere. 248:126068.
  • Coelho E, Reis TA, Cotrim M, Rizzutto M, Corrêa B. 2020b. Bioremediation of water contaminated with uranium using Penicillium piscarium. Biotechnol Prog. 36(5):e30322.
  • Crini G, Badot PM. 2008. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci. 33(4):399–447.
  • Deng S, Ting YP. 2005. Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res. 39(10):2167–2177.
  • Deng Y, Wang M, Tian T, Lin S, Xu P, Zhou L, Dai C, Hao Q, Wu Y, Zhai Z, et al. 2019. The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort studies. Front Oncol. 9:24.
  • Dhankhar R, Hooda A. 2011. Fungal biosorption – an alternative to meet the challenges f heavy metal pollution in aqueous solutions. Environ Technol. 32(5-6):467–491.
  • Dong X, Ye B, Xiang H, Yao M. 2023. Kinetic and isotherm of competitive adsorption cadmium and lead onto Saccharomyces cerevisiae autoclaved cells. Environ Geochem Health. 45(7):4853–4865.
  • Duborská E, Szabó K, Bujdoš M, Vojtková H, Littera P, Dobročka E, Kim H, Urík M. 2020. Assessment of Aspergillus niger strain’s suitability for arsenate-contaminated water treatment and adsorbent recycling via bioextraction in a laboratory-scale experiment. Microorganisms. 8(11):1668.
  • Duffus JH. 2002. ‘Heavy metals’-a meaningless term? (IUPAC technical Report). Pure Appl Chem. 74(5):793–807.
  • Dulay RRM, De Castro MGE, Coloma NB, Bernardo AP, Cruz AGD, Tiniola RC, Kalaw SP, Reyes RG. 2015. Effects and myco-accumulation of lead (Pb) in five Pleurotus mushrooms. Int J Biol Pharm Allied Sci. 4(3):1664–1677.
  • Dursun AY. 2006. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of Copper(II) and Lead(II) ions onto pretreated Aspergillus niger. Biochem Eng J. 28(2):187–195.
  • Dusengemungu L, Gwanama C, Simuchimba G, Mubemba B. 2022. Potential of bioaugmentation of heavy metal contaminated soils in the Zambian Copperbelt using autochthonous filamentous fungi. Front Microbiol. 13:1045671.
  • Dusengemungu L, Kasali G, Gwanama C, Ouma KO. 2020. Recent advances in biosorption of copper and cobalt by filamentous fungi. Front Microbiol. 11:582016.
  • Eide DJ. 1998. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr. 18(1):441–469.
  • Falcó G, Llobet JM, Bocio A, Domingo JL. 2006. Daily intake of arsenic, cadmium, mercury, and lead by consumption of edible marine species. J Agric Food Chem. 54(16):6106–6112.
  • Fomina M, Gadd GM. 2014. Biosorption: current perspectives on concept, definition and application. Bioresour Technol. 160:3–14.
  • Fourest E, Canal C, Roux JC. 1994. Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation. FEMS Microbiol Rev. 14(4):325–332.
  • Gadd GM. 1994. Interactions of fungi with toxic metals. In: Powell KA, Renwick A, Peberdy JF, editors. The Genus Aspergillus. Federation of European Microbiological Societies Symposium Series, Vo.l 69. Boston, MA: Springer.
  • Gadd GM. 2009. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Tech Biotech. 84(1):13–28.
  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. 2019. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol. 10:2993.
  • Giaever G, Nislow C. 2014. The yeast deletion collection: a decade of functional genomics. Genet. 197(2):451–465.
  • Harris SD. 2019. Hyphal branching in filamentous fungi. Dev Biol. 451(1):35–39.
  • Howell CR. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87(1):4–10.
  • Isik Z, Arikan EB, Bouras HD, Dizge N. 2019. Bioactive ultrafiltration membrane manufactured from Aspergillus carbonarius M333 filamentous fungi for treatment of real textile wastewater. Bioresour Technol Rep. 5:212–219.
