34
Views
0
CrossRef citations to date
0
Altmetric
Membrane

Accurate measurement of micro gas flow rates for comprehensive evaluation of polymeric membranes applicable in gaseous separations

, &
Pages 799-820 | Received 02 Aug 2023, Accepted 21 Feb 2024, Published online: 02 May 2024

References

  • Sidhikku Kandath Valappil, R.; Ghasem, N.; Al-Marzouqi, M. Current and Future Trends in Polymer Membrane-Based Gas Separation Technology: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 98, 103–129. DOI: 10.1016/j.jiec.2021.03.030.
  • Castro-Muñoz, R.; Agrawal, K. V.; Coronas, J. Ultrathin Permselective Membranes: The Latent Way for Efficient Gas Separation. Rsc. Adv. 2020, 10(21), 12653–12670. DOI: 10.1039/D0RA02254C.
  • Fraga, S. C.; Monteleone, M.; Lanc, M.; Esposito, E.; Fuoco, A.; Giorno, L.; Pilnacek, K.; Friess, K.; Carta, M.; McKeown, N. B., et al. A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Method Development and Validation. J. Membr. Sci. 2018, 561, 39–58. DOI: 10.1016/j.memsci.2018.04.029.
  • Rose, I.; Bezzu, C. G.; Carta, M.; Comesaña-Gándara, B.; Lasseuguette, E.; Ferrari, M. C.; Bernardo, P.; Clarizia, G.; Fuoco, A.; Jansen, J. C., et al. Polymer Ultrapermeability from the Inefficient Packing of 2D Chains. Nat. Mater. 2017, 16(9), 932–937.
  • Du, N.; Park, H. B.; Robertson, G. P.; Dal-Cin, M. M.; Visser, T.; Scoles, L.; Guiver, M. D. Polymer Nanosieve Membranes for CO2-Capture Applications. Nat. Mater. 2011, 10(5), 372–375. DOI: 10.1038/nmat2989.
  • Ahmad, M. Z.; Navarro, M.; Lhotka, M.; Zornoza, B.; Téllez, C.; de Vos, W. M.; Benes, N. E.; Konnertz, N. M.; Visser, T.; Semino, R., et al. Enhanced Gas Separation Performance of 6FDA-DAM Based Mixed Matrix Membranes by Incorporating MOF UiO-66 and Its Derivatives. J. Membr. Sci. 2018, 558, 64–77. DOI: 10.1016/j.memsci.2018.04.040.
  • Xiang, F.; Marti, A. M.; Hopkinson, D. P. Layer-By-Layer Assembled Polymer/MOF Membrane for H2/CO2 Separation. J. Membr. Sci. 2018, 556, 146–153. DOI: 10.1016/j.memsci.2018.03.081.
  • Aykac Ozen, H.; Ozturk, B. Gas Separation Characteristic of Mixed Matrix Membrane Prepared by MOF-5 Including Different Metals. Sep. Purif. Technol. 2019, 211, 514–521. DOI: 10.1016/j.seppur.2018.09.052.
  • Cheng, Y.; Ying, Y.; Zhai, L.; Liu, G.; Dong, J.; Wang, Y.; Christopher, M. P.; Long, S.; Wang, Y.; Zhao, D. Mixed Matrix Membranes Containing MOF@COF Hybrid Fillers for Efficient CO2/CH4 Separation. J. Membr. Sci. 2019, 573, 97–106. DOI: 10.1016/j.memsci.2018.11.060.
  • Hartini Suhaimi, N.; Fong Yeong, Y.; Jusoh, N.; Farid Mohd Asri, M. Amine-Functionalized Metal Organic Framework (MOF)/6FDA-Durene Composite Membranes for CO2 Removal from CH4. Materials Today: Proceedings; Ramada Plaza Hotel, Melaka, Malaysia; 2019, 19:1730–1737.
