49
Views
0
CrossRef citations to date
0
Altmetric
Adsorption

Co-carbonization of hazelnut shell and lemna minor: its effectiveness in adsorption of crystal violet from an aqueous solution

ORCID Icon
Pages 737-747 | Received 04 Dec 2023, Accepted 24 Apr 2024, Published online: 08 May 2024

References

  • Roy, D. C.; Biswas, S. K.; Saha, A. K.; Sikdar, B.; Rahman, M.; Roy, A. K.; Prodhan, Z. H.; Tang, S.-S. Biodegradation of Crystal Violet Dye by Bacteria Isolated from Textile Industry Effluents. Peer. J. 2018, 6, e5015. DOI: 10.7717/peerj.5015.
  • Li, P.; Su, Y. J.; Wang, Y.; Liu, B.; Sun, L.-M. Bioadsorption of Methyl Violet from Aqueous Solution Onto Pu-Erh Tea Powder. J. Hazard. Mater. 2010, 179(1–3), 43–48. DOI: 10.1016/J.JHAZMAT.2010.02.054.
  • Lellis, B.; Fávaro-Polonio, C. Z.; Pamphile, J. A.; Polonio, J. C. Effects of Textile Dyes on Health and the Environment and Bioremediation Potential of Living Organisms. Biotech. Res. Innov. 2019, 3(2), 275–290. DOI: 10.1016/j.biori.2019.09.001.
  • Zhang, H.; Wu, J.; Wang, Z.; Zhang, D. Electrochemical Oxidation of Crystal Violet in the Presence of Hydrogen Peroxide. J. Chem. Technol. Biotechnol. 2010, 85(11), 1436–1444. DOI: 10.1002/jctb.2447.
  • Trinh, T. T. P. N. X.; Nguyet, D. M.; Quan, T. H., Trinh, N. M. H.; Trinh, D. B.; Tai, L. T.; Lan, N. T.; Trinh, D. N.; Dat, N. M.; Nam, H. M.; Phong, M. T.; Hieu, N. H. Preparing Three-Dimensional Graphene Aerogels by Chemical Reducing Method: Investigation of Synthesis Condition and Optimization of Adsorption Capacity of Organic Dye. Surf. Interfaces. 2021, 23, 101023. DOI: 10.1016/J.SURFIN.2021.101023.
  • Doondani, P.; Gomase, V.; Saravanan, D.; Jugade, R. M. Chitosan Coated Cotton-Straw-Biochar As an Admirable Adsorbent for Reactive Red Dye. Res. Eng. 2022, 15, 100515. DOI: 10.1016/j.rineng.2022.100515.
  • Khapre, M.; Shekhawat, A.; Saravanan, D.; Pandey, S.; Jugade, R. Mesoporous Fe–Al-doped Cellulose for the Efficient Removal of Reactive Dyes. Mater. Adv. 2022, 3(7), 3278–3285. DOI: 10.1039/d2ma00146b.
  • Raghu, S.; Ahmed Basha, C. Chemical or Electrochemical Techniques, Followed by Ion Exchange, for Recycle of Textile Dye Wastewater. J. Hazard. Mater. 2007, 149(2), 324–330. DOI: 10.1016/j.jhazmat.2007.03.087.
  • Doondani, P.; Jugade, R.; Gomase, V.; Shekhawat, A.; Bambal, A.; Pandey, S. Chitosan/Graphite/Polyvinyl Alcohol Magnetic Hydrogel Microspheres for Decontamination of Reactive Orange 16 Dye. Water. 2022, 14(21), 3411. DOI: 10.3390/w14213411.
  • Vithalkar, S. H.; Jugade, R. M. Adsorptive Removal of Crystal Violet from Aqueous Solution by Cross-Linked Chitosan Coated Bentonite. Mater. Today Proc. 2020, 29, 1025–1032. DOI: 10.1016/j.matpr.2020.04.705.
  • Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Sep. Purif. Technol. 2020, 235, 116213. DOI: 10.1016/j.seppur.2019.116213.
  • Kaykhaii, M.; Sasani, M.; Marghzari, S. Removal of Dyes from the Environment by Adsorption Process. Chem. Mater. Eng. 2018, 6, 31–35. DOI: 10.13189/cme.2018.060201.
  • Haider Jaffari, Z.; Jeong, H.; Shin, J., Kwak, J.; Son, C.; Lee, Y.-G.; Kim, S.; Chon, K.; Hwa Cho, K. Machine-Learning-Based Prediction and Optimization of Emerging contaminants’ Adsorption Capacity on Biochar Materials. Chem. Eng. J. 2023, 466, 143073. DOI: 10.1016/j.cej.2023.143073.
  • Olam, M. Production of Activated Carbon from Waste PET’ Chars. Int. J. Environ. Monit. Anal. 2022, 10(2), 39. DOI: 10.11648/j.ijema.20221002.13.
  • Sewu, D. D.; Boakye, P.; Woo, S. H. Highly Efficient Adsorption of Cationic Dye by Biochar Produced with Korean Cabbage Waste. Biores. Technol. 2017, 224, 206–213. DOI: 10.1016/j.biortech.2016.11.009.
  • Al-Ma’abreh, A. M.; Abuassaf, R. A.; Hmedat, D. A.; Al Khabbas, M.; Awaideh, S.; Edris, G. Comparative Study for the Removal of Crystal Violet from Aqueous Solution by Natural Biomass Adsorbents of a Pinecone, Cypress, and Oak: Kinetics, Thermodynamics, and Isotherms. Desalin. Water. Treat. 2022, 274, 245–260. DOI: 10.5004/dwt.2022.28895.
  • Tandekar, S.; Korde, S.; Jugade, R. M. Red Mud-Chitosan Microspheres for Removal of Coexistent Anions of Environmental Significance from Water Bodies. Carbohydr. Polym. Technol. Appl. 2021, 2, 100128. DOI: 10.1016/j.carpta.2021.100128.
  • Jabar, J. M.; Adebayo, M. A.; Owokotomo, I. A.; Odusote, Y. A.; Yılmaz, M. Synthesis of High Surface Area Mesoporous ZnCl2–Activated Cocoa (Theobroma Cacao L) Leaves Biochar Derived via Pyrolysis for Crystal Violet Dye Removal. Heliyon. 2022, 8(10), e10873. DOI: 10.1016/j.heliyon.2022.e10873.
  • Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biomass Type Effect on Biochar Surface Characteristic and Adsorption Capacity Relative to Silver and Copper. Fuel. 2020, 278, 118168. DOI: 10.1016/j.fuel.2020.118168.
  • Khamkeaw, A.; Asavamongkolkul, T.; Perngyai, T.; Jongsomjit, B.; Phisalaphong, M. Interconnected Micro, Meso, and Macro Porous Activated Carbon from Bacterial Nanocellulose for Superior Adsorption Properties and Effective Catalytic Performance. Mol. 2020, 25(18), 4063. DOI: 10.3390/MOLECULES25184063.
  • Hu, Z.; Srinivasan, M. P. Mesoporous High-Surface-Area Activated Carbon. Microporous. Mesoporous. Mater. 2001, 43(3), 267–275. DOI: 10.1016/S1387-1811(00)00355-3.
  • Caturla, F.; Molina-Sabio, M.; Rodríguez-Reinoso, F. Preparation of Activated Carbon by Chemical Activation with ZnCl2. Carbon. 1991, 29(7), 999–1007. DOI: 10.1016/0008-6223(91)90179-M.
  • Paraskeva, P.; Kalderis, D.; Diamadopoulos, E. Production of Activated Carbon from Agricultural By-Products. J. Chem. Technol. Biotechnol. 2008, 83(5), 581–592. DOI: 10.1002/JCTB.1847.
