81
Views
0
CrossRef citations to date
0
Altmetric
Adsorption

Efficient phosphate adsorption in aqueous solution using nano-zirconia impregnated spent coffee grounds and preliminary application as a slow-release fertilizer

, &
Pages 773-789 | Received 22 Jan 2024, Accepted 09 Apr 2024, Published online: 21 Apr 2024

References

  • Wurtsbaugh, W. A.; Paerl, H. W.; Dodds, W. K. Nutrients, Eutrophication and Harmful Algal Blooms Along the Freshwater to Marine Continuum. WIREs Water. 2019, 6(5), e1373. DOI: 10.1002/wat2.1373.
  • Gourevitch, J. D.; Koliba, C.; Rizzo, D. M.; Ricketts, T. H. Quantifying the Social Benefits and Costs of Reducing Phosphorus Pollution Under Climate Change. J. Environ. Manage. Sept 01, 2021. 293, 112838. DOI: 10.1016/j.jenvman.2021.112838.
  • Dodds, W. K.; Bouska, W. W.; Eitzmann, J. L.; Pilger, T. J.; Pitts, K. L.; Riley, A. J.; Schloesser, J. T.; Thornbrugh, D. J. Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages. Environ. Sci. Technol. 2009, 43(1), 12–19. DOI: 10.1021/es801217q.
  • Christensen, M. L.; Cvitanich, C.; Quist-Jensen, C. A.; Thau, M.; Malmgren-Hansen, B. Precipitation and Recovery of Phosphorus from the Wastewater Hydrolysis Tank. Sci. Total Environ. 2022, 813, 151875. DOI: 10.1016/j.scitotenv.2021.151875.
  • Vymazal, J. Removal of Phosphorus in Constructed Wetlands with Horizontal Sub-Surface Flow in the Czech Republic. Water, Air And Soil Poll: Focus. 2004, 4(2), 657–670. DOI: 10.1023/B:WAFO.0000028385.63075.51.
  • Bunce, J. T.; Ndam, E.; Ofiteru, I. D.; Moore, A.; Graham, D. W. A Review of Phosphorus Removal Technologies and Their Applicability to Small-Scale Domestic Wastewater Treatment Systems [Review]. Front. Environ. Sci. 2018, 6, 6. DOI: 10.3389/fenvs.2018.00008.
  • Kumar, P. S.; Korving, L.; van Loosdrecht, M. C. M.; Witkamp, G.-J. Adsorption As a Technology to Achieve Ultra-Low Concentrations of Phosphate: Research Gaps and Economic Analysis. Water Research X. 2019, 4, 100029. DOI: 10.1016/j.wroa.2019.100029.
  • Xu, H.; Zeng, W.; Li, S.; Wang, B.; Jia, Z.; Peng, Y. Hydrated Zirconia-Loaded Resin for Adsorptive Removal of Phosphate from Wastewater. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 600, 124909. DOI: 10.1016/j.colsurfa.2020.124909.
  • Poikane, S.; Kelly, M. G.; Salas Herrero, F.; Pitt, J-A.; Jarvie, H. P.; Claussen, U.; Leujak, W.; Lyche Solheim, A.; Teixeira, H.; Phillips, G. Nutrient Criteria for Surface Waters Under the European Water Framework Directive: Current State-Of-The-Art, Challenges and Future Outlook. Sci. Total Environ. 2019, 695, 133888. DOI: 10.1016/j.scitotenv.2019.133888.
  • Bebbington, J.; Unerman, J. Achieving the United Nations Sustainable Development Goals. Acc, Audi & Acco. J. 2018, 31(1), 2–24. DOI: 10.1108/AAAJ-05-2017-2929.
  • Obaideen, K.; Shehata, N.; Sayed, E. T.; Abdelkareem, M. A.; Mahmoud, M. S.; Olabi, A. G. The Role of Wastewater Treatment in Achieving Sustainable Development Goals (SDGs) and Sustainability Guideline. Ener Nexus. 2022, 7, 100112. DOI: 10.1016/j.nexus.2022.100112.