  • Ishaq, S.; Tamime, R.; Bilad, M. R.; Khan, A. L. Mixed Matrix Membranes Comprising of Polysulfone and Microporous Bio-MOF-1: Preparation and Gas Separation Properties. Sep. Purif. Technol. 2019, 210, 442–451. DOI: 10.1016/j.seppur.2018.08.031.
  • Sun, J.; Li, Q.; Chen, G.; Duan, J.; Liu, G.; Jin, W. MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Sep. Purif. Technol. 2019, 217, 229–239. DOI: 10.1016/j.seppur.2019.02.036.
  • Thür, R.; Van Velthoven, N.; Slootmaekers, S.; Didden, J.; Verbeke, R.; Smolders, S.; Dickmann, M.; Egger, W.; De Vos, D.; Vankelecom, I. F. J. Bipyridine-Based UiO-67 As Novel Filler in Mixed-Matrix Membranes for CO2-Selective Gas Separation. J. Membr. Sci. 2019, 576, 78–87. DOI: 10.1016/j.memsci.2019.01.016.
  • Ahmad, M. Z.; Peters, T. A.; Konnertz, N. M.; Visser, T.; Téllez, C.; Coronas, J.; Fila, V.; de Vos, W. M.; Benes, N. E. High-Pressure CO2/CH4 Separation of Zr-MOFs Based Mixed Matrix Membranes. Sep. Purif. Technol. 2020, 230, 115858. DOI: 10.1016/j.seppur.2019.115858.
  • Jia, M.; Zhang, X.-F.; Feng, Y.; Zhou, Y.; Yao, J. In-Situ Growing ZIF-8 on Cellulose Nanofibers to Form Gas Separation Membrane for CO2 Separation. J. Membr. Sci. 2020, 595, 117579. DOI: 10.1016/j.memsci.2019.117579.
  • Majumdar, S.; Tokay, B.; Martin-Gil, V.; Campbell, J.; Castro-Muñoz, R.; Ahmad, M. Z.; Fila, V. Mg-MOF-74/polyvinyl Acetate (PVAc) Mixed Matrix Membranes for CO2 Separation. Sep. Purif. Technol. 2020, 238, 116411. DOI: 10.1016/j.seppur.2019.116411.
  • Safak Boroglu, M.; Yumru, A. B. Gas Separation Performance of 6FDA-DAM-ZIF-11 Mixed-Matrix Membranes for H2/CH4 and CO2/CH4 Separation. Sep. Purif. Technol. 2017, 173, 269–279. DOI: 10.1016/j.seppur.2016.09.037.
  • Chang, H.; Wang, Y.; Xiang, L.; Liu, D.; Wang, C.; Pan, Y. Improved H2/CO2 Separation Performance on Mixed-Linker ZIF-7 Polycrystalline Membranes. Chem. Eng. Sci. 2018, 192, 85–93. DOI: 10.1016/j.ces.2018.07.027.
  • Wu, X.; Liu, W.; Wu, H.; Zong, X.; Yang, L.; Wu, Y.; Ren, Y.; Shi, C.; Wang, S.; Jiang, Z. Nanoporous ZIF-67 Embedded Polymers of Intrinsic Microporosity Membranes with Enhanced Gas Separation Performance. J. Membr. Sci. 2018, 548, 309–318. DOI: 10.1016/j.memsci.2017.11.038.
  • Barooah, M.; Mandal, B. Synthesis, Characterization and CO2 Separation Performance of Novel PVA/PG/ZIF-8 Mixed Matrix Membrane. J. Membr. Sci. 2019, 572, 198–209. DOI: 10.1016/j.memsci.2018.11.001.
  • Chen, B.; Wan, C.; Kang, X.; Chen, M.; Zhang, C.; Bai, Y.; Dong, L. Enhanced CO2 Separation of Mixed Matrix Membranes with ZIF-8@go Composites as Fillers: Effect of Reaction Time of ZIF-8@go. Sep. Purif. Technol. 2019, 223, 113–122. DOI: 10.1016/j.seppur.2019.04.063.