  • Paredes-Laverde, M.; Salamanca, M.; Diaz-Corrales, J. D.; Flórez, E.; Silva-Agredo, J.; Torres-Palma, R. A. Understanding the Removal of an Anionic Dye in Textile Wastewaters by Adsorption on ZnCl2activated Carbons from Rice and Coffee Husk Wastes: A Combined Experimental and Theoretical Study. J. Environ. Chem. Eng. 2021, 9(4), 105685. DOI: 10.1016/j.jece.2021.105685.
  • Nandi, B. K.; Goswami, A.; Das, A. K.; Mondal, B.; Purkait, M. K. Kinetic and Equilibrium Studies on the Adsorption of Crystal Violet Dye Using Kaolin As an Adsorbent. Sep. Sci. Technol. 2008, 43(6), 1382–1403. DOI: 10.1080/01496390701885331.
  • Mani, S.; Bharagava, R. N. Exposure to Crystal Violet, Its Toxic, Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety. Rev. Environ. Contam Toxicol. 2016, 237, 71–104. DOI: 10.1007/978-3-319-23573-8_4.
  • Nizamuddin, S.; Baloch, H. A.; Griffin, G. J.; Mubarak, M. N.; Bhutto, A. W.; Abro, R.; Mazari, S. A.; Ali, B. S. An Overview of Effect of Process Parameters on Hydrothermal Carbonization of Biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. DOI: 10.1016/j.rser.2016.12.122.
  • Gostyńska, J.; Pankiewicz, R.; Romanowska-Duda, Z.; Messyasz, B. Overview of Allelopathic Potential of Lemna minor L. Obtained from a Shallow Eutrophic Lake. Mol. 2022, 27(11), 3428. DOI: 10.3390/molecules27113428.
  • Nandanwar, P. M.; Saravanan, D.; Bakshe, P.; Jugade, R. M. Chitosan Entrapped Microporous Activated Carbon Composite As a Supersorbent for Remazol Brilliant Blue R. Mater. Adv. 2022, 3(13), 5488–5496. DOI: 10.1039/D2MA00508E.
  • Olam, M.; Gündüz, F.; Karaca, H. Production of Activated Carbon from Duckweed and Its Effectiveness in Crystal Violet Adsorption. Biomass Convers. Biorefinery. 2023, 1–16. DOI: 10.1007/s13399-023-04429-w.
  • Payakkawan, P.; Areejit, S.; Sooraksa, P. Design, Fabrication and Operation of Continuous Microwave Biomass Carbonization System. Rene. Ener. 2014, 66, 49–55. DOI: 10.1016/j.renene.2013.10.042.
  • Mohanty, K.; Naidu, J. T.; Meikap, B. C.; Biswas, M. N. Removal of Crystal Violet from Wastewater by Activated Carbons Prepared from Rice Husk. Ind. Eng. Chem. Res. 2006, 45(14), 5165–5171. DOI: 10.1021/ie060257r.
  • Balci, S.; Doǧu, T.; Yücel, H. Characterization of Activated Carbon Produced from Almond Shell and Hazelnut Shell. J. Chem. Technol. Biotechnol. 1994, 60, 419–426. DOI: 10.1002/jctb.280600413.
  • Al, K.; Başakçılardan Kabakcı, S. Oxygen-Rich Precursors via Glycerol Organosolv Treatment: Preparation of Activated Carbon from Hazelnut Shell and Its Structural Components for Possible Use in Electrodes for Supercapacitors. Int. J. Thermofluids. 2024, 21, 100588. DOI: 10.1016/j.ijft.2024.100588.
  • Lewicka, K. Activated Carbons Prepared from Hazelnut Shells, Walnut Shells and Peanut Shells for High CO2 Adsorption. Polish J. Chem. Technol. 2017, 19(2), 38–43. DOI: 10.1515/pjct-2017-0025.