  • Li, T.; Lü, S.; Wang, Z.; Huang, M.; Yan, J.; Liu, M. Lignin-Based Nanoparticles for Recovery and Separation of Phosphate and Reused As Renewable Magnetic Fertilizers. Sci. Total Environ. 2020, 765, 142745. DOI: 10.1016/j.scitotenv.2020.142745.
  • Zhu, Z.; Huang, C. P.; Zhu, Y.; Wei, W.; Qin, H. A Hierarchical Porous Adsorbent of Nano-α-Fe2O3/Fe3O4 on Bamboo Biochar (HPA-Fe/C-B) for the Removal of Phosphate from Water. J. Water Process Eng. 2018, 25, 96–104. DOI: 10.1016/j.jwpe.2018.05.010.
  • Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Selective Adsorption of Phosphate from Seawater and Wastewater by Amorphous Zirconium Hydroxide. J. Colloid. Interface. Sci. 2006, 297(2), 426–433.
  • Rodrigues, L. A.; Maschio, L. J.; C, LdSC.; Thim, G. P.; Pinto da Silva, M. L. C. Adsorption of Phosphate from Aqueous Solution by Hydrous Zirconium Oxide. Environ. Technol. 2012, 33(12), 1345–1351.
  • Shin, H.; Tiwari, D.; Kim, D.-J. Phosphate Adsorption/Desorption Kinetics and P Bioavailability of Mg-Biochar from Ground Coffee Waste. J. Water Process Eng. 2020, 37, 101484. DOI: 10.1016/j.jwpe.2020.101484.
  • Xu, K.; Lin, F.; Dou, X.; Zheng, M.; Tan, W.; Wang, C.et al Recovery of Ammonium and Phosphate from Urine As Value-Added Fertilizer Using Wood Waste Biochar Loaded with Magnesium Oxides. J. Clean. Prod. 2018, 187, 205–214. DOI: 10.1016/j.jclepro.2018.03.206.
  • Li, R.; Wang, J. J.; Zhou, B.; Awasthi, M. K.; Ali, A.; Zhang, Z.; Lahori, A. H.; Mahar, A. Recovery of Phosphate from Aqueous Solution by Magnesium Oxide Decorated Magnetic Biochar and Its Potential As Phosphate-Based Fertilizer Substitute. Bioresour. Technol. 2016, 215, 209–214. DOI: 10.1016/j.biortech.2016.02.125.
  • Liu, X.; He, X.; Zhang, J.; Xiang, X.; Ma, Z.; Liu, L.; Zong, E. Cerium Oxide Nanoparticle Functionalized Lignin As a Nano-Biosorbent for Efficient Phosphate Removal. R.S.C. Adv. 2020, 10(3), 1249–1260 DOI: 10.1039/C9RA09986G.
  • Wang, Z.; Shen, D.; Shen, F.; Li, T. Phosphate Adsorption on Lanthanum Loaded Biochar. Chemosphere. 2016, 150, 1–7. DOI: 10.1016/j.chemosphere.2016.02.004.
  • Connor, P. A.; McQuillan, A. J. Phosphate Adsorption Onto TiO2 from Aqueous Solutions: An in situ Internal Reflection Infrared Spectroscopic Study. Langmuir. 1999, 15(8), 2916–2921. DOI: 10.1021/la980894p.
  • Yao, W.; Millero, F. J. Adsorption of Phosphate on Manganese Dioxide in Seawater. Environ. Sci. Technol. 1996, 30(2), 536–541. DOI: 10.1021/es950290x.
