76
Views
0
CrossRef citations to date
0
Altmetric
Carbon Dioxide Capture

Efficient mesoporous cross-linkable hybrid poly Schiff-base based on polyimide as a promising molecular sieve for sustainable CO2 capturing and separation

, , &
Pages 866-877 | Received 07 Jul 2023, Accepted 09 Apr 2024, Published online: 22 Apr 2024

References

  • Buonomenna, M.; Yave, W.; Golemme, G. Some Approaches for High Performance Polymer Based Membranes for Gas Separation: Block Copolymers, Carbon Molecular Sieves and Mixed Matrix Membranes. RSC Adv. 2012, 2(29), 10745–10773. DOI: 10.1039/C2RA20748F.
  • Li, B.; Duan, Y.; Luebke, D.; Morreale, B. Advances in CO2 Capture Technology: A Patent Review. Appl. Energy. 2013, 102, 1439–1447. DOI: 10.1016/j.apenergy.2012.09.009.
  • Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO2 separation. J. Membr. Sci. 2010, 359(1–2), 115–125. DOI: 10.1016/j.memsci.2009.11.040.
  • Aaron, D.; Tsouris, C. Separation of CO2 from Flue Gas: A Review. Sep. Sci. Technol. 2005, 40(1–3), 321–348. DOI: 10.1081/SS-200042244.
  • Cheng, Y.; Guo, Y.; He, H.; Ding, W.; Diao, Y.; Huo, F. Mechanistic Understanding of CO2 Adsorption and Diffusion in the Imidazole Ionic Liquid–Hexafluoroisopropylidene Polyimide Composite Membrane. Ind. Eng. Chem. Res. 2021, 60(16), 6027–6037. DOI: 10.1021/acs.iecr.1c00567.
  • Li, Z.; Shi, K.; Zhai, L.; Wang, Z.; Wang, H.; Zhao, Y.; Wang, J. Constructing Multiple Sites of Metal-Organic Frameworks for Efficient Adsorption and Selective Separation of CO2. Purif. Technol. Sep 2023, 307, 122725. DOI: 10.1016/j.seppur.2022.122725.
  • Alcheikhhamdon, Y.; Hoorfar, M. Natural Gas Purification from Acid Gases Using Membranes: A Review of the History, Features, Techno-Commercial Challenges, and Process Intensification of Commercial Membranes. Chem. Eng. Process. 2017, 120, 105–113. DOI: 10.1016/j.cep.2017.07.009.
  • Alqaheem, Y.; Alomair, A.; Vinoba, M.; Pérez, A. Polymeric Gas-Separation Membranes for Petroleum Refining. Int. J. Polym. Sci. 2017, 2017, 1–19. DOI: 10.1155/2017/4250927.
  • Bernardo, P.; Drioli, E. Membrane Gas Separation Progresses for Process Intensification Strategy in the Petrochemical Industry. Pet. Chem. 2010, 50, 271–282. DOI: 10.1134/S0965544110040043.
  • Sang, Y.; Cao, Y.; Wang, L.; Yan, W.; Chen, T.; Huang, J.; Liu, Y.-N. N-Rich Porous Organic Polymers Based on Schiff Base Reaction for CO2 Capture and Mercury (II) Adsorption. J. Colloid. Interface. Sci. 2021, 587, 121–130. DOI: 10.1016/j.jcis.2020.12.002.
  • Li, R.; Yang, Y.; Zhang, Z.; Lian, S.; Song, C. Imine-Linked Polymer Derived N-Doped Microporous Carbons in PEO-Based Mixed Matrix Membranes for Enhanced CO2/N2 Separation: A Comparative Study. J. Membr. Sci. 2024, 690, 122203. DOI: 10.1016/j.memsci.2023.122203.
  • Liu, F.-Q.; Wang, L.-L.; Li, G.-H.; Li, W.; Li, C.-Q. Hierarchically Structured Graphene Coupled Microporous Organic Polymers for Superior CO2 Capture. ACS Appl. 2017, 9(39), 33997–34004. DOI: 10.1021/acsami.7b11492.