  • Xie, Y.; Zhang, D.; Jati, G. N. P.; Yang, R.; Zhu, W.; Li, W.; Marin, E.; Pezzotti, G. Effect of Structural and Compositional Alterations on the Specific Capacitance of Hazelnut Shell Activated Carbon. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126951. DOI: 10.1016/j.colsurfa.2021.126951.
  • Al-Musawi, T. J.; McKay, G.; Kadhim, A.; Joybari, M. M.; Balarak, D. Activated Carbon Prepared from Hazelnut Shell Waste and Magnetized by Fe3O4 Nanoparticles for Highly Efficient Adsorption of Fluoride. Biomass Convers. Biorefinery. 2024, 14(4), 4687–4702. DOI: 10.1007/s13399-022-02593-z.
  • Yilmaz, M.; Al-Musawi, T. J.; Saloot, M. K.; Khatibi, A. D.; Baniasadi, M.; Balarak, D. Synthesis of Activated Carbon from Lemna minor Plant and Magnetized with Iron (III) Oxide Magnetic Nanoparticles and Its Application in Removal of Ciprofloxacin. Biomass Conv. Bioref. 2024, 14(1), 649–662. DOI: 10.1007/s13399-021-02279-y.
  • Huang, Y.; Li, S.; Lin, H.; Chen, J. Fabrication and Characterization of Mesoporous Activated Carbon from Lemna minor Using One-Step H3PO4 Activation for Pb(ii) Removal. Appl. Surf. Sci. 2014, 317, 422–431. DOI: 10.1016/j.apsusc.2014.08.152.
  • Lua, A. C.; Lau, F. Y.; Guo, J. Influence of Pyrolysis Conditions on Pore Development of Oil-Palm-Shell Activated Carbons. J. Anal. Appl. Pyrolysis. 2006, 76(1–2), 96–102. DOI: 10.1016/j.jaap.2005.08.001.
  • Tay, J.; Chen, X.; Jeyaseelan, S.; Graham, N. Optimising the Preparation of Activated Carbon from Digested Sewage Sludge and Coconut Husk. Chemosphere. 2001, 44(1), 45–51. DOI: 10.1016/S0045-6535(00)00383-0.
  • Ji, Q.; Li, H. High Surface Area Activated Carbon Derived from Chitin for Efficient Adsorption of Crystal Violet. Diam. Relat. Mater. 2021, 118, 108516. DOI: 10.1016/J.DIAMOND.2021.108516.
  • Raji, Y.; Nadi, A.; Mechnou, I.; Saadouni, M.; Cherkaoui, O.; Zyade, S. High Adsorption Capacities of Crystal Violet Dye by Low-Cost Activated Carbon Prepared from Moroccan Moringa Oleifera Wastes: Characterization, Adsorption and Mechanism Study. Diam. Relat. Mater. 2023, 135, 109834. DOI: 10.1016/j.diamond.2023.109834.
  • Tran, H. N.; Lee, C.-K.; Nguyen, T. V.; Chao, H.-P. Saccharide-Derived Microporous Spherical Biochar Prepared from Hydrothermal Carbonization and Different Pyrolysis Temperatures: Synthesis, Characterization, and Application in Water Treatment. Environ. Technol. 2018, 39(21), 2747–2760. DOI: 10.1080/09593330.2017.1365941.
  • Chahinez, H.-O.; Abdelkader, O.; Leila, Y.; Tran, H. N. One-Stage Preparation of Palm Petiole-Derived Biochar: Characterization and Application for Adsorption of Crystal Violet Dye in Water. Environ. Technol. Innovations. 2020, 19, 100872. DOI: 10.1016/j.eti.2020.100872.