  • Trieu, Q. A.; Pellet-Rostaing, S.; Arrachart, G.; Traore, Y.; Kimbel, S.; Daniele, S. Interfacial Study of Surface-Modified ZrO2 Nanoparticles with Thioctic Acid for the Selective Recovery of Palladium and Gold from Electronic Industrial Wastewater. Sep. Purif. Technol. 2020, 237, 116353. DOI: 10.1016/j.seppur.2019.116353.
  • Cui, H.; Li, Q.; Gao, S.; Shang, J. K. Strong Adsorption of Arsenic Species by Amorphous Zirconium Oxide Nanoparticles. J. Ind. Eng. Chem. 2012, 18(4), 1418–1427. DOI: 10.1016/j.jiec.2012.01.045.
  • Suresh Kumar, P.; Korving, L.; Keesman, K. J.; van Loosdrecht, M. C. M.; Witkamp, G. -J. Effect of Pore Size Distribution and Particle Size of Porous Metal Oxides on Phosphate Adsorption Capacity and Kinetics. Chem. Eng. J. 2019, 358, 160–169. DOI: 10.1016/j.cej.2018.09.202.
  • Smith, R. C.; Li, J.; Padungthon, S.; Sengupta, A. K. Nexus Between Polymer Support and Metal Oxide Nanoparticles in Hybrid Nanosorbent Materials (HNMs) for Sorption/Desorption of Target Ligands. Front. Environ. Sci. Eng. 2015, 9(5), 929–938. DOI: 10.1007/s11783-015-0795-9.
  • Sengupta, S.; Pandit, A. Selective Removal of Phosphorus from Wastewater Combined with Its Recovery As a Solid-Phase Fertilizer. Water Res. 2011, 45(11), 3318–3330. DOI: 10.1016/j.watres.2011.03.044.
  • Pan, B.; Wu, J.; Pan, B.; Lv, L.; Zhang, W.; Xiao, L.; Wang, X.; Tao, X.; Zheng, S. Development of Polymer-Based Nanosized Hydrated Ferric Oxides (HFOs) for Enhanced Phosphate Removal from Waste Effluents. Water Res. 2009, 43(17), 4421–4429. DOI: 10.1016/j.watres.2009.06.055.
  • Sengupta, A. K.; Cumbal, L. H. Hybrid Anion Exchanger for Selective Removal of Contaminating Ligands from Fluids and Method of Manufacture Thereof. U. S. Patent 7,291,578 B2, November 6, 2007.
  • Neris, J. B.; Luzardo, F. H. M.; da Silva, E. G. P.; Velasco, F. G. Evaluation of Adsorption Processes of Metal Ions in Multi-Element Aqueous Systems by Lignocellulosic Adsorbents Applying Different Isotherms: A Critical Review. Chem. Eng. J. 2019, 357, 404–420. DOI: 10.1016/j.cej.2018.09.125.
  • Ma, Z.; Li, Q.; Yue, Q.; Gao, B.; Li, W.; Xu, X.; Zhong, Q. Adsorption Removal of Ammonium and Phosphate from Water by Fertilizer Controlled Release Agent Prepared from Wheat Straw. Chem. Eng. J. 2011, 171(3), 1209–1217. DOI: 10.1016/j.cej.2011.05.027.
  • Wang, X.; Lü, S.; Gao, C.; Feng, C.; Xu, X.; Bai, X.; Gao, N.; Yang, J.; Liu, M.; Wu, L. Recovery of Ammonium and Phosphate from Wastewater by Wheat Straw-Based Amphoteric Adsorbent and Reusing As a Multifunctional Slow-Release Compound Fertilizer. ACS Sustain. Chem. Eng. 2016, 4(4), 2068–2079. DOI: 10.1021/acssuschemeng.5b01494.
  • Yao, Y.; Gao, B.; Chen, J.; Yang, L. Engineered Biochar Reclaiming Phosphate from Aqueous Solutions: Mechanisms and Potential Application As a Slow-Release Fertilizer. Environ. Sci. Technol. 2013, 47(15), 8700–8708. DOI: 10.1021/es4012977.