  • Iskandar NL, Zainudin NAIM, Tan SG. 2011. Tolerance and biosorption of copper (cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci (China). 23(5):824–830.
  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7(2):60–72.
  • Joo JH, Hussein KA, Hassan SHA. 2011. Biosorptive capacity of Cd(II) and Pb(II) by lyophilized cells of Pleurotus eryngii. Korean J Soil Sci Fert. 44(4):615–624.
  • Kanamarlapudi SLRK, Chintalpudi VK, Muddada S. 2018. Application of biosorption for removal of heavy metals from wastewater. Biosorption. 4:69–116.
  • Kapahi M, Sachdeva S. 2017. Mycoremediation potential of Pleurotus species for heavy metals: a review. Bioresour Bioprocess. 4(1):32.
  • Kapoor A, Viraraghavan T, Cullimore DR. 1999. Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol. 70(1):95–104.
  • Kapoor A, Viraraghavan T. 1995. Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol. 53(3):195–206.
  • Kordialik-Bogacka E. 2011. Studies on surface properties of yeast cells during heavy metal biosorption. Cent Eur J Chem. 9(2):348–351.
  • Latgé JP. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol. 66(2):279–290. x.
  • Li H, Fagerberg B, Sallsten G, Borné Y, Hedblad B, Engström G, Barregard L, Andersson EM. 2019. Smoking-induced risk of future cardiovascular disease is partly mediated by cadmium in tobacco: Malmö Diet and Cancer Cohort Study. Environ Health. 18(1):56.
  • Li P, Du B, Chan HM, Feng X. 2015. Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. Environ Res. 140:198–204.
  • Littera P, Urík M, Sevc J, Kolencík M, Gardosová K, Molnárová M. 2011. Removal of arsenic from aqueous environments by native and chemically modified biomass of Aspergillus niger and Neosartorya fischeri. Environ Technol. 32(11-12):1215–1222.
  • Long D, Wang Q, Han JR. 2017. Biosorption of copper (II) from aqueous solutions by sclerotiogenic Aspergillus oryzae G15. Water Environ Res. 89(8):703–713.
  • López EE, Vázquez C. 2003. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere. 50(1):137–143.
  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M. 2003. Removal of As (V) from wastewaters by chemically modified fungal biomass. Water Res. 37(18):4544–4552.
  • Luk CHJ, Yip J, Yuen CWM, Pang SK, Lam KH, Kan CW. 2017. Biosorption performance of encapsulated Candida krusei for the removal of copper(II). Sci Rep. 7(1):2159.
  • Luna JM, Rufino RD, Sarubbo LA. 2016. Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf. Environ. Prot. 102:558–566.
  • Lu N, Hu T, Zhai Y, Qin H, Aliyeva J, Zhang H. 2020. Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environ Res. 182:109061.
  • Malik A. 2004. Metal bioremediation through growing cells. Environ Int. 30(2):261–278.
  • Marques PA, Pinheiro HM, Teixeira JA, Rosa MF. 1999. Removal efficiency of Cu2+, Cd2+ and Pb2+ by waste brewery biomass: pH and cation association effects. Desalination. 124(1–3):137–144.
  • Massoud R, Khosravi-Darani K, Sharifan A, Asadi GH. 2019. Lead bioremoval from milk by Saccharomyces cerevisiae. Biocatal Agric Biotechnol. 22:101437.
  • Ma X, Cui W, Yang L, Yang Y, Chen H, Wang K. 2015. Efficient biosorption of lead(II) and cadmium(II) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Bioresour Technol. 185:70–78.
  • Mehri A. 2020. Trace elements in human nutrition (Ii) – an update. Int J Prev Med. 11:2.
  • Mersin G, Açıkel Ü. 2021. Production of Candida biomasses for heavy metal removal from wastewaters. Trak Univ J Nat. 22(1):67–76.
  • Michalak I, Chojnacka K, Witek-Krowiak A. 2013. State of the art for the biosorption process - a review. Appl Biochem Biotechnol. 170(6):1389–1416.
  • Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, Chowdhary P. 2019. Heavy metal contamination: an alarming threat to environment and human health. In: Sobti R, Arora N, Kothari R, editors. Environmental Biotechnology: For Sustainable Future. Singapore: Springer.
  • Modak JM, Natarajan K. 1995. Biosorption of metals using non living biomass—a review. Mining Metall Explor. 12(4):189–196.
  • Mohammadian E, Ahari AB, Arzanlou M, Oustan S, Khazaei SH. 2017. Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan province, Iran. Chemosphere. 185:290–296.
  • Morales-Barrera L, Cristiani-Urbina E. 2006. Removal of hexavalent chromium by Trichoderma viride in an airlift bioreactor. Enzyme Microb Technol. 40(1):107–113.
  • Mrvčić J, Stanzer D, Solić E, Stehlik-Tomas V. 2012. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J Microbiol Biotechnol. 28(9):2771–2782.
  • Naja G, Mustin C, Berthelin J, Volesky B. 2005. Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J Colloid Interface Sci. 292(2):537–543.
  • Nascimento JM, Oliveira JD, Rizzo ACL, Leite SGF. 2019. Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Biotechnol Rep (Amst). 21:e00315.
  • Naveena J, Latha L. 2012. Fungal cell walls as protective barriers for toxic metals. Adv Med Biol. 53(19):181–198.
  • Negi BB, Das C. 2023. Mycoremediation of wastewater, challenges, and current status: a review. Bioresour Technol Rep. 22:101409.
  • Niu H, Xu XS, Wang JH, Volesky B. 1993. Removal of lead from aqueous solutions by Penicillium Biomass. Biotechnol Bioeng. 42(6):785–787.
  • Nurchi VM, Djordjevic AB, Crisponi G, Alexander J, Bjørklund G, Aaseth J. 2020. Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules. 10(2):235.
  • Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS. 2018. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz J Microbiol. 49(1):29–37.
  • Oyetayo VO, Adebayo AO, Ibileye A. 2012. Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res. 2(2):293–297.
  • Özer A, Özer D. 2003. Comparative study of the biosorption of pb(ii), ni(ii) and cr(vi) ions onto s. cerevisiae: determination of biosorption heats. J Hazard Mater. 100(1-3):219–229.
  • Park D, Yun YS, Park JM. 2010. The past, present, and future trends of biosorption. Biotechnol Bioproc E. 15(1):86–102.
  • Paschal DC, Burt V, Caudill SP, Gunter EW, Pirkle JL, Sampson EJ, Miller DT, Jackson RJ. 2000. Exposure of the U.S. population aged 6 years and older to cadmium: 1988–1994. Arch Environ Contam Toxicol. 38(3):377–383.
  • Pavesi T, Moreira JC. 2020. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol. 40(9):1183–1197.
  • Perego P, Howell SB. 1997. Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharmacol. 147(2):312–318.
  • Podgorskiĭ V, Kasatkina T, Lozovaia O. 2003. Yeasts–biosorbents of heavy metals. Mikrobiolohichnyi Zh. 66(1):91–103.
  • Preetha B, Viruthagiri T. 2007. Application of response surface methodology for the biosorption of copper using Rhizopus arrhizus. J Hazard Mater. 143(1-2):506–510.
  • Purkayastha RP, Mitra AK, Bhattacharyya B. 1994. Uptake and toxicological effects of some heavy metals on Pleurotus sajor-caju (Fr.) Singer. Ecotoxicol Environ Saf. 27(1):7–13.
  • Qasem NAA, Mohammed RH, Lawal DH. 2021. Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water. 4(1):1–15.
  • Ram CB, Nelly G, Nevena L. 2012. Bioremediation of chromium ions with filamentous yeast Trichosporon cutaneum R57. J Biol Earth Sci. 2:70–75.