  • Viglašová, E.; Galamboš, M.; Diviš, D.; Danková, Z.; Daňo, M.; Krivosudský, L.; Lengauer, C. L.; Matik, M.; Briančin, J.; Soja, G., et al. Engineered Biochar as a Tool for Nitrogen Pollutants Removal: Preparation, Characterization and Sorption Study. Desalin. Water. Treat. 2020, 191, 318–331. DOI: 10.5004/dwt.2020.25750.
  • Foo, K. Y.; Hameed, B. H. Preparation of Oil Palm (Elaeis) Empty Fruit Bunch Activated Carbon by Microwave-Assisted KOH Activation for the Adsorption of Methylene Blue. Desalination. 2011, 275(1–3), 302–305. DOI: 10.1016/j.desal.2011.03.024.
  • Wang, R.; Li, Y.; Shuai, X.; Liang, R.-H.; Chen, J.; Liu, C.-M. Pectin/Activated Carbon-Based Porous Microsphere for Pb2+ Adsorption: Characterization and Adsorption Behaviour. Polymers. 2021, 13(15), 2453. DOI: 10.3390/polym13152453.
  • Prahas, D.; Kartika, Y.; Indraswati, N.; Ismadji, S. Activated Carbon from Jackfruit Peel Waste by H3PO4 Chemical Activation: Pore Structure and Surface Chemistry Characterization. Chem. Eng. J. 2008, 140(1–3), 32–42. DOI: 10.1016/j.cej.2007.08.032.
  • Guo, Y.; Tan, C.; Sun, J.; Li, W.; Zhang, J.; Zhao, C. Porous Activated Carbons Derived from Waste Sugarcane Bagasse for CO2 Adsorption. Chem. Eng. J. 2020, 381, 122736. DOI: 10.1016/J.CEJ.2019.122736.
  • El-Hendawy, A. N. A. Variation in the FTIR Spectra of a Biomass Under Impregnation, Carbonization and Oxidation Conditions. J. Anal. Appl. Pyrolysis. 2006, 75(2), 159–166. DOI: 10.1016/j.jaap.2005.05.004.
  • Yang, K.; Peng, J.; Srinivasakannan, C.; Zhang, L.; Xia, H.; Duan, X. Preparation of High Surface Area Activated Carbon from Coconut Shells Using Microwave Heating. Bioresour. Technol. 2010, 101(15), 6163–6169. DOI: 10.1016/j.biortech.2010.03.001.
  • Meng, Y. A. Sustainable Approach to Fabricating Ag Nanoparticles/PVA Hybrid Nanofiber and Its Catalytic Activity. Nanomaterials. 2015, 5, 1124–1135. DOI: 10.3390/nano5021124.
  • Luo, J.; Lu, J.; Niu, Q.; Chen, X.; Wang, Z.; Zhang, J. Preparation and Characterization of Benzoic Acid-Modified Activated Carbon for Removal of Gaseous Mercury Chloride. Fuel. 2015, 160, 440–445. DOI: 10.1016/j.fuel.2015.08.002.
  • Salomón, Y. L. D. O.; Georgin, J.; Franco, D. S. P.; Netto, M. S.; Piccilli, D. G. A.; Foletto, E. L.; Oliveira, L. F. S.; Dotto, G. L. High-Performance Removal of 2,4-Dichlorophenoxyacetic Acid Herbicide in Water Using Activated Carbon Derived from Queen Palm Fruit Endocarp (Syagrus Romanzoffiana). J. Environ. Chem. Eng. 2021, 9(1), 104911. DOI: 10.1016/j.jece.2020.104911.
  • Chen, C.; Li, X.; Tong, Z.; Li, Y.; Li, M. Modification Process Optimization, Characterization and Adsorption Property of Granular Fir-Based Activated Carbon. Appl. Surf. Sci. 2014, 315, 203–211. DOI: 10.1016/j.apsusc.2014.07.111.
