55
Views
0
CrossRef citations to date
0
Altmetric
Precipitation

Collection of nanoparticles by electrostatic precipitation operating over a wide range of electric fields

&
Pages 848-865 | Received 16 Sep 2023, Accepted 13 Apr 2024, Published online: 20 Apr 2024

References

  • Fann, N.; Lamson, A. D.; Anenberg, S. C.; Wesson, K.; Risley, D.; Hubbell, B. J. Estimating the National Public Health Burden Associated with Exposure to Ambient PM2.5 and Ozone. Risk Anal. 2012, 32(1), 81–95. DOI: 10.1111/j.1539-6924.2011.01630.x.
  • Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The Mechanisms of Air Pollution and Particulate Matter in Cardiovascular Diseases. Heart Fail. Rev. 2017, 22(3), 337–347. DOI: 10.1007/s10741-017-9606-7.
  • Laumbach, R. J.; Kipen, H. M. Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution. J. Allergy Clin. Immunol. 2012, 129(1), 3–11. DOI: 10.1016/j.jaci.2011.11.021.
  • Lima, F. D.; Medeiros, A.; GB, C. P.; Aguiar, M. L.; Guerra, V. G. Aerosol Nanoparticle Control by Electrostatic Precipitation and Filtration Processes—A Review. Powders. 2023, 2(2), 259–298. DOI: 10.3390/powders2020017.
  • Nazarenko, Y.; Zhen, H.; Han, T.; Lioy, P. J.; Mainelis, G. Potential for Inhalation Exposure to Engineered Nanoparticles from Nanotechnology-Based Cosmetic Powders. Environ. Health Perspect. 2012, 120(6), 885–892. DOI: 10.1289/ehp.1104350.
  • Tillett, T. A Compact Exposure: Estimating Inhalation of Engineered Nanoparticles in Cosmetic Powders. Environ. Health Perspect. 2012, 120(6), a245. DOI: 10.1289/ehp.120-a245a.
  • Brunekreef, B.; Holgate, S. T. Air Pollution and Health. Lancet. 2002, 360(9341), 1233–1242. DOI: 10.1016/S0140-6736(02)11274-8.
  • Calderón-Garcidueñ, L.; González-Maciel, A.; Mukherjee, P. S.; Reynoso-Robles, R.; Pérez-Guillé, B.; Gayosso-Chávez, C.; Torres-Jardón, R.; Cross, J. V.; Ahmed, I.A.M.M.; Karloukovski, V.V., et al. Combustion- and Friction-Derived Magnetic Air Pollution Nanoparticles in Human Hearts. Environ. Res. 2019, 176(June), 108567. DOI: 10.1016/j.envres.2019.108567.
  • Adams, R. A.; Potter, S.; Bérubé, K.; Higgins, T. P.; Jones, T. P.; Evans, S. A. Prolonged Systemic Inflammation and Damage to the Vascular Endothelium Following Intratracheal Instillation of Air Pollution Nanoparticles in Rats. Clin. Hemorheol. Microcirc. 2019, 72(1), 1–10. DOI: 10.3233/CH-180377.
  • Gwinn, M. R.; Vallyathan, V. Nanoparticles: Health Effects – Pros and Cons. Environ. Health Perspect. 2006, 114(12), 1818–1825. DOI: 10.1289/ehp.8871.
  • Miller, M. R.; Newby, D. E. Air Pollution and Cardiovascular Disease: Car Sick. Cardiovasc. Res. 2020, 116(2), 279–294. DOI: 10.1093/cvr/cvz228.
  • Oberdörster, G. Pulmonary Effects of Inhaled Ultrafine Particles. Int. Arch. Occup. Environ. Health. 2000, 74(1), 1–8. DOI: 10.1007/s004200000185.
  • Pomatto, L. C. D.; Cline, M.; Woodward, N.; Pakbin, P.; Sioutas, C.; Morgan, T. E.; Finch, C. E.; Forman, H. J.; Davies, K. J. A. Aging Attenuates Redox Adaptive Homeostasis and Proteostasis in Female Mice Exposed to Traffic-Derived Nanoparticles (‘Vehicular smog’). Free Radic. Biol. Med. 2018, 121, 86–97. DOI: 10.1016/j.freeradbiomed.2018.04.574.