  • Mallampati, R.; Valiyaveettil, S. Apple Peels—A Versatile Biomass for Water Purification? ACS Appl. Mater. Interfaces. 2013, 5(10), 4443–4449. DOI: 10.1021/am400901e.
  • Hu, Y.; Du, Y.; Nie, G.; Zhu, T.; Ding, Z.; Wang, H.; Zhang, L.; Xu, Y. Selective and Efficient Sequestration of Phosphate from Waters Using Reusable Nano-Zr(iv) Oxide Impregnated Agricultural Residue Anion Exchanger. Sci. Total Environ. 2020, 700, 134999. DOI: 10.1016/j.scitotenv.2019.134999.
  • Rajesh Banu, J.; Kavitha, S.; Yukesh Kannah, R.; Dinesh Kumar, M.; Atabani, A. E.; Kumar, G Biorefinery of Spent Coffee Grounds Waste: Viable Pathway Towards Circular Bioeconomy. Bioresou. Technol. 2020, 302, 122821. DOI: 10.1016/j.biortech.2020.122821.
  • Anastopoulos, I.; Karamesouti, M.; Mitropoulos, A. C.; Kyzas, G. Z. A Review for Coffee Adsorbents. J. Mol. Liq. 2017, 229, 555–565. DOI: 10.1016/j.molliq.2016.12.096.
  • Humayro, A.; Harada, H.; Naito, K. Adsorption of Phosphate and Nitrate Using Modified Spent Coffee Ground and Its Application As an Alternative Nutrient Source for Plant Growth. J. Agri Chem. & Envir. 2021, 10(1), 80–90. DOI: 10.4236/jacen.2021.101006.
  • McNutt, J.; He, Q. Spent Coffee Grounds: A Review on Current Utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. DOI: 10.1016/j.jiec.2018.11.054.
  • Oladipo, A. A.; Ifebajo, A. O.; Vaziri, R. Green Adsorbents for Removal of Antibiotics, Pesticides and Endocrine Disruptors. In Green Adsorbents for Pollutant Removal: Innovative Materials; Crini, G. Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2018; pp. 327–351.
  • Lawrencia, D.; Wong, S. K.; Low, D. Y.; Goh, B. H.; Goh, J. K.; Ruktanonchai, U. R.; Soottitantawat, A.; Lee, L. H.; Tang, S. Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants. 2021, 10(2), 238. DOI: 10.3390/plants10020238.
  • SenGupta, A. K.; Padungthon, S. Hybrid Anion Exchanger Impregnated with Hydrated Zirconium Oxide for Selective Removal of Contaminating Ligand and Methods of Manufacture and Use Thereof. United States Patent 9,120,093 B2, September 1, 2017.
  • Chen, L.; Zhao, X.; Pan, B.; Zhang, W.; Hua, M.; Lv, L.; Zhang, W. Preferable Removal of Phosphate from Water Using Hydrous Zirconium Oxide-Based Nanocomposite of High Stability. J. Hazard. Mater. 2015, 284, 35–42. DOI: 10.1016/j.jhazmat.2014.10.048.
  • 4500-P PHOSPHORUS. Standard Methods for the Examination of Water and Wastewater.
  • Pan, B.; Xu, J.; Wu, B.; Li, Z.; Liu, X. Enhanced Removal of Fluoride by Polystyrene Anion Exchanger Supported Hydrous Zirconium Oxide Nanoparticles. Environ. Sci. Technol. 2013, 47(16), 9347–9354. DOI: 10.1021/es401710q.
  • Padungthon, S.; German, M.; Wiriyathamcharoen, S.; SenGupta, A. K. Polymeric Anion Exchanger Supported Hydrated Zr(iv) Oxide Nanoparticles: A Reusable Hybrid Sorbent for Selective Trace Arsenic Removal. React. Funct. Polym. 2015, 93, 84–94. DOI: 10.1016/j.reactfunctpolym.2015.06.002.