  • Valizadeh, S.; Younesi, H.; Bahramifar, N. Preparation and Characterization of Activated Carbon from the Cones of Iranian Pine Trees (Pinus Eldarica) by Chemical Activation with H3PO4 and Its Application for Removal of Sodium Dodecylbenzene Sulfonate Removal from Aqueous Solution. Water Conserv. Sci. Eng. 2018, 3(4), 253–265. DOI: 10.1007/s41101-018-0055-5.
  • Ma, A.; Zhao, S.; Luo, H.; Sun, Z.; Sun, K.; Li, H. Mercury Removal from Coal-Fired Flue Gas by the Mechanochemical S/FeS Modified High Sulfur Petroleum Coke. Fuel Process. Technol. 2022, 227, 107105. DOI: 10.1016/j.fuproc.2021.107105.
  • Jin, F.; Li, Y. A FTIR and TPD Examination of the Distributive Properties of Acid Sites on ZSM-5 Zeolite with Pyridine as a Probe Molecule. Catal. Today. 2009, 145(1–2), 101–107. DOI: 10.1016/j.cattod.2008.06.007.
  • Grabowska, B.; Kaczmarska, K.; Cukrowicz, S.; Mączka, E.; Bobrowski, A. Polylactide Used As Filment in 3D Printing – Part 1: FTIR, DRIFT and TG-DTG Studies. J. Cast. Mater. Eng. 2020, 4(3), 48–52. DOI: 10.7494/jcme.2020.4.3.48.
  • Choi, K.; Do, N. J.; Kwon, S. H.; Choi, H. J.; Islam, M. S.; Kao, N. Microfibrillated Cellulose Suspension and Its Electrorheology. Polymers. 2019, 11(12), 2119. DOI: 10.3390/POLYM11122119.
  • Ashok Kumar, R.; Ezhil Vizhi, R.; Sivakumar, N.; Vijayan, N.; Rajan Babu, D. Crystal Growth, Optical and Thermal Studies of Nonlinear Optical γ-Glycine Single Crystal Grown from Lithium Nitrate. Optik (Stuttg). 2012, 123(5), 409–413. DOI: 10.1016/j.ijleo.2011.04.019.
  • Li, X.; Odoom-Wubah, T.; Huang, J. Biosynthesis of Ag–Pd Bimetallic Alloy Nanoparticles Through Hydrolysis of Cellulose Triggered by Silver Sulfate. R.S.C. Adv. 2018, 8(53), 30340–30345. DOI: 10.1039/c8ra04301a.
  • Chen, J. K.; Huang, H. Y.; Tu, C. W.; Lee, L.-T.; Jamnongkan, T.; Huang, C.-F. SI ATRP for the Surface Modifications of Optically Transparent Paper Films Made by TEMPO-Oxidized Cellulose Nanofibers. Polymers. 2022, 14(5), 946. DOI: 10.3390/polym14050946.
  • Khapre, M. A.; Pandey, S.; Jugade, R. M. Glutaraldehyde-Cross-Linked Chitosan–Alginate Composite for Organic Dyes Removal from Aqueous Solutions. Int J Biol Macromol. 2021, 190, 862–875. DOI: 10.1016/J.IJBIOMAC.2021.09.026.
  • Nagarajan, D.; Venkatanarasimhan, S. Copper(ii) Oxide Nanoparticles Coated Cellulose Sponge—An Effective Heterogeneous Catalyst for the Reduction of Toxic Organic Dyes. Environ. Sci. Pollut. Res. 2019, 26(22), 22958–22970. DOI: 10.1007/s11356-019-05419-0.
  • Mishra, A. K.; Arockiadoss, T.; Ramaprabhu, S. Study of Removal of Azo Dye by Functionalized Multi Walled Carbon Nanotubes. Chem. Eng. J. 2010, 162(3), 1026–1034. DOI: 10.1016/j.cej.2010.07.014.
