Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 2
808
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Ionic liquids as a tunable solvent and modifier for biocatalysis

, , , , , , , & show all
Pages 484-530 | Received 17 Jan 2022, Accepted 03 May 2022, Published online: 31 May 2022

References

  • Sheldon, R. A.; Woodley, J. M. Role of Biocatalysis in Sustainable Chemistry. Chem. Rev. 2018, 118, 801–838. DOI: 10.1021/acs.chemrev.7b00203.
  • Sharma, A.; Wakode, S.; Sharma, S.; Fayaz, F.; Pottoo, F. H. Methods and Strategies Used in Green Chemistry: A Review. Curr. Org. Chem. 2020, 24, 2555–2565. DOI: 10.2174/1385272824999200802025233.
  • Wu, S. K.; Snajdrova, R.; Moore, J. C.; Baldenius, K.; Bornscheuer, U. T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Edit. 2021, 60, 88–119. DOI: 10.1002/anie.202006648.
  • Hanefeld, U.; Hollmann, F.; Paul, C. E. Biocatalysis Making Waves in Organic Chemistry. Chem. Soc. Rev. 2022, 51, 594–627. DOI: 10.1039/d1cs00100k.
  • Research, G. V. Enzymes Market Size, Share & Trends Analysis Report by Application (Industrial Enzymes, Specialty Enzymes), by Product (Carbohydrase, Proteases, Lipases), by Source, by Region, and Segment Forecasts, 2020 – 2027. https://www.grandviewresearch.com/industry-analysis/enzymes-industry (accessed September 2, 2020).
  • Dobson, C. M. Protein Folding and Misfolding. Nature. 2003, 426(), 884–890. DOI: 10.1038/nature02261.
  • Li, C.; Zhang, R.; Wang, J.; Wilson, L. M.; Yan, Y. Protein Engineering for Improving and Diversifying Natural Product Biosynthesis. Trends Biotechnol. 2020, 38, 729–744. DOI: 10.1016/j.tibtech.2019.12.008.
  • Sheldon, R. A. Green Solvents for Sustainable Organic Synthesis: State of the Art. Green Chem. 2005, 7, 267–278. DOI: 10.1039/b418069k.
  • Li, C. J.; Trost, B. M. Green Chemistry for Chemical Synthesis. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 13197–13202. DOI: 10.1073/pnas.0804348105.
  • Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. DOI: 10.1039/b918763b.
  • Hallett, J. P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. DOI: 10.1021/cr1003248.
  • Dong, K.; Liu, X.; Dong, H.; Zhang, X.; Zhang, S. Multiscale Studies on Ionic Liquids. Chem. Rev. 2017, 117, 6636–6695. DOI: 10.1021/acs.chemrev.6b00776.
  • Prat, D.; Hayler, J.; Wells, A. A Survey of Solvent Selection Guides. Green Chem. 2014, 16, 4546–4551. DOI: 10.1039/c4gc01149j.
  • Earle, M. J.; Esperanca, J. M.; Gilea, M. A.; Lopes, J. N.; Rebelo, L. P.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. The Distillation and Volatility of Ionic Liquids. Nature. 2006, 439, 831–834. DOI: 10.1038/nature04451.
  • MacFarlane, D. R.; Kar, M., and Pringle, J. M. Fundamentals of Ionic Liquids: From Chemistry to Applications; Weinheim Germany: Wiley-VCH Verlag GmbH & Co. KGaA 248 , 2017.
  • Petkovic, M.; Seddon, K. R.; Rebelo, L. P.; Silva Pereira, C. Ionic Liquids: A Pathway to Environmental Acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403. DOI: 10.1039/c004968a.
  • van Rantwijk, F.; Sheldon, R. A. Biocatalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2757–2785. DOI: 10.1021/cr050946x.
  • Sheldon, R. A. Biocatalysis in Ionic Liquids: State-of-the-Union. Green Chem. 2021, 23, 8406–8427. DOI: 10.1039/d1gc03145g.
  • Laane, C.; Boeren, S.; Vos, K.; Veeger, C. Rules for Optimization of Biocatalysis in Organic Solvents. Biotechnol. Bioeng. 1987, 30, 81–87. DOI: 10.1002/bit.260300112.
  • Madeira Lau, R.; van Rantwijk, F.; Seddon, K. R.; Sheldon, R. A. Lipase-Catalyzed Reactions in Ionic Liquids. Org. Lett. 2000, 2, 4189–4191. DOI: 10.1021/ol006732d.
  • Itoh, T. Ionic Liquids as Tool to Improve Enzymatic Organic Synthesis. Chem. Rev. 2017, 117, 10567–10607. DOI: 10.1021/acs.chemrev.7b00158.
