82
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Phosphorus recycling mediated by Pseudomonas aeruginosa from eutrophic biochar

, , , &
Pages 277-286 | Received 26 Apr 2023, Accepted 09 Feb 2024, Published online: 13 Mar 2024

References

  • Ahmad T, Aadil RM, Ahmed H, Rahman U u, Soares BCV, Souza SLQ, Pimentel TC, Scudino H, Guimarães JT, Esmerino EA, et al. 2019. Treatment and utilization of dairy industrial waste: a review. Trends Food Sci Technol. 88:361–372.
  • Alam K, Biswas DR, Bhattacharyya R, Das D, Suman A, Das TK, Paul RK, Ghosh A, Sarkar A, Kumar R, et al. 2022. Recycling of silicon-rich agro-wastes by their combined application with phosphate solubilizing microbe to solubilize the native soil phosphorus in a sub-tropical Alfisol. J Environ Manage. 318:115559.
  • Alori ET, Glick BR, Babalola OO. 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 8:971.
  • Anand K, Kumari B, Mallick MA. 2016. Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. Int J Pharm Sci. 8(2):37–40. http://creativecommons.org/licenses/by/4.0/.
  • Anantha PS, Deventhiran M, Saravanan P, Anand D, Rajarajan S. 2016. A comparative GC-MS analysis of bacterial secondary metabolites of Pseudomonas species. J Pharm Innov. 5(4):84. http://www.thepharmajournal.com.
  • Basílio F, Dias T, Santana MM, Melo J, Carvalho L, Correia P, Cruz C. 2022. Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: the example of bacteria-and fungi-based biofertilizers. Appl Soil Ecol. 178:104550.
  • Bhakthavatchalu S, Shivakumar S. 2018. The influence of Physicochemical parameters on phosphate solubilization and the biocontrol traits of Pseudomonas aeruginosa FP6 in phosphate-deficient conditions. JJBS. 11(2):215–221.
  • Boer MAD, Wolzak L, Slootweg JC. 2019. Phosphorus: reserves, production, and applications. Phosphorus recovery and recycling. Springer:p. 75–100. https://doi.org/10.1007/978-981-10-8031-9
  • Bolzonella D, Fatone F, Gottardo M, Frison N. 2018. Nutrients recovery from anaerobic digestate of agro-waste: techno-economic assessment of full scale applications. J Environ Manage. 216:111–119.
  • Chen Z, Ma S, Liu L. 2008. Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol. 99(14):6702–6707.
  • Demirbas A, Arin G. 2002. An overview of biomass pyrolysis. Energy Sources. 24(5):471–482.
  • Din M, Nelofer R, Salman M, Khan, F. H, Khan A, Ahmad M, Jalil F, Din J. U, Khan, M, Abdullah. 2019. Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnol Rep 22:e00323.
  • Dong-Ju K, Seung-Gun C, Sang-Hyup L, Jae-Woo C. 2012. Relation of microbial biomass to counting units for Pseudomonas aeruginosa. Afr J Microbiol Res. 6(21):4620–4622.
  • Faridian L, Baharlouei J, Fallah Nosratabad A, Kari Dolat Abad H. 2023. An exploratory research on the adoption of different phosphate-solubilizing fungi for production of phosphate biofertilizers. Geomicrobiol J. 40(5):493–500.
  • Fatima F, Ahmad MM, Verma SR, Pathak N. 2022. Relevance of phosphate solubilizing microbes in sustainable crop production: a review. Int J Environ Sci Technol. 19(9):9283–9296.
  • Gao Z, Wang C, Sun W, Gao Y, Kowalczuk PB. 2021. Froth flotation of fluorite: a review. Adv Colloid Interface Sci. 290:102382.
  • Guo S, Feng B, Xiao C, Wang Q, Zhou Y, Chi R. 2021. Effective solubilization of rock phosphate by a phosphate-tolerant bacterium Serratia sp. Geomicrobiol J. 38(7):561–569.
  • Hasan MM, Hasan MM, Teixeira da Silva JA, Li X. 2016. Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cell Mol Biol Lett. 21(1):7.
  • Henri F, Laurette N, Ghislain N, Vanessa T, Virginie T, Dieudonne N. 2014. Rock phosphate solubilisation by strains of Penicillium spp. isolated from farm and forest soils of three agro ecological zones of Cameroon. AJAF. 2(2):25–32.