  • Semmler-Behnke, M.; Kreyling, W. G.; Lipka, J.; Fertsch, S.; Wenk, A.; Takenaka, S.; Schmid, G.; Brandau, W. Biodistribution of 1.4- and 18-Nm Gold Particles in Rats. Small. 2008, 4(12), 2108–2111. DOI: 10.1002/smll.200800922.
  • Warheit, D. B. Nanoparticles: Health Impacts? Mater. Today. 2004, 7(2), 32–35. DOI: 10.1016/S1369-7021(04)00081-1.
  • Calderón- Garcidueñ, L.; Ayala, A. Air Pollution, Ultrafine Particles, and Your Brain: Are Combustion Nanoparticle Emissions and Engineered Nanoparticles Causing Preventable Fatal Neurodegenerative Diseases and Common Neuropsychiatric Outcomes? Environ. Sci. Technol. 2022, 56(11), 6847–6856. DOI: 10.1021/acs.est.1c04706.
  • Mohnen, V.; Hidy, G. M. Measurements of Atmospheric Nanoparticles (1875–1980). Bull. Am. Meteorol. Soc. 2010, 91(11), 1525–1539. DOI: 10.1175/2010BAMS2929.1.
  • Parker, K. R. Electrical Operation of Electrostatic Precipitators, 1st ed.; Institution of Engineering and Technology: London, 2003.
  • Parker, K. R. Applied Electrostatic Precipitation; Blackie Academic & Professional: London, 1997.
  • Badran, M.; Mansour, A. M. Evaluating Performance Indices of Electrostatic Precipitators. Energies. 2022, 15(18), 6647. DOI: 10.3390/en15186647.
  • White, H. J. Industrial Electrostatic Precipitation; Addison-Wesley: Reading, 1963.
  • Li, N.; Georas, S.; Alexis, N.; Fritz, P.; Xia, T.; Williams, M. A.; Horner, E.; Nel, A. A Work Group Report on Ultrafine Particles (American Academy of Allergy, Asthma & Immunology): Why Ambient Ultrafine and Engineered Nanoparticles Should Receive Special Attention for Possible Adverse Health Outcomes in Human Subjects. J. Allergy Clin. Immunol. 2016, 138(2), 386–396. DOI: 10.1016/j.jaci.2016.02.023.
  • Nel, A. Toxic Potential of Materials at the Nanolevel. Science (80-.). 2006, 311(5761), 622–627. DOI: 10.1126/science.1114397.
  • Alonso, M.; Alguacil, F. J. Electrostatic Precipitation of Ultrafine Particles Enhanced by Simultaneous Diffusional Deposition on Wire Screens. J. Air Waste Manag. Assoc. 2002, 52(11), 1342–1347. DOI: 10.1080/10473289.2002.10470868.
  • Hinds, W. C. Aerosol Technology: Properties, Behaviour, and Measurement of Airborne Particles, 2nd ed.; John Wiley & Sons: New York, 1999.
  • ISO (2012) Iso/Ts 12025. https://www.iso.org/obp/ui/#iso:std:iso:ts:12025:ed-1:v1:en:biblref:5. Accessed 29 Jan 2020.
  • Oliveira, A. E.; Guerra, V. G. Electrostatic Precipitation of Nanoparticles and Submicron Particles: Review of Technological Strategies. Process Saf. Environ. Prot. 2021a, 153, 422–438. DOI: 10.1016/j.psep.2021.07.043.
  • Dobrowolski, A.; Strob, R.; Nietfeld, J.; Pieloth, D.; Wiggers, H.; Thommes, M. Preparation of Spray Dried Submicron Particles: Part B – Particle Recovery by Electrostatic Precipitation. Int. J. Pharm. 2018, 548(1), 237–243. DOI: 10.1016/j.ijpharm.2018.06.069.
  • Mertens, J.; Lepaumier, H.; Rogiers, P.; Desagher, D.; Goossens, L.; Duterque, A.; Le Cadre, E.; Zarea, M.; Blondeau, J.; Webber, M. Fine and Ultrafine Particle Number and Size Measurements from Industrial Combustion Processes: Primary Emissions Field Data. Atmos. Pollut. Res. 2020, 11(4), 803–814. DOI: 10.1016/j.apr.2020.01.008.