  • Gomes, J. M.; Silva, S. S.; Reis, R. L. Biocompatible Ionic Liquids: Fundamental Behaviours and Applications. Chem. Soc. Rev. 2019, 48, 4317–4335. DOI: 10.1039/c9cs00016j.
  • Villa, R.; Alvarez, E.; Porcar, R.; Garcia-Verdugo, E.; Luis, S. V.; Lozano, P. Ionic Liquids as an Enabling Tool to Integrate Reaction and Separation Processes. Green Chem. 2019, 21, 6527–6544. DOI: 10.1039/c9gc02553g.
  • Xu, P.; Liang, S.; Zong, M. H.; Lou, W. Y. Ionic Liquids for Regulating Biocatalytic Process: Achievements and Perspectives. Biotechnol. Adv. 2021, 51, 107702. DOI: 10.1016/j.biotechadv.2021.107702.
  • Vanda, H.; Dai, Y. T.; Wilson, E. G.; Verpoorte, R.; Choi, Y. H. Green Solvents from Ionic Liquids and Deep Eutectic Solvents to Natural Deep Eutectic Solvents. C. R. Chim. 2018, 21, 628–638. DOI: 10.1016/j.crci.2018.04.002.
  • Sivapragasam, M.; Moniruzzaman, M.; Goto, M. Recent Advances in Exploiting Ionic Liquids for Biomolecules: Solubility, Stability and Applications. Biotechnol. J. 2016, 11, 1000–1013. DOI: 10.1002/biot.201500603.
  • Elgharbawy, A. A. M.; Moniruzzaman, M.; Goto, M. Recent Advances of Enzymatic Reactions in Ionic Liquids: Part II. Biochem. Eng. J. 2020, 154, 107426. DOI: 10.1016/j.bej.2019.107426.
  • Zhao, H. Protein Stabilization and Enzyme Activation in Ionic Liquids: Specific Ion Effects. J. Chem. Technol. Biotechnol. 2016, 91, 25–50. DOI: 10.1002/jctb.4837.
  • Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium Chloroaluminate Melts - a New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis. Inorg. Chem. 1982, 21, 1263–1264. DOI: 10.1021/ic00133a078.
  • Gadilohar, B. L.; Shankarling, G. S. Choline Based Ionic Liquids and Their Applications in Organic Transformation. J. Mol. Liq. 2017, 227, 234–261. DOI: 10.1016/j.molliq.2016.11.136.
  • Wilkes, J. S.; Zaworotko, M. J. Air and Water Stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids. J. Chem. Soc. Chem. Comm. 1992, 965–967. DOI: 10.1039/c39920000965.
  • Hough, W. L.; Smiglak, M.; Rodriguez, H.; Swatloski, R. P.; Spear, S. K.; Daly, D. T.; Pernak, J.; Grisel, J. E.; Carliss, R. D.; Soutullo, M. D., et al. The Third Evolution of Ionic Liquids: Active Pharmaceutical Ingredients. New J. Chem. 2007, 31, 1429–1436. DOI: 10.1039/b706677p.
  • Moniruzzaman, M.; Nakashima, K.; Kamiya, N.; Goto, M. Recent Advances of Enzymatic Reactions in Ionic Liquids. Biochem. Eng. J. 2010, 48, 295–314. DOI: 10.1016/j.bej.2009.10.002.
  • Pena-Pereira, F.; Kloskowskic, A.; Namiesnik, J. Perspectives on the Replacement of Harmful Organic Solvents in Analytical Methodologies: A Framework toward the Implementation of A Generation of Eco-Friendly Alternatives. Green Chem. 2015, 17, 3687–3705. DOI: 10.1039/c5gc00611b.
  • MacFarlane, D. R.; Chong, A. L.; Forsyth, M.; Kar, M.; Vijayaraghavan, R.; Somers, A.; Pringle, J. M. New Dimensions in Salt-Solvent Mixtures: A 4th Evolution of Ionic Liquids. Faraday Discuss. 2017, 206, 9–28. DOI: 10.1039/c7fd00189d.
  • Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. DOI: 10.1021/ja048266j.
  • Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. DOI: 10.1021/cr068040u.
  • Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J.-W.; Ueno, K.; Seki, S.; Serizawa, N. Solvate Ionic Liquid Electrolyte for Li–S Batteries. J. Electrochem. Soc. 2013, 160, A1304–A1310. DOI: 10.1149/2.111308jes.