  • Hatami, A.; Salahshoori, I.; Rashidi, N.; Nasirian, D. The Effect of ZIF-90 Particle in Pebax/PSF Composite Membrane on the Transport Properties of CO2, CH4 and N2 Gases by Molecular Dynamics Simulation Method. Chin. J. Chem. Eng. 2019, 28(9), 2267–2284. DOI: 10.1016/j.cjche.2019.12.011.
  • Lai, W.-H.; Zhuang, G.-L.; Tseng, H.-H.; Wey, M.-Y. Creation of Tiny Defects in ZIF-8 by Thermal Annealing to Improve the CO2/N2 Separation of Mixed Matrix Membranes. J. Membr. Sci. 2019, 572, 410–418. DOI: 10.1016/j.memsci.2018.11.010.
  • Feng, S.; Bu, M.; Pang, J.; Fan, W.; Fan, L.; Zhao, H.; Yang, G.; Guo, H.; Kong, G.; Sun, H., et al. Hydrothermal Stable ZIF-67 Nanosheets via Morphology Regulation Strategy to Construct Mixed-Matrix Membrane for Gas Separation. J. Membr. Sci. 2020, 593, 117404. DOI: 10.1016/j.memsci.2019.117404.
  • Gao, J.; Mao, H.; Jin, H.; Chen, C.; Feldhoff, A.; Li, Y. Functionalized ZIF-7/Pebax® 2533 Mixed Matrix Membranes for CO2/N2 Separation. Microporous Mesoporous. Mater. 2020, 297, 110030. DOI: 10.1016/j.micromeso.2020.110030.
  • Liu, J.; Liu, C.; Huang, A. Co-Based Zeolitic Imidazolate Framework ZIF-9 Membranes Prepared on α-Al2O3 Tubes Through Covalent Modification for Hydrogen Separation. Int. J. Hydrogen Energy. 2020, 45(1), 703–711. DOI: 10.1016/j.ijhydene.2019.10.230.
  • Meshkat, S.; Kaliaguine, S.; Rodrigue, D. Comparison Between ZIF-67 and ZIF-8 in Pebax® MH-1657 Mixed Matrix Membranes for CO2 Separation. Sep. Purif. Technol. 2020, 235, 116150. DOI: 10.1016/j.seppur.2019.116150.
  • Farashi, Z.; Azizi, S.; Rezaei-Dasht Arzhandi, M.; Noroozi, Z.; Azizi, N. Improving CO2/CH4 Separation Efficiency of Pebax-1657 Membrane by Adding Al2O3 Nanoparticles in Its Matrix. J. Nat. Gas Sci. Eng. 2019, 72, 103019. DOI: 10.1016/j.jngse.2019.103019.
  • Amirkhani, F.; Harami, H. R.; Asghari, M. CO2/CH4 Mixed Gas Separation Using Poly(ether-B-Amide)-ZnO Nanocomposite Membranes: Experimental and Molecular Dynamics Study. Polym. Test. 2020, 86, 106464. DOI: 10.1016/j.polymertesting.2020.106464.
  • Yampolskii, Y. 2 - Fundamental Science of Gas and Vapour Separation in Polymeric Membranes in Basile. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications; Nunes, A., Ed. Woodhead Publishing: Cambridge, UK, 2011; pp 22–55.
  • Beckman, I. N.; Syrtsova, D. А.; Shalygin, M. G.; Kandasamy, P.; Teplyakov, V. V. Transmembrane Gas Transfer: Mathematics of Diffusion and Experimental Practice. J. Membr. Sci. 2020, 601, 117737. DOI: 10.1016/j.memsci.2019.117737.
  • Lashkari, S.; Tran, A.; Kruczek, B. Effect of Back Diffusion and Back Permeation of Air on Membrane Characterization in Constant Pressure System. J. Membr. Sci. 2008, 324(1), 162–172. DOI: 10.1016/j.memsci.2008.07.006.