  • Dobson, K. D.; McQuillan, A. J. In situ Infrared Spectroscopic Analysis of the Adsorption of Aliphatic Carboxylic Acids to TiO2, ZrO2, Al2O3, and Ta2O5 from Aqueous Solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1999, 55(7–8), 1395–1405. DOI: 10.1016/S1386-1425(98)00303-5.
  • Petit, M.; Monot, J. Functionalization of Zirconium Oxide Surfaces. In Chemistry of Organo-hybrids: Synthesis and Characterization of Functional Nano-Objects. United States: John Wiley & Sons, Inc., 2014; p. 168–199.
  • Wong, S.; Ghafar, N. A.; Ngadi, N.; Razmi, F. A.; Inuwa, I. M.; Mat, R.; Amin, N. A. S. Effective Removal of Anionic Textile Dyes Using Adsorbent Synthesized from Coffee Waste. Sci. Rep. 2020, 10(1), 2928. DOI: 10.1038/s41598-020-60021-6.
  • Zong, E.; Liu, X.; Jiang, J.; Fu, S.; Chu, F. Preparation and Characterization of Zirconia-Loaded Lignocellulosic Butanol Residue As a Biosorbent for Phosphate Removal from Aqueous Solution. Appl. Surf. Sci. 2016, 387, 419–430. DOI: 10.1016/j.apsusc.2016.06.107.
  • Shang, Y.; Xu, X.; Qi, S.; Zhao, Y.; Ren, Z.; Gao, B. Preferable Uptake of Phosphate by Hydrous Zirconium Oxide Nanoparticles Embedded in Quaternary-Ammonium Chinese Reed. J. Colloid. Interface. Sci. 2017, 496, 118–129. DOI: 10.1016/j.jcis.2017.02.019.
  • Dong, S.; Ji, Q.; Wang, Y.; Liu, H.; Qu, J. Enhanced Phosphate Removal Using Zirconium Hydroxide Encapsulated in Quaternized Cellulose. J. Environ. Sci. 2020, 89, 102–112. DOI: 10.1016/j.jes.2019.10.005.
  • Su, Y.; Cui, H.; Li, Q.; Gao, S.; Shang, J. K. Strong Adsorption of Phosphate by Amorphous Zirconium Oxide Nanoparticles. Water. Res. 2013, 47(14), 5018–5026. DOI: 10.1016/j.watres.2013.05.044.
  • Sarkar, S.; AK, S.; Prakash, P. The Donnan Membrane Principle: Opportunities for Sustainable Engineered Processes and Materials. Environ. Sci. Technol. 2010, 44(4), 1161–1166. DOI: 10.1021/es9024029.
  • El-Khaiary, M. I.; Malash, G. F. Common Data Analysis Errors in Batch Adsorption Studies. Hydrometallurgy. 2011, 105(3), 314–320. DOI: 10.1016/j.hydromet.2010.11.005.
  • Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156(1), 2–10. DOI: 10.1016/j.cej.2009.09.013.
  • Bui, T. H.; Hong, S. P.; Kim, C.; Yoon, J. Performance Analysis of Hydrated Zr(iv) Oxide Nanoparticle-Impregnated Anion Exchange Resin for Selective Phosphate Removal. J. Colloid. Interface. Sci. 2021, 586, 741–747. DOI: 10.1016/j.jcis.2020.10.143.
  • Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. K Sven. Vetensk Handl. 1898, 24(4), 1–39.
  • Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18(12), 1501–1507. DOI: 10.1016/0043-1354(84)90124-6.
  • Tomul, F.; Arslan, Y.; Kabak, B.; Trak, D.; Tran, H. N. Adsorption Process of Naproxen Onto Peanut Shell-Derived Biosorbent: Important Role of N–π Interaction and van der Waals Force. J. Chem. Technol. Biotechnol. 2021, 96(4), 869–880 DOI: 10.1002/jctb.6613.