  • Chatel, G.; Pereira, J. F.; Debbeti, V.; Wang, H.; Rogers, R. D. Mixing Ionic Liquids–“Simple Mixtures” or “Double Salts”? Green Chem. 2014, 16, 2051–2083. DOI: 10.1039/c3gc41389f.
  • Kohno, Y.; Ohno, H. Ionic Liquid/Water Mixtures: From Hostility to Conciliation. Chem. Commun. 2012, 48, 7119–7130. DOI: 10.1039/c2cc31638b.
  • Ohno, H.; Fujita, K.; Kohno, Y. Is Seven the Minimum Number of Water Molecules per Ion Pair for Assured Biological Activity in Ionic Liquid-Water Mixtures? Phys. Chem. Chem. Phys. 2015, 17, 14454–14460. DOI: 10.1039/c5cp00768b.
  • Han, Q.; Brown, S. J.; Drummond, C. J.; Greaves, T. L. Protein Aggregation and Crystallization with Ionic Liquids: Insights into the Influence of Solvent Properties. J. Colloid Interface Sci. 2022, 608, 1173–1190. DOI: 10.1016/j.jcis.2021.10.087.
  • Kumar, A.; Bisht, M.; Venkatesu, P. Biocompatibility of Ionic Liquids Towards Protein Stability: A Comprehensive Overview on the Current Understanding and Their Implications. Int. J. Biol. Macromol. 2017, 96, 611–651. DOI: 10.1016/j.ijbiomac.2016.12.005.
  • Jha, I.; Venkatesu, P. Endeavour to Simplify the Frustrated Concept of Protein-Ammonium Family Ionic Liquid Interactions. Phys. Chem. Chem. Phys. 2015, 17, 20466–20484. DOI: 10.1039/c5cp01735a.
  • Weaver, K. D.; Kim, H. J.; Sun, J. Z.; MacFarlane, D. R.; Elliott, G. D. Cyto-Toxicity and Biocompatibility of a Family of Choline Phosphate Ionic Liquids Designed for Pharmaceutical Applications. Green Chem. 2010, 12, 507–513. DOI: 10.1039/b918726j.
  • Gontrani, L. Choline-Amino Acid Ionic Liquids: Past and Recent Achievements about the Structure and Properties of These Really “Green” Chemicals. Biophys. Rev. 2018, 10, 873–880. DOI: 10.1007/s12551-018-0420-9.
  • Ghanbari-Ardestani, S.; Khojasteh-Band, S.; Zaboli, M.; Hassani, Z.; Mortezavi, M.; Torkzadeh-Mahani, M.; Mahani, M. The Effect of Different Percentages of Triethanolammonium Butyrate Ionic Liquid on the Structure and Activity of Urate Oxidase: Molecular Docking, Molecular Dynamics Simulation, and Experimental Study. J. Mol. Liq. 2019, 292. DOI: 10.1016/j.molliq.2019.111318.
  • Schindl, A.; Hagen, M. L.; Muzammal, S.; Gunasekera, H. A. D.; Croft, A. K. Proteins in Ionic Liquids: Reactions, Applications, and Futures. Front. Chem. 2019, 7. DOI: 10.3389/fchem.2019.00347.
  • Liu, H.; Wu, X.; Sun, J.; Chen, S. Stimulation of Laccase Biocatalysis in Ionic Liquids: A Review on Recent Progress. Curr. Protein Pept. Sci. 2018, 19, 100–111. DOI: 10.2174/1389203718666161122110647.
  • Summers, S.; Kraft, C.; Alamdari, S.; Pfaendtner, J.; Kaar, J. L. Enhanced Activity and Stability of Acidothermus Cellulolyticus Endoglucanase 1 in Ionic Liquids via Engineering Active Site Residues and Non-Native Disulfide Bridges. ACS Sustain. Chem. Eng. 2020, 8, 11299–11307. DOI: 10.1021/acssuschemeng.0c03242.
  • Zarski, A.; Bajer, K.; Zarska, S.; Kapusniak, J. From High Oleic Vegetable Oils to Hydrophobic Starch Derivatives: I. Development and Structural Studies. Carbohydr. Polym. 2019, 214, 124–130. DOI: 10.1016/j.carbpol.2019.03.034.
  • Kohno, Y.; Ohno, H. Ionic Liquid/Water Mixtures: From Hostility to Conciliation. Chem. Commun. 2012, 48, 7119–7130. DOI: 10.1039/c2cc31638b.
  • Zaks, A.; Klibanov, A. M. The Effect of Water on Enzyme Action in Organic Media. J. Biol. Chem. 1988, 263, 8017–8021. DOI: 10.1016/S0021-9258(18)68435-2.