  • Zhu, J.; Yuan, S.; Wang, J.; Zhang, Y.; Tian, M.; Van der Bruggen, B. Microporous Organic Polymer-Based Membranes for Ultrafast Molecular Separations. Prog. Polym. Sci. 2020, 110, 101308. DOI: 10.1016/j.progpolymsci.2020.101308.
  • Xu, C.; Bacsik, Z.; Hedin, N. Adsorption of CO2 on a Micro-/mesoporous Polyimine Modified with Tris (2-Aminoethyl) Amine. J. Mater. Chem. 2015, 3(31), 16229–16234. DOI: 10.1039/C5TA01321F.
  • Zagho, M. M.; Hassan, M. K.; Khraisheh, M.; Al-Maadeed, M. A. A.; Nazarenko, S. A Review on Recent Advances in CO2 Separation Using Zeolite and Zeolite-Like Materials As Adsorbents and Fillers in Mixed Matrix Membranes (Mmms). Chem. Eng. J. Adv. 2021, 6, 100091. DOI: 10.1016/j.ceja.2021.100091.
  • Ma, Y.; Jue, M. L.; Zhang, F.; Mathias, R.; Jang, H. Y.; Lively, R. P. Creation of Well‐Defined “Mid‐sized” Micropores in Carbon Molecular Sieve Membranes. Angew. Chem. Int. Ed. 2019, 58, 13259–13265. DOI: 10.1002/anie.201903105.
  • Salinas, O.; Ma, X.; Litwiller, E.; Pinnau, I. High-Performance Carbon Molecular Sieve Membranes for Ethylene/Ethane Separation Derived from an Intrinsically Microporous Polyimide. J. Membr. Sci. 2016, 500, 115–123. DOI: 10.1016/j.memsci.2015.11.013.
  • Ma, X.; Swaidan, R.; Teng, B.; Tan, H.; Salinas, O.; Litwiller, E.; Han, Y.; Pinnau, I. Carbon Molecular Sieve Gas Separation Membranes Based on an Intrinsically Microporous Polyimide Precursor. Carbon. 2013, 62, 88–96. DOI: 10.1016/j.carbon.2013.05.057.
  • Abdulhamid, M. A. Tröger’s Base-Derived Dianhydride As a Promising Contorted Building Block for Polyimide-Based Membranes for Gas Separation. Sep. Purif. Technol. 2023, 310, 123208. DOI: 10.1016/j.seppur.2023.123208.
  • Kim, K. J.; Chae, Y.; An, S. J.; Jo, J. H.; Park, S.; Chi, W. S. Microphase-Separated Morphology Controlled Polyimide Graft Copolymer Membranes for CO2 Separation. Sep. Purif. Technol. 2023, 304, 122315. DOI: 10.1016/j.seppur.2022.122315.
  • Tan, L.; Tan, B. Hypercrosslinked Porous Polymer Materials: Design, Synthesis, and Applications. Chem. Soc. Rev. 2017, 46, 3322–3356. DOI: 10.1039/C6CS00851H.
  • Sang, Y.; Chen, G.; Huang, J. Oxygen-Rich Porous Carbons from Carbonyl Modified Hyper-Cross-Linked Polymers for Efficient CO2 Capture. J. Polym. Res. 2020, 27(2), 1–8. DOI: 10.1007/s10965-020-2009-9.
  • Wang, Z.; Wang, D.; Jin, J. Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation. Macromolecules. 2014, 47, 7477–7483. DOI: 10.1021/ma5017506.
  • Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced Polyimide Materials: Syntheses, Physical Properties and Applications. Prog. Polym. Sci. 2012, 37(7), 907–974. DOI: 10.1016/j.progpolymsci.2012.02.005.
  • Hu, H.; Wang, L.; Wang, L.; Li, L.; Feng, S. Imine-Functionalized Polysiloxanes for Supramolecular Elastomers with Tunable Mechanical Properties. Polym. Chem. 2020, 11, 7721–7728. DOI: 10.1039/D0PY01253J.
  • Dou, H.; Xu, M.; Wang, B.; Zhang, Z.; Wen, G.; Zheng, Y.; Luo, D.; Zhao, L.; Yu, A.; Zhang, L. Microporous Framework Membranes for Precise Molecule/Ion Separations. Chem. Soc. Rev. 2021, 50(2), 986–1029. DOI: 10.1039/D0CS00552E.