  • Ramya D, Kiruba JNM, Thatheyus AJ. 2021. Biosorption of heavy metals using fungal biosorbents – a review. In: Sharma VK, Shah MP, Parmar S, Kumar A, editors. Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-technology. USA: Academic Press.
  • Rapoport AI, Muter OA. 1995. Biosorption of hexavalent chromium by yeasts. Process Biochem. 30(2):145–149.
  • Rehman A, Anjum MS, Rehman A, Anjum MS. 2010. Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ Monit Assess. 174(1-4):585–595.
  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H. 2016. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater. 318:587–599.
  • Rodríguez IA, Cárdenas-González JF, Juárez VMM, Pérez AR, Zarate MGM, Castillo NCP. 2017. Biosorption of heavy metals by Candida albicans. In: Shiomi N, editor, Advances in Bioremediation and Phytoremediation, Vol. 3, p43–63. UK: IntechOpen.
  • Rossi AD, Rigon MR, Zaparoli M, Braido RD, Colla LM, Dotto GL, Piccin JS. 2018. Chromium (VI) biosoption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ Sci Pollut Res Int. 25(19):19179–19186.
  • Rubio C, González-Iglesias T, Revert C, Reguera JI, Gutiérrez AJ, Hardisson A. 2005. Lead dietary intake in a Spanish population (Canaryislands). J Agric Food Chem. 53(16):6543–6549.
  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC. 2010. Removing heavy metals from synthetic effluents using ‘Kamikaze’ Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol. 85(3):763–771.
  • Saad AM, Saad MM, Ibrahim NA, El-Hadedy D, Ibrahim EI, El-Din AZK, Hassan HM. 2019. Evaluation of Aspergillus tamarii NRC 3 biomass as a biosorbent for removal and recovery of heavy metals from contaminated aqueous solutions. Bull Natl Res Cent. 43(1):1–9.
  • Saǧ Y. 2001. Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Sep Purif Rev. 30(1):1–48.
  • Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, et al. 2013. Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosyst. 147(1):237–246.,.
  • Sharma R, Jasrotia T, Kumar R, Kumar R, Alothman AA, Al-Anazy MM, Alqahtani KN, Umar A. 2021. Multi-biological combined system: a mechanistic approach for removal of multiple heavy metals. Chemosphere. 276:130018.
  • Singh R, Chadetrik R, Kumar R, Bishnoi K, Bhatia D, Kumar A, Bishnoi NR, Singh N. 2010. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling. J Hazard Mater. 174(1–3):623–634.
  • Singleton I, Simmons P. 1996. Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae. J Chem Technol Biotechnol. 65(1):21–28.
  • Skowroński T, Pirszel J, Skowrońska BP. 2001. Heavy metal removal by the waste biomass of Penicillium chrysogenum. Water Qual Res J. 36(4):793–803.
  • Smith AH, Lingas EO, Rahman M. 2000. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ. 78(9):1093–1103.
  • Srivastava G, Kumar S, Dubey G, Mishra V, Prasad SM. 2012. Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisum sativum L. seedlings. Biol Trace Elem Res. 149(1):86–96.
  • Tan T, Cheng P. 2003. Biosorption of metal ions with Penicillium chrysogenum. Appl Biochem Biotechnol. 104(2):119–128.
  • Tchounwou PB, Wellington KA, Nanuli N, Dwayne S. 2003. Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol. 18(3):149–175.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. 2012. Heavy metals toxicity and the environment. In: Luch A, editor. Molecular, Clinical and Environmental Toxicology. Experientia Supplementum, Vol. 101. Basel: Springer.
  • Tobin JM, L’homme B, Roux JC. 1993. Immobilisation protocols and effects on Cadmium uptake by Rhizopus arrhizus Biosorbents. Biotechnol Tech. 7(10):739–744.
  • Tsekova K, Todorova D. 2002. Copper (II) accumulation and superoxide dismutase activity during growth of Aspergillus niger B-77. Z Naturforsch C J Biosci. 57(3-4):319–322.
  • Tunali S, Kiran I, Akar T. 2004. Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner Eng. 18(7):681–689.