  • Zukeran, A.; Sawano, H.; Yasumoto, K. Collection Characteristic of Nanoparticles Emitted from a Diesel Engine with Residual Fuel Oil and Light Fuel Oil in an Electrostatic Precipitator. Energies. 2019, 12(17), 3321. DOI: 10.3390/en12173321.
  • Miller, A.; Frey, G.; King, G.; Sunderman, C. A Handheld Electrostatic Precipitator for Sampling Airborne Particles and Nanoparticles. Aerosol. Sci. Technol. 2010, 44(6), 417–427. DOI: 10.1080/02786821003692063.
  • Oliveira, A. E.; Guerra, V. G. Efficiency of Electrostatic Precipitation of NiO Nanoparticles Dispersed by Atomization. Sep. Sci. Technol. 2020a, 55(13), 2400–2409. DOI: 10.1080/01496395.2019.1626421.
  • Oliveira, A. E.; Guerra, V. G. Electrostatic Precipitation of Nickel (II) Oxide and Sodium Chloride Nanoparticles: Operating Conditions Promoting Sputtering with Electro-Fluid Dynamics Analysis. Process Saf. Environ. Prot. 2021b, 147(xxxx), 450–459. DOI: 10.1016/j.psep.2020.09.062.
  • Roux, J. M.; Sarda-Estève, R.; Delapierre, G.; Nadal, M. H.; Bossuet, C.; Olmedo, L. Development of a New Portable Air Sampler Based on Electrostatic Precipitation. Environ. Sci. Pollut. Res. 2016, 23(9), 8175–8183. DOI: 10.1007/s11356-015-5522-3.
  • Oliveira, A. E.; Guerra, V. G. Influence of Particle Concentration and Residence Time on the Efficiency of Nanoparticulate Collection by Electrostatic Precipitation. J. Electrostat. 2018, 96(June), 1–9. DOI: 10.1016/j.elstat.2018.08.006.
  • Oliveira, A. E.; Guerra, V. G. Effect of Low Gas Velocity on the Nanoparticle Collection Performance of an Electrostatic Precipitator. Sep. Sci. Technol. 2019, 54(7), 1211–1220. DOI: 10.1080/01496395.2018.1527855.
  • Vaddi, R. S.; Guan, Y.; Novosselov, I. Behavior of Ultrafine Particles in Electro-Hydrodynamic Flow Induced by Corona Discharge. J. Aerosol. Sci. 2020, 148, 105587. DOI: 10.1016/j.jaerosci.2020.105587.
  • Yoo, K. H.; Lee, J. S.; Do, O. M. Charging and Collection of Submicron Particles in Two-Stage Parallel-Plate Electrostatic Precipitators. Aerosol. Sci. Technol. 1997, 27(3), 308–323. DOI: 10.1080/02786829708965476.
  • Nouri, H.; Zouzou, N.; Dascalescu, L.; Zebboudj, Y. Investigation of Relative Humidity Effect on the Particles Velocity and Collection Efficiency of Laboratory Scale Electrostatic Precipitator. Process Saf. Environ. Prot. 2016, 104, 225–232. DOI: 10.1016/j.psep.2016.09.001.
  • Riehle, C. Basic and Theoretical Operation of ESPs. In Applied Electrostatic Precipitation; Parker, K. R., Ed.; Blackie Academic & Professional: London, 1997a; pp. 25–87.
  • Irwin, F. B.; Inculet, I. I. A Mathematical Analysis of the Glow and Dark Space Regions in Positive Corona. IEEE Trans. on Ind. Applicat. 1986, IA-22(5), 875–879. DOI: 10.1109/TIA.1986.4504807.
  • Shohet, J. L. Plasma Science and Engineering. In Encyclopedia of Physical Science and Technology; Meyers, R. A., Ed.; Elsevier: Tarzana, California, 2003; pp. 401–423.
  • Castro, B. J. C.; Lacerda, C. R.; Melo, B. R.; Sartim, R.; Aguiar, M. L. Performance Assessment of a Bench Scale Hybrid Filter in the Collection of Nanoparticles. Process Saf. Environ. Prot. 2021, 154, 32–42. DOI: 10.1016/j.psep.2021.07.042.