  • Hernández I, Munné-Bosch S. 2015. Linking phosphorus availability with photo-oxidative stress in plants. J Exp Bot. 66(10):2889–2900.
  • Hultberg M, Bodin H. 2019. Fungi-based treatment of real brewery waste streams and its effects on water quality. Bioprocess Biosyst Eng. 42(8):1317–1324. https://link.springer.com/article/10<?sch-permit JATS-0034-007?>.1007/s00449-019-02130-9.
  • Jain R, Gupta A, Sharma A, Saxena JS, Naik SN, Kumar V. 2022. Impact assessment of varied agroclimatic conditions on phosphate solubilization potential of fungi in fermentation and soil-plant system. JSIR. 81(12):1267–1275.
  • Jama-Rodzeńska A, Białowiec A, Koziel JA, Sowiński J. 2021. Waste to phosphorus: a transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. J Environ Manage. 287:112235.
  • Jing Y, Zhang Y, Han I, Wang P, Mei Q, Huang Y. 2020. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Sci Rep. 10(1):8837.
  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci. 1(1):48–58.
  • Kim B. 2014. Devenir du phosphore dans les fltres plantés de roseaux: étude de sa rétention/libération et des facteurs d’infuence. [Doct Thesis National Institute of Applied Sciences of Lyon France]. 145. https://tel.archives-ouvertes.fr/tel-01149908/.
  • Kumar S, Gaind S. 2019. Fermentative production of soluble phosphorus fertilizer using paddy straw: an alternate to biomass burning. Int J Environ Sci Technol. 16(10):6077–6088.
  • Li WW, Yu HQ. 2014. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour Technol. 160:15–23.
  • Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC, Liao B, Shu WS, Li JT. 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. Isme J. 14(6):1600–1613. https://www.nature.com/articles/s41396-020-0632-4.
  • Linu MS, Asok AK, Thampi M, Sreekumar J, Jisha MS. 2019. Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from Chilli (Capsicum annuum L.) Rhizosphere. Commun Soil Sci Plant Anal. 50(4):444–457.
  • Linu MS, Sreekumar J, Asok AK, Jisha MS. 2018. Mineral phosphate solubilization by Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) fields. J Trop Agric. 55(2):134–144.
  • Maharana R, Basu A, Dhal NK, Adak T. 2021. Biosolubilization of rock phosphate by Pleurotus ostreatus with brewery sludge and its effect on the growth of maize (Zea mays L.). J Plant Nutr. 44(3):395–410.
  • Mayadunna N, Karunarathna SC, Asad S, Stephenson SL, Elgorban AM, Al-Rejaie S, Kumla J, Yapa N, Suwannarach N. 2023. Isolation of phosphate-solubilizing microorganisms and the formulation of biofertilizer for sustainable processing of phosphate rock. Life . 13(3):782.
  • Nagar ACNV. 2012. Isolation and characterization of phosphate solublizing bacteria from Anand agriculture soil. Life. 50:256. ISSN 2250–0480.
  • Nair A, Sarma SJ. 2021. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res. 251:126831.
  • Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 170(1):265–270.
  • Olivier CF. 2011. An investigation into the degradation of biochar and its interactions with plants and soil microbial community. [Doctoral dissertation]. Stellenbosch, Stellenbosch University). http://scholar.sun.ac.za/handle/10019.1/17944.
  • Paul D, Sinha SN. 2017. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Ann Agrar Sci. 15(1):130–136.
  • Qian T, Yang Q, Jun DCF, Dong F, Zhou Y. 2019. Transformation of phosphorus in sewage sludge biochar mediated by a phosphate-solubilizing microorganism. Chem Eng. 359:1573–1580.
  • Rafique M, Sultan T, Ortas I, Chaudhary HJ. 2017. Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. J Soil Sci Plant Nutr. 63(5):460–469.
  • Ramasahayam SK, Guzman L, Gunawan G, Viswanathan T. 2014. A comprehensive review of phosphorus removal technologies and processes. J Macromol Sci - Pure Appl Chem Part A. 51(6):538–545.
  • Ray A, Kumar M, Dhal NK, Hariprasad D. 2020. Prospective chemisorption of fluoride utilizing coastal molluscan (Crassostrea Sp.) shell from phosphatic fertilizer pond wastewater, Paradeep, Odisha. Indian J Chem Technol. 27(6):496–502.
  • Ray A, Kumar M, Karim AA, Biswas K, Mohanty S, Shadangi KP, Kumar S, Sarkar B. 2023. Potassium-phosphorus-sulphur augmented biochar production from potentially toxic elements abated gypsum pond wastewater of phosphate fertilizer industry. J Environ Chem Eng. 11(5):110404.