  • Ohno, H.; Fujita, K.; Kohno, Y. Is Seven the Minimum Number of Water Molecules per Ion Pair for Assured Biological Activity in Ionic Liquid-Water Mixtures? Phys. Chem. Chem. Phys. 2015, 17, 14454–14460. DOI: 10.1039/c5cp00768b.
  • Han, Q.; Wang, X. G.; Bynre, N. Utilizing Water Activity as a Simple Measure to Understand Hydrophobicity in Ionic Liquids. Front. Chem. 2019, 7. DOI: 10.3389/fchem.2019.00112.
  • da Silva, V. G.; de Castro, R. J. S. Biocatalytic Action of Proteases in Ionic Liquids: Improvements on Their Enzymatic Activity, Thermal Stability and Kinetic Parameters. Int. J. Biol. Macromol. 2018, 114, 124–129. DOI: 10.1016/j.ijbiomac.2018.03.084.
  • D’Oronzo, E.; Secundo, F.; Minofar, B.; Kulik, N.; Pometun, A. A.; Tishkov, V. I. Activation/Inactivation Role of Ionic Liquids on Formate Dehydrogenase from Pseudomonas Sp. 101 and Its Mutated Thermostable Form. ChemCatChem. 2018, 10, 3247–3259. DOI: 10.1002/cctc.201800145.
  • Zhang, Z. B.; Muschiol, J.; Huang, Y. H.; Sigurdardottir, S. B.; von Solms, N.; Daugaard, A. E.; Wei, J.; Luo, J. Q.; Xu, B. H.; Zhang, S. J., et al. Efficient Ionic Liquid-Based Platform for Multi-Enzymatic Conversion of Carbon Dioxide to Methanol. Green Chem. 2018, 20, 4339–4348. DOI: 10.1039/c8gc02230e.
  • Ji, X. L.; Xue, Y. J.; Li, Z.; Liu, Y. R.; Liu, L.; Busk, P. K.; Lange, L.; Huang, Y. H.; Zhang, S. J. Ionozyme: Ionic Liquids as Solvent and Stabilizer for Efficient Bioactivation of CO2. Green Chem. 2021, 23, 6990–7000. DOI: 10.1039/d1gc02503a.
  • Le, Z. G.; Liang, M.; Chen, Z. S.; Zhang, S. H.; Xie, Z. B. Ionic Liquid as an Efficient Medium for the Synthesis of Quinoline Derivatives via α-Chymotrypsin-Catalyzed Friedlander Condensation. Molecules. 2017, 22. DOI: 10.3390/molecules22050762.
  • de Borba, T. M.; Machado, T. B.; Brandelli, A.; Kalil, S. J. Thermal Stability and Catalytic Properties of Protease from Bacillus Sp. P45 Active in Organic Solvents and Ionic Liquid. Biotechnol. Prog. 2018, 34, 1102–1108. DOI: 10.1002/btpr.2672.
  • Lozano, P.; Alvarez, E.; Bernal, J. M.; Nieto, S.; Gomez, C.; Sanchez-Gomez, G. Ionic Liquids for Clean Biocatalytic Processes. Curr. Green Chem. 2018, 4. DOI: 10.2174/2213346104666171115160413.
  • Silva, C.; Martins, M.; Jing, S.; Fu, J.; Cavaco-Paulo, A. Practical Insights on Enzyme Stabilization. Crit. Rev. Biotechnol. 2018, 38, 335–350. DOI: 10.1080/07388551.2017.1355294.
  • Rodriguez, O.; Cristovao, R. O.; Tavares, A. P.; Macedo, E. A. Study of the Alkyl Chain Length on Laccase Stability and Enzymatic Kinetic with Imidazolium Ionic Liquids. Appl. Biochem. Biotechnol. 2011, 164, 524–533. DOI: 10.1007/s12010-010-9154-2.
  • Machado, M. F.; Queiros, R. P.; Santos, M. D.; Fidalgo, L. G.; Delgadillo, I.; Saraiva, J. A. Effect of Ionic Liquids Alkyl Chain Length on Horseradish Peroxidase Thermal Inactivation Kinetics and Activity Recovery after Inactivation. World J. Microbiol. Biotechnol. 2014, 30, 487–494. DOI: 10.1007/s11274-013-1466-2.
  • Ab Rani, M. A.; Brant, A.; Crowhurst, L.; Dolan, A.; Lui, M.; Hassan, N. H.; Hallett, J. P.; Hunt, P. A.; Niedermeyer, H.; Perez-Arlandis, J. M., et al. Understanding the Polarity of Ionic Liquids. Phys. Chem. Chem. Phys. 2011, 13, 16831–16840. DOI: 10.1039/c1cp21262a.