  • Goldfield, J.; RG, M. Low-Voltage Electrostatic Precipitators to Collect Oil Mists from Roofing Felt Asphalt Saturators and Stills. Am. Ind. Hyg. Assoc. J. 1963, 24(4), 411–416. DOI: 10.1080/00028896309343238.
  • Afshari, A.; Ekberg, L.; Forejt, L.; Mo, J.; Rahimi, S.; Siegel, J.; Chen, W.; Wargocki, P.; Zurami, S.; Zhang, J. Electrostatic Precipitators As an Indoor Air Cleaner—A Literature Review. Sustainability. 2020, 12(21), 8774. DOI: 10.3390/su12218774.
  • Romay, F. J.; Ou, Q.; Pui, D. Y. H. Effect of Ionizers on Indoor Air Quality and Performance of Air Cleaning Systems. Aerosol. Air Qual. Res. 2024, 24(1), 230240. DOI: 10.4209/aaqr.230240.
  • Ciuzas, D.; Prasauskas, T.; Krugly, E.; Sidaraviciute, R.; Jurelionis, A.; Seduikyte, L.; Kauneliene, V.; Wierzbicka, A.; Martuzevicius, D. Characterization of Indoor Aerosol Temporal Variations for the Real-Time Management of Indoor Air Quality. Atmos Environ. 2015, 118, 107–117. DOI: 10.1016/j.atmosenv.2015.07.044.
  • Deng, H.; Xu, X.; Wang, K.; Xu, J.; Loisel, G.; Wang, Y.; Pang, H.; Li, P.; Mai, Z.; Yan, S., et al. The Effect of Human Occupancy on Indoor Air Quality Through Real-Time Measurements of Key Pollutants. Environ. Sci. Technol. 2022, 56(22), 15377–15388. DOI: 10.1021/acs.est.2c04609.
  • Chen, L.; Gonze, E.; Ondarts, M.; Outin, J.; Gonthier, Y. Electrostatic Precipitator for Fine and Ultrafine Particle Removal from Indoor Air Environments. Sep. Purif. Technol. 2020, 247, 116964. DOI: 10.1016/j.seppur.2020.116964.
  • Lima, F. D. A.; Guerra, V. G. Influence of Wire Spacing and Plate Spacing on Electrostatic Precipitation of Nanoparticles: An Approach Involving Electrostatic Shielding and Diffusion Charging. Particuology. 2023, 80, 127–139. DOI: 10.1016/j.partic.2022.11.018.
  • Alshehhi, M.; Shooshtari, A.; Dessiatoun, S.; Ohadi, M.; Goharzadeh, A. Parametric Performance Analysis of an Electrostatic Wire-Cylinder Aerosol Separator in Laminar Flow Using a Numerical Modeling Approach. Sep. Sci. Technol. 2010, 45(3), 299–309. DOI: 10.1080/01496390903484859.
  • Said, H. A.; Aissou, M.; Nouri, H.; Zebboudj, Y. Effect of Wires Number on Corona Discharge of an Electrostatic Precipitators. J. Electr. Syst. 2014, 10(4), 392–405.
  • IEEE-DEIS-EHD Technical Committee. Recommended International Standard for Dimensionless Parameters Used in Electrohydrodynamics. IEEE Trans. Dielectr. Electr. Insul. 2003, 10(1), 3–6. DOI:10.1109/TDEI.2003.1176545.
  • Chen, T. M.; Tsai, C. J.; Yan, S. Y.; Li, S. N. An Efficient Wet Electrostatic Precipitator for Removing Nanoparticles, Submicron and Micron-Sized Particles. Sep. Purif. Technol. 2014, 136, 27–35. DOI: 10.1016/j.seppur.2014.08.032.
  • Falaguasta, M. C. R.; Steffens, J.; Valdes, E. E.; Coury, J. R. Overall Collection Efficiency of a Plate-Wire Electrostatic Precipitator Operating on the Removal of PM2.5. Lat. Am. Appl. Res. 2008, 38(2), 179–186.