  • Bei, P.; Liu, H.; Zhang, Y.; Gao, Y.; Cai, Z.; Chen, Y. Preparation and Characterization of Polyimide Membranes Modified by a Task-Specific Ionic Liquid Based on Schiff Base for CO2/N2 Separation. Environ. Sci. Pollut. Res. 2021, 28, 738–753. DOI: 10.1007/s11356-020-10533-5.
  • Zhang, B.; Yan, J.; Li, G.; Wang, Z. Cost-Effective Preparation of Microporous Polymers from Formamide Derivatives and Adsorption of CO2 Under Dry and Humid Conditions. Polym. Chem. 2019, 10, 3371–3379. DOI: 10.1039/C9PY00465C.
  • Liu, J.; Qi, N.; Zhou, B.; Chen, Z. Exceptionally High CO2 Capture in an Amorphous Polymer with Ultramicropores Studied by Positron Annihilation. ACS Appl. 2019, 11(34), 30747–30755. DOI: 10.1021/acsami.9b07015.
  • Yeganeh-Salman, E.; Alinezhad, H.; Amiri, A.; Maleki, B. Poly Schiff-Base Based on Polyimides Functionalized with Magnetic Nanoparticles As Novel Sorbent for Magnetic Solid-Phase Extraction of Non-Steroidal Anti-Inflammatory Drugs in Environmental Water Samples. Microchem. J. 2022, 183, 108000. DOI: 10.1016/j.microc.2022.108000.
  • Tong, X.; Wang, S.; Dai, J.; Wang, S.; Zhao, X.; Wang, D.; Chen, C. Synthesis and Gas Separation Properties of Aromatic Polyimides Containing Noncoplanar Rigid Sites. ACS Appl. Polym. Mater. 2022, 4, 6265–6275. DOI: 10.1021/acsapm.2c01080.
  • Vanherck, K.; Koeckelberghs, G.; Vankelecom, I. F. Crosslinking Polyimides for Membrane Applications: A Review. Prog. Polym. Sci. 2013, 38(6), 874–896. DOI: 10.1016/j.progpolymsci.2012.11.001.
  • Jeong, K.; Kim, J.-J.; Yoon, T.-H. Synthesis and Characterization of Novel Polyimides Containing Fluorine and Phosphine Oxide Moieties. Polymer. 2001, 42, 6019–6030. DOI: 10.1016/S0032-3861(01)00012-X.
  • Sanaeepur, H.; Amooghin, A. E.; Bandehali, S.; Moghadassi, A.; Matsuura, T.; Van der Bruggen, B. Polyimides in Membrane Gas Separation: Monomer’s Molecular Design and Structural Engineering. Prog. Polym. Sci. 2019, 91, 80–125. DOI: 10.1016/j.progpolymsci.2019.02.001.
  • De Leon, A. C.; Chen, Q.; Palaganas, N. B.; Palaganas, J. O.; Manapat, J.; Advincula, R. C. High Performance Polymer Nanocomposites for Additive Manufacturing Applications. React. Funct. Polym. 2016, 103, 141–155. DOI: 10.1016/j.reactfunctpolym.2016.04.010.
  • Wang, Z.; Isfahani, A. P.; Wakimoto, K.; Shrestha, B. B.; Yamaguchi, D.; Ghalei, B.; Sivaniah, E. Tuning the Gas Selectivity of Tröger’s Base Polyimide Membranes by Using Carboxylic Acid and Tertiary Base Interactions. ChemSuschem. 2018, 11(16), 2744–2751. DOI: 10.1002/cssc.201801002.
  • Yang, Y.; Chuah, C. Y.; Bae, T.-H. Polyamine-Appended Porous Organic Copolymers with Controlled Structural Properties for Enhanced CO2 Capture. ACS Sustainable Chem. Eng. 2021, 9(5), 2017–2026. 2017-2026. DOI: 10.1021/acssuschemeng.0c06280.