  • Han, Q.; Wang, X. G.; Byrne, N. Understanding the Influence of Key Ionic Liquid Properties on the Hydrolytic Activity of Thermomyces Lanuginosus Lipase. ChemCatChem. 2016, 8, 1551–1556. DOI: 10.1002/cctc.201600014.
  • Lo Nostro, P.; Ninham, B. W. Hofmeister Phenomena: An Update on Ion Specificity in Biology. Chem. Rev. 2012, 112, 2286–2322. DOI: 10.1021/cr200271j.
  • Baldwin, R. L. How Hofmeister Ion Interactions Affect Protein Stability. Biophys. J. 1996, 71, 2056–2063. DOI: 10.1016/S0006-3495(96)79404-3.
  • Kumar, A.; Venkatesu, P. Does the Stability of Proteins in Ionic Liquids Obey the Hofmeister Series? Int. J. Biol. Macromol. 2014, 63, 244–253. DOI: 10.1016/j.ijbiomac.2013.10.031.
  • Yang, Z. Hofmeister Effects: An Explanation for the Impact of Ionic Liquids on Biocatalysis. J. Biotechnol. 2009, 144, 12–22. DOI: 10.1016/j.jbiotec.2009.04.011.
  • Bisht, M.; Venkatesu, P. Influence of Cholinium-Based Ionic Liquids on the Structural Stability and Activity of α-Chymotrypsin. New J. Chem. 2017, 41, 13902–13911. DOI: 10.1039/c7nj03023a.
  • Han, Q.; Wang, X.; Byrne, N. A Simple Approach to Achieve Self-Buffering Protic Ionic Liquid-Water Mixtures. ChemistrySelect. 2017, 2, 4294–4299. DOI: 10.1002/slct.201700651.
  • Sindhu, A.; Bisht, M.; Bahadur, I.; Venkatesu, P. Assessing the Compatibility of Mono-, Di-, and Tri-Cholinium Citrate Ionic Liquids for the Stability and Activity of α-Chymotrypsin. ACS Sustain. Chem. Eng. 2021, 9, 4812–4822. DOI: 10.1021/acssuschemeng.1c00044.
  • Klahn, M.; Lim, G. S.; Seduraman, A.; Wu, P. On the Different Roles of Anions and Cations in the Solvation of Enzymes in Ionic Liquids. Phys. Chem. Chem. Phys. 2011, 13, 1649–1662. DOI: 10.1039/c0cp01509a.
  • Nordwald, E. M.; Kaar, J. L. Mediating Electrostatic Binding of 1-Butyl-3-Methylimidazolium Chloride to Enzyme Surfaces Improves Conformational Stability. J. Phys. Chem. B. 2013, 117, 8977–8986. DOI: 10.1021/jp404760w.
  • Kaur, R.; Kumar, R.; Verma, S.; Kumar, A.; Rajesh, C.; Sharma, P. K. Structural and Functional Insights about Unique Extremophilic Bacterial Lipolytic Enzyme from Metagenome Source. Int. J. Biol. Macromol. 2020, 152, 593–604. DOI: 10.1016/j.ijbiomac.2020.02.210.
  • Marschelke, C.; Muller, M.; Kopke, D.; Matura, A.; Sallat, M.; Synytska, A. Hairy Particles with Immobilized Enzymes: Impact of Particle Topology on the Catalytic Activity. ACS Appl. Mater. Interfaces. 2019, 11, 1645–1654. DOI: 10.1021/acsami.8b17703.
  • Mo, D.; Shi, J. N.; Zhao, D. D.; Zhang, Y. Z.; Guan, Y. F.; Shen, Y. J.; Bian, H. D.; Huang, F. P.; Wu, S. F. Synthesis and Characterization of Fe-III/Co-III/Cu-II Complexes with Schiff Base Ligand and Their Hybrid Proteins, Sod Activity and Asymmetric Catalytic Oxidation of Sulfides. J. Mol. Struct. 2021, 1223. DOI: 10.1016/j.molstruc.2020.129229.
  • Kubelbeck, S.; Mikhael, J.; Keller, H.; Konradi, R.; Andrieu-Brunsen, A.; Baier, G. Enzyme-Polymer Conjugates to Enhance Enzyme Shelf Life in a Liquid Detergent Formulation. Macromol. Biosci. 2018, 18. DOI: 10.1002/mabi.201800095.