  • He, Z.; Goh, K. L.; Feng, X.; Wang, K. Prevention of Pathogen Microorganisms at Indoor Air Ventilation System Using Synthesized Copper Nanoparticles. Can. J. Chem. Eng. 2021, 100(8), 1739–1746. n/a(n/a). DOI: 10.1002/cjce.24272.
  • Sanchez, J.; Gijiu, C. L.; Hynek, V.; Muntean, O.; Julbe, A. The Application of Transient Time-Lag Method for the Diffusion Coefficient Estimation on Zeolite Composite Membranes. Sep. Purif. Technol. 2001, 25(1–3), 467–474. DOI: 10.1016/S1383-5866(01)00076-4.
  • Al-Ismaily, M.; Wijmans, J. G.; Kruczek, B. A Shortcut Method for Faster Determination of Permeability Coefficient from Time Lag Experiments. J. Membr. Sci. 2012, 423-424, 165–174. DOI: 10.1016/j.memsci.2012.08.009.
  • Daynes, H. A. The Process of Diffusion Through a Rubber Membrane. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1920, 97(685), 286–307.
  • Lomax, M. Permeation of Gases and Vapours Through Polymer Films and Thin Sheet—Part I. Polym. Test. 1980, 1(2), 105–147. DOI: 10.1016/0142-9418(80)90037-9.
  • Levy, A. The Accuracy of the Bubble Meter Method for Gas Flow Measurements. J. Sci. Inst. 1964, 41(7), 449–453. DOI: 10.1088/0950-7671/41/7/309.
  • Lashkari, S.; Kruczek, B. Development of a Fully Automated Soap Flowmeter for Micro Flow Measurements. Flow Meas. Instrum. 2008, 19(6), 397–403. DOI: 10.1016/j.flowmeasinst.2008.08.001.
  • Moore, T. T.; Damle, S.; Williams, P. J.; Koros, W. J. Characterization of Low Permeability Gas Separation Membranes and Barrier Materials; Design and Operation Considerations. J. Membr. Sci. 2004, 245(1–2), 227–231. DOI: 10.1016/j.memsci.2004.07.017.
  • Tabe Mohammadi, A.; Matsuura, T.; Sourirajan, S. Design and Construction of Gas Permeation System for the Measurement of Low Permeation Rates and Permeate Compositions. J. Membr. Sci. 1995, 98(3), 281–286. DOI: 10.1016/0376-7388(94)00204-C.
  • Al-Qasas, N.; Thibault, J.; Kruczek, B. A New Characterization Method of Membranes with Nonlinear Sorption Isotherm Systems Based on Continuous Upstream and Downstream Time-Lag Measurements. J. Membr. Sci. 2017, 542, 91–101. DOI: 10.1016/j.memsci.2017.07.039.
  • Al-Qasas, N.; Thibault, J.; Kruczek, B. The Effect of the Downstream Pressure Accumulation on the Time-Lag Accuracy for Membranes with Non-Linear Isotherms. J. Membr. Sci. 2016, 511, 119–129. DOI: 10.1016/j.memsci.2016.03.047.
  • Lashkari, S.; Kruczek, B. Effect of Resistance to Gas Accumulation in Multi-Tank Receivers on Membrane Characterization by the Time Lag Method. Analytical Approach for Optimization of the Receiver. J. Membr. Sci. 2010, 360(1–2), 442–453. DOI: 10.1016/j.memsci.2010.05.043.
  • Selyanchyn, R.; Fujikawa, S. Membrane Thinning for Efficient CO2 Capture. Sci. Technol. Adv. Mater. 2017, 18(1), 816–827. DOI: 10.1080/14686996.2017.1386531.
  • Wang, L.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Fundamental Transport Mechanisms, Fabrication and Potential Applications of Nanoporous Atomically Thin Membranes. Nat. Nanotechnol. 2017, 12(6), 509–522. DOI: 10.1038/nnano.2017.72.