  • Lin, G.-Y.; Chen, T.-M.; Tsai, C.-J. A Modified Deutsch-Anderson Equation for Predicting the Nanoparticle Collection Efficiency of Electrostatic Precipitators. Aerosol. Air Qual. Res. 2012b, 12(5), 697–706. DOI: 10.4209/aaqr.2012.04.0085.
  • Najafabadi, M. M.; Tabrizi, H. B.; Aramesh, A.; Ehteram, M. A. Effects of Geometric Parameters and Electric Indexes on Performance of a Vertical Wet Electrostatic Precipitator. J. Electrostat. 2014, 72(5), 402–411. DOI: 10.1016/j.elstat.2014.06.005.
  • Świerczok, A.; Jędrusik, M. The Collection Efficiency of ESP Model – Comparison of Experimental Results and Calculations Using Deutsch Model. J. Electrostat. 2018, 91, 41–47. DOI: 10.1016/j.elstat.2017.12.004.
  • Adachi, M.; Okuyama, K.; Kousaka, Y.; Kozuru, H.; Pui, D. Y. H. Diffusion Charging of Ultrafine Aerosol Particles by Positive Helium, Argon, and Nitrogen Ions. J. Appl. Phys. 1987, 62(7), 3050–3052. DOI: 10.1063/1.339368.
  • Cooperman, P. A Theory for Space-Charge-Limited Currents with Application to Electrical Precipitation. Trans. Am Inst. Electr. Eng. Part I Commun Electron. 1960, 79(1), 47–50. DOI: 10.1109/TCE.1960.6368541.
  • Andrade, R. G. S. A.; Oliveira, A. E.; Guerra, V. G. Graphical Methodology to Study the Corona Onset Voltage for Electrostatic Precipitation of Nanoparticles. Theor. Found. Chem. Eng. 2022, 56(4), 504–512. DOI: 10.1134/S0040579522040212.
  • Andrade, R. G. S. A.; Guerra, V. G. Discharge Electrode Influence on Electrostatic Precipitation of Nanoparticles. Powder Technol. 2021, 379, 417–427. DOI: 10.1016/j.powtec.2020.10.087.
  • Song, Y.; Zhang, Y.; Liu, Y.; Long, W.; Tao, K.; Vafai, K. Numerical Simulation of the Collection Efficiency of Welding Fume Particles in Electrostatic Precipitator. Powder Technol. 2023, 415, 118173. DOI: 10.1016/j.powtec.2022.118173.
  • Tian, Y.; Li, M.; Fu, Y.; Liu, L.; Li, S.; Zhu, W.; Ke, Y.; Yan, K. Development and Experimental Investigation of the Narrow-Gap Coated Electrostatic Precipitator with a Shield Pre-Charger for Indoor Air Cleaning. Sep. Purif. Technol. 2023, 309, 123114. DOI: 10.1016/j.seppur.2023.123114.
  • Oliveira, A. E.; Guerra, V. G. Efficiency of Electrostatic Precipitation of NiO Nanoparticles Dispersed by Atomization. Sep. Sci. Technol. 2020b, 55(13), 2400–2409. DOI: 10.1080/01496395.2019.1626421.
  • Huang, S. H.; Chen, C. C. Ultrafine Aerosol Penetration Through Electrostatic Precipitators. Environ. Sci. Technol. 2002, 36(21), 4625–4632. DOI: 10.1021/es011157+.
  • Kim, H. J.; Han, B.; Kim, Y. J.; Yoa, S. J. Characteristics of an Electrostatic Precipitator for Submicron Particles Using Non-Metallic Electrodes and Collection Plates. J. Aerosol. Sci. 2010, 41(11), 987–997. DOI: 10.1016/j.jaerosci.2010.08.001.
  • Lin, C.-W.; Huang, S.-H.; Kuo, Y.-M.; Chang, K.-N.; Wu, C.-S.; Chen, C.-C. From Electrostatic Precipitation to Nanoparticle Generation. J. Aerosol. Sci. 2012a, 51, 57–65. DOI: 10.1016/j.jaerosci.2012.03.005.
  • Morawska, L.; Agranovski, V.; Ristovski, Z.; Jamriska, M. Effect of Face Velocity and the Nature of Aerosol on the Collection of Submicrometer Particles by Electrostatic Precipitator. Indoor Air. 2002, 12(2), 129–137. DOI: 10.1034/j.1600-0668.2002.09136.x.