  • Wojnarowska-Nowak, R.; Polit, J.; Sheregii, E. M. Interaction of Gold Nanoparticles with Cholesterol Oxidase Enzyme in Bionanocomplex-Determination of the Protein Structure by Fourier Transform Infrared Spectroscopy. J. Nanopart. Res. 2020, 22. DOI: 10.1007/s11051-020-04858-y.
  • Wang, Y.; Mittermaier, A. K. Characterizing Bi-Substrate Enzyme Kinetics at High Resolution by 2D-ITC. Anal. Chem. 2021, 93, 12723–12732. DOI: 10.1021/acs.analchem.1c02705.
  • Xiao, Y. Q.; Chen, Q. M.; Shakhnovich, E. I.; Zhang, W. L.; Mu, W. M. Simulation-Guided Enzyme Discovery: A New Microbial Source of Cellobiose 2-Epimerase. Int. J. Biol. Macromol. 2019, 139, 1002–1008. DOI: 10.1016/j.ijbiomac.2019.08.075.
  • Suo, H. B.; Xu, L. L.; Xu, C.; Qiu, X.; Huang, H.; Hu, Y. Enhanced Catalytic Performance of Lipase Covalently Bonded on Ionic Liquids Modified Magnetic Alginate Composites. J. Colloid Interface Sci. 2019, 553, 494–502. DOI: 10.1016/j.jcis.2019.06.049.
  • Adachi, N.; Yamaguchi, T.; Moriya, T.; Kawasaki, M.; Koiwai, K.; Shinoda, A.; Yamada, Y.; Yumoto, F.; Kohzuma, T.; Senda, T. 2.85 and 2.99 Angstrom Resolution Structures of 110 kDa Nitrite Reductase Determined by 200 KV Cryogenic Electron Microscopy. J. Struct. Biol. 2021, 213. DOI: 10.1016/j.jsb.2021.107768.
  • van Schaick, G.; El Hajjouti, N.; Nicolardi, S.; den Hartog, J.; Jansen, R.; van der Hoeven, R.; Bijleveld, W.; Abello, N.; Wuhrer, M.; Olsthoorn, M. M. A., et al. Native Liquid Chromatography and Mass Spectrometry to Structurally and Functionally Characterize Endo-Xylanase Proteoforms. Int. J. Mol. Sci. 2022, 23, DOI: 10.3390/ijms23031307.
  • Xue, Y. J.; Zhao, Y. L.; Ji, X. L.; Yao, J. H.; Busk, P. K.; Lange, L.; Huang, Y. H.; Zhang, S. J. Advances in Bio-Nylon 5X: Discovery of New Lysine Decarboxylases for the High-Level Production of Cadaverine. Green Chem. 2020, 22, 8656–8668. DOI: 10.1039/d0gc03100c.
  • Bodenheimer, A. M.; Odell, W. B.; Oliver, R. C.; Qian, S.; Stanley, C. B.; Meilleur, F. Structural Investigation of Cellobiose Dehydrogenase IIA: Insights from Small Angle Scattering into Intra- and Intermolecular Electron Transfer Mechanisms. Biochim. Biophys. Acta-Gen. Subj. 1862, 2018, 1031–1039. DOI: 10.1016/j.bbagen.2018.01.016.
  • Gilbert, J.; Valldeperas, M.; Dhayal, S. K.; Barauskas, J.; Dicko, C.; Nylander, T. Immobilisation of β-Galactosidase within a Lipid Sponge Phase: Structure, Stability and Kinetics Characterisation. Nanoscale. 2019, 11, 21291–21301. DOI: 10.1039/c9nr06675f.
  • Chado, G. R.; Holland, E. N.; Tice, A. K.; Stoykovich, M. P.; Kaar, J. L. Modification of Lipase with Poly(4-Acryloylmorpholine) Enhances Solubility and Transesterification Activity in Anhydrous Ionic Liquids. Biomacromolecules. 2018, 19, 1324–1332. DOI: 10.1021/acs.biomac.8b00176.
  • Bey, H.; Gtari, W.; Aschi, A. Study of the Complex Coacervation Mechanism between the Lysing Enzyme from T. Harzianum and Polyallylamine Hydrochloride. Int. J. Biol. Macromol. 2019, 124, 780–787. DOI: 10.1016/j.ijbiomac.2018.11.266.
  • Micaelo, N. M.; Soares, C. M. Protein Structure and Dynamics in Ionic Liquids. Insights from Molecular Dynamics Simulation Studies. J. Phys. Chem. B. 2008, 112, 2566–2572. DOI: 10.1021/jp0766050.