  • Wang, L.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Fletcher, P. J.; Lednitzky, D.; Marken, F. Hydrogen Peroxide versus Hydrogen Generation at Bipolar Pd/Au Nano-Catalysts Grown into an Intrinsically Microporous Polyamine (PIM-EA-TB). Electrocatalysis. 2021, 12, 771–784. DOI: 10.1007/s12678-021-00692-5.
  • Sanyal, O.; Zhang, C.; Wenz, G. B.; Fu, S.; Bhuwania, N.; Xu, L.; Rungta, M.; Koros, W. J. Next Generation Membranes-Using Tailored Carbon. Carbon. 2018, 127, 688–698. DOI: 10.1016/j.carbon.2017.11.031.
  • Wang, Z.; Ren, H.; Zhang, S.; Zhang, F.; Jin, J. Carbon Molecular Sieve Membranes Derived from Tröger’s Base-Based Microporous Polyimide for Gas Separation. ChemSuschem. 2018, 11(5), 916–923. DOI: 10.1002/cssc.201702243.
  • Zhuang, Y.; Seong, J. G.; Do, Y. S.; Jo, H. J.; Cui, Z.; Lee, J.; Lee, Y. M.; Guiver, M. D. Intrinsically Microporous Soluble Polyimides Incorporating Tröger’s Base for Membrane Gas Separation. Macromolecules. 2014, 47, 3254–3262. DOI: 10.1021/ma5007073.
  • Zhang, C.; Cao, B.; Li, P. Thermal Oxidative Crosslinking of Phenolphthalein-Based Cardo Polyimides with Enhanced Gas Permeability and Selectivity. J. Membr. Sci. 2018, 546, 90–99. DOI: 10.1016/j.memsci.2017.10.015.
  • Tian, Z.; Cao, B.; Li, P. Effects of sub-Tg Cross-Linking of Triptycene-Based Polyimides on Gas Permeation, Plasticization Resistance and Physical Aging Properties. J. Membr. Sci. 2018, 560, 87–96. DOI: 10.1016/j.memsci.2018.05.018.
  • Zhang, C.; Li, P.; Cao, B. Decarboxylation Crosslinking of Polyimides with High CO2/CH4 Separation Performance and Plasticization Resistance. J. Membr. Sci. 2017, 528, 206–216. DOI: 10.1016/j.memsci.2017.01.008.
  • Dang, Q.-Q.; Wang, X.-M.; Zhan, Y.-F.; Zhang, X.-M. An Azo-Linked Porous Triptycene Network As an Absorbent for CO2 and Iodine Uptake. Polym. Chem. 2016, 7, 643–647. DOI: 10.1039/C5PY01671A.
  • Liu, D.; Tian, C.; Shan, M.; Zhu, J.; Zhang, Y. Interface Synthesis of Flexible Benzimidazole-Linked Polymer Molecular-Sieving Membranes with Superior Antimicrobial Activity. J. Membr. Sci. 2022, 648, 120344. DOI: 10.1016/j.memsci.2022.120344.
  • Wang, L.; Dong, B.; Ge, R.; Jiang, F.; Xiong, J.; Gao, Y.; Xu, J. A Thiadiazole-Functionalized Covalent Organic Framework for Efficient CO2 Capture and Separation. Micropor. Mesopor. Mat. 2016, 224, 95–99. DOI: 10.1016/j.micromeso.2015.11.030.
  • Ahmad, J.; Rehman, W. U.; Deshmukh, K.; Basha, S. K.; Ahamed, B.; Chidambaram, K. Recent Advances in Poly (Amide-B-Ethylene) Based Membranes for Carbon Dioxide (CO2) Capture: A Review. Polym-Plast. Tech. Mat. 2019, 58(4), 366–383. DOI: 10.1080/03602559.2018.1482921.
  • Xie, S.; Wang, Q.; Yan, J.; Sun, H.; Li, D.; Qian, Y.; Wang, Z.; Han, F.; Guo, S. Facile Preparation of Triphenylamine-Based Nanoporous Organic Polymers for Adsorption/Separation of C1–C3 Hydrocarbons and CO2 in Natural Gas. ACS Appl. Polym. Mater. 2022, 4, 5449–5456. DOI: 10.1021/acsapm.2c00529.