  • Goh, P. S.; Wong, K. C.; Yogarathinam, L. T.; Ismail, A. F.; Abdullah, M. S.; Ng, B. C. Surface Modifications of Nanofillers for Carbon Dioxide Separation Nanocomposite Membrane. Symmetry. 2020, 12(7), 1102. DOI: 10.3390/sym12071102.
  • Muthukumaraswamy Rangaraj, V.; Wahab, M. A.; Reddy, K. S. K.; Kakosimos, G.; Abdalla, O.; Favvas, E. P.; Reinalda, D.; Geuzebroek, F.; Abdala, A.; Karanikolos, G. N. Metal Organic Framework — Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Front. Chem. 2020, 8(534). DOI: 10.3389/fchem.2020.00534.
  • Murugiah, P. S.; Oh, P. C.; Lau, K. K. Concatenation of Carbonaceous Nanofillers for Mixed Matrix Membrane Development. IOP Conference Series: Materials Science and Engineering; Kuala Lumpur, Malaysia; 2018, 458:012008.
  • Boutilier, M. S. H.; Sun, C.; O’Hern, S. C.; Au, H.; Hadjiconstantinou, N. G.; Karnik, R. Implications of Permeation Through Intrinsic Defects in Graphene on the Design of Defect-Tolerant Membranes for Gas Separation. ACS Nano. 2014, 8(1), 841–849. DOI: 10.1021/nn405537u.
  • Ma, L.; Svec, F.; Lv, Y.; Tan, T. Engineering of the Filler/Polymer Interface in Metal–Organic Framework-Based Mixed-Matrix Membranes to Enhance Gas Separation. Chem. Asian J. 2019, 14(20), 3502–3514. DOI: 10.1002/asia.201900843.
  • Vu, M.-T.; Monsalve-Bravo, G. M.; Lin, R.; Li, M.; Bhatia, S. K.; Smart, S. Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membranes. 2021, 11(5), 328. DOI: 10.3390/membranes11050328.
  • Gnus, M.; Dudek, G.; Turczyn, R. The Influence of Filler Type on the Separation Properties of Mixed-Matrix Membranes. Chem. Pap. 2018, 72(5), 1095–1105. DOI: 10.1007/s11696-017-0363-9.
  • Chen, X. Y.; Nik, O. G.; Rodrigue, D.; Kaliaguine, S. Mixed Matrix Membranes of Aminosilanes Grafted FAU/EMT Zeolite and Cross-Linked Polyimide for CO2/CH4 Separation. Polymer. 2012, 53(15), 3269–3280. DOI: 10.1016/j.polymer.2012.03.017.
  • Nagar, H.; Vadthya, P.; Prasad, N. S.; Sridhar, S. Air Separation by Facilitated Transport of Oxygen Through a Pebax Membrane Incorporated with a Cobalt Complex. Rsc. Adv. 2015, 5(93), 76190–76201. DOI: 10.1039/C5RA10755E.
  • Deveci, S.; Oksuz, Y.; Birtane, T.; Oner, M. Application of Constant Volume – Variable Pressure (Time-Lag) Method to Measure Oxygen Gas Diffusion Through Polypropylene Pipes. Polym. Test. 2016, 55, 287–296. DOI: 10.1016/j.polymertesting.2016.08.026.
  • Oyabu, I.; Kawamura, K.; Kitamura, K.; Dallmayr, R.; Kitamura, A.; Sawada, C.; Severinghaus, J. P.; Beaudette, R.; Orsi, A.; Sugawara, S., et al. New Technique for High-Precision, Simultaneous Measurements of CH4, N2O and CO2 Concentrations; Isotopic and Elemental Ratios of N2, O2 and Ar; and Total Air Content in Ice Cores by Wet Extraction. Atmos. Meas. Tech. 2020, 13(12), 6703–6731.