  • Zhuang, Y.; Jin Kim, Y.; Gyu Lee, T.; Biswas, P. Experimental and Theoretical Studies of Ultra-Fine Particle Behavior in Electrostatic Precipitators. J. Electrostat. 2000, 48(3–4), 245–260. DOI: 10.1016/S0304-3886(99)00072-8.
  • Löndahl, J.; Möller, W.; Pagels, J. H.; Kreyling, W. G.; Swietlicki, E.; Schmid, O. Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review. J. Aerosol. Med. Pulm. Drug. Deliv. 2014, 27(4), 229–254. DOI: 10.1089/jamp.2013.1044.
  • Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113(7), 823–839. DOI: 10.1289/ehp.7339.
  • Dunkle, S. G. Electrostatic Precipitators. In Industrial Air Pollution Control Systems; Heumann, W. L.; McGraw-Hill: New York, 1997; pp. 471–510.
  • Kherbouche, F.; Benmimoun, Y.; Tilmatine, A.; Zouaghi, A.; Zouzou, N. Study of a New Electrostatic Precipitator with Asymmetrical Wire-To-Cylinder Configuration for Cement Particles Collection. J. Electrostat. 2016, 83, 7–15. DOI: 10.1016/j.elstat.2016.07.001.
  • Kim, H.-J.; Han, B.; Woo, C. G.; Kim, Y.-J. Ozone Emission and Electrical Characteristics of Ionizers with Different Electrode Materials, Numbers, and Diameters. IEEE Trans. Ind. Appl. 2017, 53(1), 459–465. DOI: 10.1109/TIA.2016.2606362.
  • Arif, S.; Branken, D. J.; Everson, R. C.; HWJP, N.; Arif, A. The Influence of Design Parameters on the Occurrence of Shielding in Multi-Electrode ESPs and Its Effect on Performance. J. Electrostat. 2018, 93, 17–30. DOI: 10.1016/j.elstat.2018.03.001.
  • El Dein, A. Z.; Usama, K. Experimental and Simulation Study of V–I Characteristics of Wire–Plate Electrostatic Precipitators Under Clean Air Conditions. Arab. J. Sci. Eng. 2014a, 39(5), 4037–4045. DOI: 10.1007/s13369-014-1046-2.
  • Chang, C.-L.; Bai, H. Effects of Some Geometric Parameters on the Electrostatic Precipitator Efficiency at Different Operation Indexes. Aerosol. Sci. Technol. 2000, 33(3), 228–238. DOI: 10.1080/027868200416222.
  • Navarrete, B.; Cañadas, L.; Cortés, V.; Salvador, L.; Galindo, J. Influence of Plate Spacing and Ash Resistivity on the Efficiency of Electrostatic Precipitators. J. Electrostat. 1997, 39(1), 65–81. DOI: 10.1016/S0304-3886(96)00041-1.
  • Ning, Z.; Podlinski, J.; Shen, X.; Li, S.; Wang, S.; Han, P.; Yan, K. Electrode Geometry Optimization in Wire-Plate Electrostatic Precipitator and Its Impact on Collection Efficiency. J. Electrostat. 2016, 80, 76–84. DOI: 10.1016/j.elstat.2016.02.001.
  • Gao, W.; Wang, Y.; Zhang, H.; Guo, B.; Zheng, C.; Guo, J.; Gao, X.; Yu, A. Numerical Simulation of Particle Migration in Electrostatic Precipitator with Different Electrode Configurations. Powder Technology. 2020, 361, 238–247. DOI: 10.1016/j.powtec.2019.08.046.
  • He, Z.; Dass, E. T. M. Correlation of Design Parameters with Performance for Electrostatic Precipitator. Part II. Design of Experiment Based on 3D FEM Simulation. Appl. Math. Model. 2018, 57, 656–669. DOI: 10.1016/j.apm.2017.06.031.
  • Kasdi, A. Computation and Measurement of Corona Current Density and V–I Characteristics in Wires-To-Plates Electrostatic Precipitator. J. Electrostat. 2016, 81, 1–8. DOI: 10.1016/j.elstat.2016.02.005.