  • Konar, S.; Sinha, S. K.; Datta, S.; Ghorai, P. K. The Effect of Ionic Liquid on the Structure of Active Site Pocket and Catalytic Activity of a β-Glucosidase from Halothermothrix Orenii. J. Mol. Liq. 2020, 306. DOI: 10.1016/j.molliq.2020.112879.
  • Araghi, S. H.; John, A.; Googheri, M. S. S. A Molecular Dynamics Simulations Study of the Ionic Liquid Effect on the β-Glucosidase Active Site Interactions with A Flavonoid Glycoside. J. Mol. Liq. 2021, 340. DOI: 10.1016/j.molliq.2021.117115.
  • Manna, B.; Ghosh, A. Structure and Dynamics of Ionic Liquid Tolerant Hyperthermophilic Endoglucanase Cel12A from Rhodothermus Marinus. RSC Adv. 2020, 10, 7933–7947. DOI: 10.1039/c9ra09612d.
  • Pramanik, S.; Dhoke, G. V.; Jaeger, K. E.; Schwaneberg, U.; Davari, M. D. How to Engineer Ionic Liquids Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study. ACS Sustain. Chem. Eng. 2019, 7, 11293–11302. DOI: 10.1021/acssuschemeng.9b00752.
  • Han, Q.; Smith, K. M.; Darmanin, C.; Ryan, T. M.; Drummond, C. J.; Greaves, T. L. Lysozyme Conformational Changes with Ionic Liquids: Spectroscopic, Small Angle X-Ray Scattering and Crystallographic Study. J. Colloid Interface Sci. 2021, 585, 433–443. DOI: 10.1016/j.jcis.2020.10.024.
  • Zhao, H. Methods for Stabilizing and Activating Enzymes in Ionic Liquids - A Review. J. Chem. Technol. Biotechnol. 2010, 85, 891–907. DOI: 10.1002/jctb.2375.
  • Park, S.; Doan, T. T. N.; Koo, Y. M.; Oh, K. K.; Lee, S. H. Ionic Liquids as Cosolvents for the Lipase-Catalyzed Kinetic Resolution of Ketoprofen. Mol. Catal. 2018, 459, 113–118. DOI: 10.1016/j.mcat.2018.09.001.
  • Barbosa, M. S.; Freire, C. C. C.; Souza, R. L.; Cabrera-Padilla, R. Y.; Pereira, M. M.; Freire, M. G.; Lima, A. S.; Soares, C. M. F. Effects of Phosphonium-Based Ionic Liquids on the Lipase Activity Evaluated by Experimental Results and Molecular Docking. Biotechnol. Prog. 2019, 35, e2816. DOI: 10.1002/btpr.2816.
  • Kaur, M.; Singh, G.; Kaur, A.; Sharma, P. K.; Kang, T. S. Thermally Stable Ionic Liquid-Based Microemulsions for High-Temperature Stabilization of Lysozyme at Nanointerfaces. Langmuir. 2019, 35, 4085–4093. DOI: 10.1021/acs.langmuir.9b00106.
  • Imam, H. T.; Krasnan, V.; Rebros, M.; Marr, A. C. Applications of Ionic Liquids in Whole-Cell and Isolated Enzyme Biocatalysis. Molecules. 2021, 26, 4791. DOI: 10.3390/molecules26164791.
  • Debnath, S.; Das, D.; Dutta, S.; Das, P. K. Imidazolium Bromide-Based Ionic Liquid Assisted Improved Activity of Trypsin in Cationic Reverse Micelles. Langmuir. 2010, 26, 4080–4086. DOI: 10.1021/la9040419.
  • Attri, P.; Venkatesu, P. Exploring the Thermal Stability of α-Chymotrypsin in Protic Ionic Liquids. Process Biochem. 2013, 48, 462–470. DOI: 10.1016/j.procbio.2013.02.006.
  • Tavares, A. P. M.; Pinho, B.; Rodriguez, O.; Macedo, E. A. Biocatalysis in Ionic Liquid: Degradation of Phenol by Laccase. Procedia Eng. 2012, 42, 226–230. DOI: 10.1016/j.proeng.2012.07.413.
  • Yu, X.; Zou, F.; Li, Y.; Lu, L.; Huang, X.; Qu, Y. Effect of Three Trifluoromethanesulfonate Ionic Liquids on the Activity, Stability and Conformation of Laccase. Int. J. Biol. Macromol. 2013, 56, 62–68. DOI: 10.1016/j.ijbiomac.2013.02.005.
  • Takekiyo, T.; Yamazaki, K.; Yamaguchi, E.; Abe, H.; Yoshimura, Y. High Ionic Liquid Concentration-Induced Structural Change of Protein in Aqueous Solution: A Case Study of Lysozyme. J. Phys. Chem. B. 2012, 116, 11092–11097. DOI: 10.1021/jp3057064.