  • Akbarzadeh, E.; Shockravi, A.; Vatanpour, V. High Performance Compatible Thiazole-Based Polymeric Blend Cellulose Acetate Membrane As Selective CO2 Absorbent and Molecular Sieve. Carbohydr. Polym. 2021, 252, 117215. DOI: 10.1016/j.carbpol.2020.117215.
  • Akbarzadeh, E.; Shockravi, A.; Vatanpour, V. Efficient Thiazole-Based Polyimines As Selective and Reversible Chemical Absorbents for CO2 Capture and Separation: Synthesis, Characterization and Application. Polymer. 2019, 182, 121840. DOI: 10.1016/j.polymer.2019.121840.
  • Song, P.; Wang, H. High‐Performance Polymeric Materials Through Hydrogen‐Bond Cross‐Linking. Adv. Mater. 2020, 32(18), 1901244. DOI: 10.1002/adma.201901244.
  • Qiu, W.; Chen, C.-C.; Xu, L.; Cui, L.; Paul, D. R.; Koros, W. J. Sub-T G Cross-Linking of a Polyimide Membrane for Enhanced CO2 Plasticization Resistance for Natural Gas Separation. Macromolecules. 2011, 44, 6046–6056. DOI: 10.1021/ma201033j.
  • Zoltán, B.; Ahlsten, N.; Ziadi, A.; Zhao, G.; Garcia-Bennett, A. E.; Martín-Matute, B.; Hedin, N. Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with N-Propylamine. Langmuir. 2011, 17(17), 11118–11128. DOI: 10.1021/la202033p.
  • Yaseen, A. A.; Yousif, E.; Al‐Tikrity, E. T.; Kadhom, M.; Yusop, M. R.; Ahmed, D. S. Environmental Performance of Alternative Schiff Bases Synthesis Routes: A Proposal for CO2 Storages. Pollut. 2022, 8, 239–248. DOI: 10.22059/poll.2021.328835.1161.
  • Shi, K.; Yao, H.; Zhang, S.; Wei, Y.; Xu, W.; Song, N.; Zhu, S.; Tian, Y.; Zou, Y.; Guan, S. Porous Structure, Carbon Dioxide Capture, and Separation in Cross-Linked Porphyrin-Based Polyimides Networks. Ind. Eng. Chem. Res. 2019, 58(31), 14146–14153. DOI: 10.1021/acs.iecr.9b02589.
  • Dautzenberg, E.; Li, G.; de Smet, L. C. Aromatic Amine-Functionalized Covalent Organic Frameworks (COFs) for CO2/N2 Separation. ACS Appl. 2023, 15(4), 5118–5127. DOI: 10.1021/acsami.2c17672.
  • Yao, C.; Li, G.; Wang, J.; Xu, Y.; Chang, L. Template-Free Synthesis of Porous Carbon from Triazine Based Polymers and Their Use in Iodine Adsorption and CO2 Capture. Sci. Rep. 2018, 8, 1867. DOI: 10.1038/s41598-018-20003-1.
  • Liebl, M. R.; Senker, J. Microporous Functionalized Triazine-Based Polyimides with High CO2 Capture Capacity. Chem. Mater. 2013, 25(6), 970–980. DOI: 10.1021/cm4000894.
  • Qiao, Y.; Zhan, Z.; Yang, Y.; Liu, M.; Huang, Q.; Tan, B.; Ke, X.; Wu, C. Amine or Azo Functionalized Hypercrosslinked Polymers for Highly Efficient CO2 Capture and Selective CO2 Capture, Mater. Today Commun. 2021, 27, 102338. DOI: 10.1016/j.mtcomm.2021.102338.
  • Jingzhi, L.; Zhang, J. Facile Synthesis of Azo-Linked Porous Organic Frameworks via Reductive Homocoupling for Selective CO2 Capture. J. Mater. Chem. A. 2014, 2(34), 13831–13834. DOI: 10.1039/C4TA03015J.
  • Huang, J.; Zhu, J.; Snyder, S. A.; Morris, A. J.; Turner, S. R. Nanoporous Highly Crosslinked Polymer Networks with Covalently Bonded Amines for CO2 Capture. Polymer. 2018, 154, 55–61. DOI: 10.1016/j.polymer.2018.08.075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.