  • Lu, C.; Yi, C.; Yi, R.; Liu, S. Analysis of the Operating Parameters of a Vortex Electrostatic Precipitator. Plasma Sci. Technol. 2017, 19(2), 025504. DOI: 10.1088/2058-6272/19/2/025504.
  • Nóbrega, S. W.; Falaguasta, M. C. R.; Coury, J. R. A Study of a Wire-Plate Electrostatic Precipitator Operating in the Removal of Polydispersed Particles. Brazilian J. Chem. Eng. 2004, 21(2), 275–284. DOI: 10.1590/S0104-66322004000200018.
  • Kogelschatz, D. U.; Gerteisen, E. A. Advanced Computer Modelling of Electrostatic Precipitators. Filtr. Sep. 2001, 38(9), 32–37. DOI: 10.1016/S0015-1882(01)80538-3.
  • Shen, H.; Yu, W.; Jia, H.; Kang, Y. Electrohydrodynamic Flows in Electrostatic Precipitator of Five Shaped Collecting Electrodes. J. Electrostat. 2018, 95(April), 61–70. DOI: 10.1016/j.elstat.2018.08.002.
  • Zhao, L.; Adamiak, K. Numerical Simulation of the Electrohydrodynamic Flow in a Single Wire-Plate Electrostatic Precipitator. IEEE Trans. Ind. Appl. 2008, 44(3), 683–691. DOI: 10.1109/TIA.2008.921453.
  • Drga, J.; Holubčík, M.; Čajová, K. N.; Červenka, B. Design of a Low-Cost Electrostatic Precipitator to Reduce Particulate Matter Emissions from Small Heat Sources. Energies. 2022, 15(11), 4148. DOI: 10.3390/en15114148.
  • Soldati, A.; Banerjee, S. Turbulence Modification by Large-Scale Organized Electrohydrodynamic Flows. Phys. Fluids. 1998, 10(7), 1742–1756. DOI: 10.1063/1.869691.
  • Chun, Y.; Chang, J.; Berezin, A.; Mizeraczyk, J. Numerical Modeling of Near Corona Wire Electrohydrodynamic Flow in a Wire-Plate Electrostatic Precipitator. IEEE Trans. Dielectr. Electr. Insul. 2007, 14(1), 119–124. DOI: 10.1109/TDEI.2007.302879.
  • Podliński, J.; Dekowski, J.; Mizeraczyk, J.; Brocilo, D.; Chang, J. S. Electrohydrodynamic Gas Flow in a Positive Polarity Wire-Plate Electrostatic Precipitator and the Related Dust Particle Collection Efficiency. J. Electrostat. 2006, 64(3–4), 259–262. DOI: 10.1016/j.elstat.2005.06.006.
  • Fujishima, H.; Morita, Y.; Okubo, M.; Yamamoto, T. Numerical Simulation of Three-Dimensional Electrohydrodynamics of Spiked-Electrode Electrostatic Precipitators. IEEE Trans. Dielectr. Electr. Insul. 2006, 13(1), 160–166. DOI: 10.1109/TDEI.2006.1593414.
  • Li, S.; Li, M.; Ma, J.; Fu, Y.; Tian, Y.; Shen, X.; Li, J.; Zhu, W.; Ke, Y.; Clack, H. L., et al. Characterization of Electrohydrodynamic Flow in a Plate-Plate Electrostatic Precipitator with a Wire-Cylinder Pre-Charger by Data-Driven Vortex and Residence Time Analysis. Powder Technology. 2022, 397, 117015. DOI: 10.1016/j.powtec.2021.11.059.
  • Yang, X. F.; Kang, Y. M.; Zhong, K. Effects of Geometric Parameters and Electric Indexes on the Performance of Laboratory-Scale Electrostatic Precipitators. J. Hazard. Mater. 2009, 169(1–3), 941–947. DOI: 10.1016/j.jhazmat.2009.04.054.
  • Nóbrega, S. W., Jr; Coury, S. A.; Federal, J. R.; Carlos, U.; Washington, D. S.; Cx, V.; Sp SC, P. Evaluation of the Performance of a Wire-Plate Electrostatic Precipitator. Brazilian J. Chem. Eng. 2001, 18(3), 313–325. DOI: http://dx.doi.org/10.1590/S0104-66322001000300010.