  • Reyes I, Valery A, Valduz Z. 2007. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. In First international meeting on microbial phosphate solubilization, Springer, Netherlands, p. 69–75.
  • Cha R, Kumar V, Singh J, Sharma N. 2020. Poultry manure and poultry waste management: a review. Int Jcurr Microbiol App Sci. 9(6):3483–3495.
  • Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 17(4–5):319–339. (99)00014-2.
  • Sankaralingam S, Eswaran S, Boomi B, Sundaram VM, http://www.aensiweb.com/…/673-680 Shankar T. 2014. Screening and growth characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa. Adv Environ Biol. 8(13):673–680.
  • Sarikhani MR, Aliasgharzad N, Khoshru B. 2020. P solubilizing potential of some plant growth promoting bacteria used as ingredient in phosphatic biofertilizers with emphasis on growth promotion of Zea mays L. Geomicrobiol J. 37(4):327–335.
  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphatesolubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus. 2(1):587–600.
  • Sikora LJ. 1998. Benefits and drawbacks to composting organic by-products. In: Beneficial co-utilization of agricultural, municipal and industrial by-products, Springer Dordrecht, p. 69–77. https://link.springer.com/chapter/10<?sch-permit JATS-0034-007?>.1007/978-94-011-5068-2_6.
  • Standard Methods For the examination of water and wastewater 4500-P-E. 1992. American Public Health Association (APHA), New York.
  • Stumm W, Morgan JJ. 2012. Aquatic chemistry: chemical equilibria and rates in natural waters. vol. 126, John Wiley & Sons.
  • Sun D, Hale L, Kar G, Soolanayakanahally R, Adl S. 2018. Phosphorus recovery and reuse by pyrolysis: applications for agriculture and environment. Chemosphere. 194:682–691.
  • Trabelsi D, Cherni A, Zineb AB, Dhane SF, Mhamdi R. 2017. Fertilization of phaseolus vulgaris with the Tunisian rock phosphate affects richness and structure of rhizosphere bacterial communities. Appl Soil Ecol. 114:1–8.
  • Tuszynska A, Czerwionka K, Obarska-Pempkowiak H. 2021. Phosphorus concentration and availability in raw organic waste and post fermentation products. J Environ Manage. 278(Pt 2):111468.
  • Vanotti MB, Szogi AA, Hunt PG. 2003. Extraction of soluble phosphorus from swine wastewater. ASABE. 46:1665.
  • Vassilev N, Mendes G, Costa M, Vassileva M. 2014. Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates. Geomicrobiol J. 31(9):751–763.
  • Vimal V, Karim AA, Kumar M, Ray A, Biswas K, Maurya S, Subudhi D, Dhal NK. 2022. Nutrients enriched biochar production through co-pyrolysis of poultry litter with banana peduncle and phosphogypsum waste. Chemosphere. 300:134512.
  • Xu G, Zhang Y, Shao H, Sun J. 2016. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31P NMR analysis. Sci Total Environ. 569–570:65–72.
  • Yang C, Lu L, Liao L, Zhang B, Zeng M, Zou K, Liu X, Zhang M. 2021. Establishment of GC–MS method for the determination of Pseudomonas aeruginosa biofilm and its application in metabolite enrichment analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 1179:122839.
  • Yuan Q, Oleszkiewicz JA. 2010. Biomass fermentation to augment biological phosphorus removal. Chemosphere. 78(1):29–34.
  • Zhan Y, Zhang Z, Ma T, Zhang X, Wang R, Liu Y, Sun B, Xu T, Ding G, Wei Y, et al. 2021. Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. Bioresour Technol. 337:125433.
  • Zhang T, Wu X, Shaheen SM, Rinklebe J, Bolan NS, Ali EF, Li G, Tsang DC. 2021. Effects of microorganism-mediated inoculants on humification processes and phosphorus dynamics during the aerobic composting of swine manure. J Hazard Mater. 416:125738.
  • Zúñiga-Silgado D, Rivera-Leyva JC, Coleman JJ, Sánchez-Reyez A, Valencia-Díaz S, Serrano M, de-Bashan LE, Folch-Mallol JL. 2020. Soil type affects organic acid production and phosphorus solubilization efficiency mediated by several native fungal strains from Mexico. Microorganisms. 8(9):1337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.