  • Achour, Y.; Bahsis, L.; Ablouh, E. H.; Yazid, H.; Laamari, M. R.; Haddad, M. E. Insight into Adsorption Mechanism of Congo Red Dye Onto Bombax Buonopozense Bark Activated-Carbon Using Central Composite Design and DFT Studies. Surf. Interfaces. 2021, 23, 100977. DOI: 10.1016/j.surfin.2021.100977.
  • Olam, M. Determination of the Effectiveness of Carbons Obtained from the Co-Carbonization of Duckweed and Waste Coffee on Crystal Violet Removal. Bitlis Eren Üniversitesi Fen Bilim Derg. 2023, 12(1), 207–214. DOI: 10.17798/BITLISFEN.1223614.
  • Sabna, V.; Thampi, S. G.; Chandrakaran, S. Adsorption of Crystal Violet Onto Functionalised Multi-Walled Carbon Nanotubes: Equilibrium and Kinetic Studies. Ecotoxicol. Environ. Saf. 2016, 134, 390–397. DOI: 10.1016/j.ecoenv.2015.09.018.
  • AL-Shehri, H. S.; Almudaifer, E.; Alorabi, A. Q.; Alanazi, H. S.; Alkorbi, A. S.; Alharthi, F. A. Effective Adsorption of Crystal Violet from Aqueous Solutions with Effective Adsorbent: Equilibrium, Mechanism Studies and Modeling Analysis. Environ. Pollut. Bioavailab. 2021, 33(1), 214–226. DOI: 10.1080/26395940.2021.1960199.
  • Sun, S.; Zhu, Y.; Gu, Z.; Chu, H.; Hu, C.; Gao, L.; Zhao, X. Adsorption of Crystal Violet on Activated Bamboo Fiber Powder from Water: Preparation, Characterization, Kinetics and Isotherms. R.S.C. Adv. 2023, 13(9), 6108–6123. DOI: 10.1039/d2ra08323j.
  • Qian, W.; Sun, F.; Xu, Y.; Qiu, L.; Liu, C.; Wang, S.; Yan, F. Human Hair-Derived Carbon Flakes for Electrochemical Supercapacitors. Energy Environ. Sci. 2014, 7(1), 379–386. DOI: 10.1039/c3ee43111h.
  • Kukułka, W.; Wenelska, K.; Baca, M.; Chen, X.; Mijowska, E. From Hollow to Solid Carbon Spheres: Time-Dependent Facile Synthesis. Nanomaterials. 2018, 8(10), 861. DOI: 10.3390/nano8100861.
  • Priya, M.; Mahadevan, C. K. Preparation and Dielectric Properties of Oxide Added NaCl–KCl Polycrystals. Phys. B Condens. Matter. 2008, 403(1), 67–74. DOI: 10.1016/j.physb.2007.08.009.
  • Guo, C.; Huang, D.; Su, Q. Methods to Improve the Fluorescence Intensity of CaS: Eu2+ Red-Emitting Phosphor for White LED. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2006, 130, 189–193. DOI: 10.1016/j.mseb.2006.03.008.
  • Khajonrit, J.; Sichumsaeng, T.; Kalawa, O.; Chaisit, S.; Chinnakorn, A.; Chanlek, N.; Maensiri, S. Mangosteen Peel-Derived Activated Carbon for Supercapacitors. Prog. Nat. Sci.: Mater. Int. 2022, 32(5), 570–578. DOI: 10.1016/j.pnsc.2022.09.004.
  • Gao, Y.; Yue, Q.; Gao, B.; Li, A. Insight into Activated Carbon from Different Kinds of Chemical Activating Agents: A Review. Sci. Total Environ. 2020, 746, 141094. DOI: 10.1016/j.scitotenv.2020.141094.
  • Zhang, N.; Shen, Y. One-Step Pyrolysis of Lignin and Polyvinyl Chloride for Synthesis of Porous Carbon and Its Application for Toluene Sorption. Bioresources Technol. 2019, 284, 325–332. DOI: 10.1016/j.biortech.2019.03.149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.