  • Franca, A. S.; Oliveira, L. S.; Ferreira, M. E. Kinetics and Equilibrium Studies of Methylene Blue Adsorption by Spent Coffee Grounds. Desalination. 2009, 249(1), 267–272. DOI: 10.1016/j.desal.2008.11.017.
  • Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in Dye-Chitosan Systems. Chem. Eng. J. 2009, 150(2), 366–373. DOI: 10.1016/j.cej.2009.01.014.
  • Azizian, S. Kinetic Models of Sorption: A Theoretical Analysis. J. Colloid. Interface. Sci. 2004, 276(1), 47–52. DOI: 10.1016/j.jcis.2004.03.048.
  • Weber, W. J. Evolution of a Technology. J. Environ. Eng. 1984, 110(5), 899–917. DOI: 10.1061/(ASCE)0733-9372(1984)110:5(899).
  • Plazinski, W.; Rudzinski, W.; Plazinska, A. Theoretical Models of Sorption Kinetics Including a Surface Reaction Mechanism: A Review. Adv. Colloid Interface Sci. 2009, 152(1–2), 2–13. 2009 11/30/. DOI: 10.1016/j.cis.2009.07.009.
  • Lin, D. Y.; Wu, F.; Hu, Y. Q.; Zhang, T. Z.; Liu, C. S.; Hu, Q. D.; Hu, Y. F.; Xue, Z. H.; Han, H.; Ko, Z. H. Adsorption of Dye by Waste Black Tea Powder: Parameters, Kinetic, Equilibrium, and Thermodynamic Studies. J. Chem. 2020, 2020, 1–13. DOI: 10.1155/2020/5431046.
  • Zhu, W.; Liu, J.; Li, M. Fundamental Studies of Novel Zwitterionic Hybrid Membranes: Kinetic Model and Mechanism Insights into Strontium Removal. Sci. World J. 2014, 2014, 485820. 2014/10/27. DOI: 10.1155/2014/485820.
  • In Fegley, B., Ed. Chapter 6 - the Second Law of Thermodynamics and Entropy. In Practical Chemical Thermodynamics for Geoscientists; Academic Press: Boston, 2013; pp. 173–224.
  • Al-Ghouti, M. A.; Da’ana, D. A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. 2020/07/05/. DOI: 10.1016/j.jhazmat.2020.122383.
  • Ghosal, P. S.; Gupta, A. K. Determination of Thermodynamic Parameters from Langmuir Isotherm Constant-Revisited. J. Mol. Liq. 2017, 225, 137–146. 2017/01/01. DOI: 10.1016/j.molliq.2016.11.058.
  • Chen, T.; Da, T.; Ma, Y. Reasonable Calculation of the Thermodynamic Parameters from Adsorption Equilibrium Constant. J. Mol. Liq. 2021, 322, 114980. 2021/01/15/. DOI: 10.1016/j.molliq.2020.114980.
  • Salvestrini, S.; Leone, V.; Iovino, P.; Canzano, S.; Capasso, S. Considerations About the Correct Evaluation of Sorption Thermodynamic Parameters from Equilibrium Isotherms. J. Chem. Thermodyn. 2014, 68, 310–316. 2014/01/01/. DOI: 10.1016/j.jct.2013.09.013.
  • Patel, H. Fixed-Bed Column Adsorption Study: A Comprehensive Review. Appl. Water Sci. 2019, 9(3), 45. 2019/03/16. DOI: 10.1007/s13201-019-0927-7.
  • Biswas, B. K.; Inoue, K.; Ghimire, K. N.; Harada, H.; Ohto, K.; Kawakita, H. Removal and Recovery of Phosphorus from Water by Means of Adsorption Onto Orange Waste Gel Loaded with Zirconium. Bioresou. Technol. 2008, 99(18), 2008/12/01/, 8685–8690. DOI: 10.1016/j.biortech.2008.04.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.