  • Nevshupa, R. A.; de Segovia, J. L. Outgassing from Stainless Steel Under Impact in UHV. Vacuum. 2002, 64(3), 425–430. DOI: 10.1016/S0042-207X(01)00345-1.
  • Hoorfar, M.; Alcheikhhamdon, Y.; Chen, B. A Novel Tool for the Modeling, Simulation and Costing of Membrane Based Gas Separation Processes Using Aspen HYSYS: Optimization of the CO2/CH4 Separation Process. Comput. Chem. Eng. 2018, 117, 11–24. DOI: 10.1016/j.compchemeng.2018.05.013.
  • Ahmad, F.; Lau, K. K.; Shariff, A. M.; Murshid, G. Process Simulation and Optimal Design of Membrane Separation System for CO2 Capture from Natural Gas. Comput. Chem. Eng. 2012, 36, 119–128. DOI: 10.1016/j.compchemeng.2011.08.002.
  • Chernova, E.; Petukhov, D.; Boytsova, O.; Alentiev, A.; Budd, P.; Yampolskii, Y.; Eliseev, A. Enhanced Gas Separation Factors of Microporous Polymer Constrained in the Channels of Anodic Alumina Membranes. Sci. Rep. 2016, 6(1), 31183. DOI: 10.1038/srep31183.
  • Wu, H.; Kruczek, B.; Thibault, J. Impact of Measuring Devices and Data Analysis on the Determination of Gas Membrane Properties. J. Membr. Sci. Res. 2018, 4(1), 4–14.
  • Lashkari, S.; Kruczek, B. Reconciliation of Membrane Properties from the Data Influenced by Resistance to Accumulation of Gasses in Constant Volume Systems. Desalination. 2012, 287, 178–189. DOI: 10.1016/j.desal.2011.01.071.
  • Dhingra, S. S.; Marand, E. Mixed Gas Transport Study Through Polymeric Membranes. J. Membr. Sci. 1998, 141(1), 45–63. DOI: 10.1016/S0376-7388(97)00285-8.
  • Taveira, P.; Mendes, A.; Costa, C. On the Determination of Diffusivity and Sorption Coefficients Using Different Time-Lag Models. J. Membr. Sci. 2003, 221(1), 123–133. DOI: 10.1016/S0376-7388(03)00252-7.
  • Zarshenas, K.; Raisi, A.; Aroujalian, A. Mixed Matrix Membrane of Nano-Zeolite NaX/Poly (Ether-Block-Amide) for Gas Separation Applications. J. Membr. Sci. 2016, 510, 270–283. DOI: 10.1016/j.memsci.2016.02.059.
  • Fuoco, A.; Rizzuto, C.; Tocci, E.; Monteleone, M.; Esposito, E.; Budd, P. M.; Carta, M.; Comesaña-Gándara, B.; McKeown, N. B.; Jansen, J. C. The Origin of Size-Selective Gas Transport Through Polymers of Intrinsic Microporosity. J. Mater. Chem. A. 2019, 7(35), 20121–20126. DOI: 10.1039/C9TA07159H.
  • Peng, N.; Chung, T.-S.; Lai, J.-Y. The Rheology of Torlon® Solutions and Its Role in the Formation of Ultra-Thin Defect-Free Torlon® Hollow Fiber Membranes for Gas Separation. J. Membr. Sci. 2009, 326(2), 608–617. DOI: 10.1016/j.memsci.2008.10.038.
  • D1434-82(2015) 1, A. Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting. ASTM Int: United States. 2015, 15. 10, 13. DOI: 10.1520/D1434-82R15E01.
  • Zhang, B.; Yang, C.; Zheng, Y.; Wu, Y.; Song, C.; Liu, Q.; Wang, Z. Modification of CO2-Selective Mixed Matrix Membranes by a Binary Composition of Poly(ethylene Glycol)/NaY Zeolite. J. Membr. Sci. 2021, 601(2020), 117737. DOI: 10.1016/j.memsci.2021.119239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.