  • Uddin MM, Zakeel MCM, Zavahir JS, Marikar FMMT, Jahan I. 2021. Heavy metal accumulation in rice and aquatic plants used as human food: a general review. Toxics. 9(12):360.
  • Uslu G, Dursun AY, Ekiz HI, Aksu Z. 2002. The effect of Cd (II), Pb (II) and Cu (II) ions on the growth and bioaccumulation properties of Rhizopus arrhizus. Process Biochem. 39(1):105–110.
  • Veglio F, Beolchini F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44(3):301–316.
  • Verma N, Sharma R. 2017. Bioremediation of toxic heavy metals: a patent review. Recent Pat Biotechnol. 11(3):171–187.
  • Vianna LNL, Andrade MC, Nicoli JR. 2000. Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption. World J Microbiol Biotechnol. 16(5):437–440.
  • Vijayaraghavan K, Yun YS. 2008. Bacterial biosorbents and biosorption. Biotechnol Adv. 26(3):266–291.
  • Volesky B, May H, Holan ZR. 1993. Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol Bioeng. 41(8):826–829.
  • Volesky B, May-Phillips HA. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 42(5):797–806.
  • Volesky B. 1994. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev. 14(4):291–302.
  • Volesky B. 2007. Biosorption and me. Water Res. 41(18):4017–4029.
  • Walker GM, White NA. 2017. Introduction to fungal physiology. In: Kavanagh K, editor. Fungi: Biology and Applications. USA: John Wiley & Sons, Inc.
  • Wang J, Chen C. 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv. 24(5):427–451.
  • Wang J, Chen C. 2009. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 27(2):195–226.
  • Wang S, Shi X. 2001. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem. 222(1–2):3–9.
  • Wösten HAB. 2019. Filamentous fungi for the production of enzymes, chemicals and materials. Curr Opin Biotechnol. 59:65–70.
  • Wu Y, Wen Y, Zhou J, Dai Q, Wu Y. 2012. The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic(III). Environ Sci Pollut Res Int. 19(8):3371–3379.
  • Yazdani M, Yap CK, Abdullah F, Tan SG. 2010. Trichoderma atroviride as a bioremediator of Cu pollution: an in vitro study. Toxicol Environ Chem. 91(7):1305–1314.
  • Yedjou CG, Moore P, Tchounwou PB. 2006. Dose- and time-dependent response of human leukemia (HL-60) cells to arsenic trioxide treatment. Int J Environ Res Public Health. 3(2):136–140.
  • Yin H, He B, Peng H, Ye J, Yang F, Zhang N. 2008. Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: study of cations release and biosorption mechanism. J Hazard Mater. 158(2–3):568–576.
  • Zhang D, Yin C, Abbas N, Mao Z, Zhang Y. 2020. Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Sci Rep. 10(1):6940.
  • Zhang J, Chen X, Zhou J, Luo X. 2020. Uranium biosorption mechanism model of protonated Saccharomyces cerevisiae. J Hazard Mater. 385:121588.
  • Zhang W, Miao A, Wang N, Li C, Sha J, Jia J, Alessi DS, Yan B, Ok YS. 2022. Arsenic bioaccumulation and biotransformation in aquatic organisms. Environ Int. 163:107221.
  • Zhao C, Liu J, Tu H, Li F, Li X, Yang J, Liao J, Yang Y, Liu N, Sun Q. 2016. Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus. Environ Sci Pollut Res Int. 23(24):24846–24856.
  • Zhen Y, Wang M, Gu Y, Yu X, Shahzad K, Xu J, Gong Y, Li P, Loor JJ. 2021. Biosorption of copper in swine manure using Aspergillus and yeast: characterization and its microbial diversity study. Front Microbiol. 12:687533.
  • Zlotnik H, Fernandez MP, Bowers B, Cabib E. 1984. Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol. 159(3):1018–1026.
  • Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. 2016. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol. 50(14):7290–7304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.