  • Ortiz, F. J. G.; Navarrete, B.; Cañadas, L. Dimensional Analysis for Assessing the Performance of Electrostatic Precipitators. Fuel Process. Technol. 2010, 91(12), 1783–1793. DOI: 10.1016/j.fuproc.2010.07.013.
  • Dong, M.; Zhou, F.; Shang, Y.; Li, S. Numerical Study on Electrohydrodynamic Flow and Fine-Particle Collection Efficiency in a Spike Electrode-Plate Electrostatic Precipitator. Powder Technol. 2019, 351, 71–83. DOI: 10.1016/j.powtec.2019.03.046.
  • Wördenweber, R. Ferroelectric Thin Layers. In Comprehensive Semiconductor Science and Technology; Bhattacharya, P., Fornari, R., Kamimura, H. Eds.; Elsevier: Amsterdam, 2011; pp. 177–205.
  • Xiao, D. Fundamental Theory of Townsend Discharge. In Gas Discharge and Gas Insulation; Xiao, D. Eds.; Springer: Berlin, Heidelberg, 2016; pp. 47–88. DOI: 10.1007/978-3-662-48041-0_3.
  • Forsyth, B.; Liu, B. Y. H.; Romay, F. J. Particle Charge Distribution Measurement for Commonly Generated Laboratory Aerosols. Aerosol. Sci. Technol. 1998, 28(6), 489–501. DOI: 10.1080/02786829808965540.
  • Wei, W.; Gu, Z. Electrification of Particulate Entrained Fluid Flows—Mechanisms, Applications, and Numerical Methodology. Phys. Rep. 2015, 600, 1–53. DOI: 10.1016/j.physrep.2015.10.001.
  • Townsend, J. S. Electricity in Gases; Clarendon Press: Oxford, UK, 1915.
  • Morán, J.; Li, L.; Ouyang, H.; Qiao, Y.; Olson, B. A.; Hogan, C. J. Characterization of the Bidimensional Size and Charge Distribution of Sub- and Supermicrometer Particles in an Electrostatic Precipitator. Powder Technol. 2023, 425, 118578. DOI: 10.1016/j.powtec.2023.118578.
  • Li, M.; Christofides, P. D. Collection Efficiency of Nanosize Particles in a Two-Stage Electrostatic Precipitator. Ind. Eng. Chem. Res. 2006, 45(25), 8484–8491. DOI: 10.1021/ie060101r.
  • Xu, J.; Chen, P.; Gu, Z.; Xi, J.; Cai, J. Performances of a New Type High-Temperature Tubular Electrostatic Precipitator with Rare-Earth Tungsten Cathode. Sep. Purif. Technol. 2022, 280, 119820. DOI: 10.1016/j.seppur.2021.119820.
  • Cid, N.; Patiño, D.; Pérez-Orozco, R.; Porteiro, J. Performance Analysis of a Small-Scale Electrostatic Precipitator with Biomass Combustion. Biomass Bioenergy. 2022, 162, 106500. DOI: 10.1016/j.biombioe.2022.106500.
  • Shi, Y.; Fang, M.; Wang, Q.; Yan, K.; Cen, J.; Zeng, W.; Luo, Z. Numerical Study of the Effect of Temperature and H2O Concentration on the Electrostatic Precipitator Characteristics at High Temperatures. Powder Technol. 2022, 411, 117913. DOI: 10.1016/j.powtec.2022.117913.
  • Riehle, C. Electrostatic precipitation. In Gas Cleaning in Demanding Applications; Seville, J. P. K. Ed.; Springer: Netherlands, Dordrecht, 1997b; pp. 193–228.
  • Guo, B.-Y.; Yu, A.-B.; Guo, J. Numerical Modeling of Electrostatic Precipitation: Effect of Gas Temperature. J. Aerosol. Sci. 2014, 77, 102–115. DOI: 10.1016/j.jaerosci.2014.07.009.
  • Schmatloch, V.; Rauch, S. Design and Characterisation of an Electrostatic Precipitator for Small Heating Appliances. J. Electrostat. 2005, 63(2), 85–100. DOI: 10.1016/j.elstat.2004.08.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.