  • Wijaya, E. C.; Separovic, F.; Drummond, C. J.; Greaves, T. L. Activity and Conformation of Lysozyme in Molecular Solvents, Protic Ionic Liquids (Pils) and Salt-Water Systems. Phys. Chem. Chem. Phys. 2016, 18, 25926–25936. DOI: 10.1039/c6cp03334b.
  • Wijaya, E. C.; Separovic, F.; Drummond, C. J.; Greaves, T. L. Stability and Activity of Lysozyme in Stoichiometric and Non-Stoichiometric Protic Ionic Liquid (Pil)-water Systems. J. Chem. Phys. 2018, 148, 193838. DOI: 10.1063/1.5010055.
  • Rather, M. A.; Dar, T. A.; Singh, L. R.; Rather, G. M.; Bhat, M. A. Structural-Functional Integrity of Lysozyme in Imidazolium Based Surface Active Ionic Liquids. Int. J. Biol. Macromol. 2020, 156, 271–279. DOI: 10.1016/j.ijbiomac.2020.04.033.
  • Rakowska, P. W.; Kloskowski, A. Impact of the Alkyl Side Chains of Cations and Anions on the Activity and Renaturation of Lysozyme: A Systematic Study Performed Using Six Amino-Acid-Based Ionic Liquids. ChemistrySelect. 2021, 6, 3089–3095. DOI: 10.1002/slct.202004357.
  • Cerqueira Pereira, S.; Bussamara, R.; Marin, G.; Lima Camargo Giordano, R.; Dupont, J.; de Campos Giordano, R. Enzymatic Synthesis of Amoxicillin by Penicillin G Acylase in the Presence of Ionic Liquids. Green Chem. 2012, 14. DOI: 10.1039/c2gc36158b.
  • de Los Ríos, A. P.; Hernández-Fernández, F. J.; Rubio, M.; Gómez, D.; Víllora, G. Stabilization of Native Penicillin G Acylase by Ionic Liquids. J. Chem. Technol. Biotechnol. 2007, 82, 190–195. DOI: 10.1002/jctb.1654.
  • Magri, A.; Pecorari, T.; Pereira, M. M.; Cilli, E. M.; Greaves, T. L.; Pereira, J. F. B. Enhancing the Biocatalytic Activity of L-Asparaginase Using Aqueous Solutions of Cholinium-Based Ionic Liquids. ACS Sustain. Chem. Eng. 2019, 7, 19720–19731. DOI: 10.1021/acssuschemeng.9b04931.
  • Dong, X.; Fan, Y.; Yang, P.; Kong, J.; Li, D.; Miao, J.; Hua, S.; Hu, C. Ultraviolet-Visible (UV-Vis) and Fluorescence Spectroscopic Investigation of the Interactions of Ionic Liquids and Catalase. Appl. Spectrosc. 2016, 70, 1851–1860. DOI: 10.1177/0003702816653124.
  • Ghobadi, R.; Divsalar, A. Enzymatic Behavior of Bovine Liver Catalase in Aqueous Medium of Sugar Based Deep Eutectic Solvents. J. Mol. Liq. 2020, 310. DOI: 10.1016/j.molliq.2020.113207.
  • Gaisberger, R. P.; Fechter, M. H.; Griengl, H. The First Hydroxynitrile Lyase Catalysed Cyanohydrin Formation in Ionic Liquids. Tetrahedron-Asymmetry. 2004, 15, 2959–2963. DOI: 10.1016/j.tetasy.2004.06.028.
  • Reilly, J. T.; Coats, M. A.; Reardon, M. M.; Mirjafari, A. Study of Biocatalytic Activity of Histidine Ammonia Lyase in Protic Ionic Liquids. J. Mol. Liq. 2017, 248, 830–832. DOI: 10.1016/j.molliq.2017.10.079.
  • Hebal, H.; Parviainen, A.; Anbarasan, S.; Li, H.; Makkonen, L.; Bankar, S.; King, A. W. T.; Kilpelainen, I.; Benallaoua, S.; Turunen, O. Inhibition of Hyperthermostable Xylanases by Superbase Ionic Liquids. Process Biochem. 2020, 95, 148–156. DOI: 10.1016/j.procbio.2020.03.022.
  • Manna, B.; Ghosh, A. Understanding the Conformational Change and Inhibition of Hyperthermophilic GH10 Xylanase in Ionic Liquid. J. Mol. Liq. 2021, 332. DOI: 10.1016/j.molliq.2021.115875.
  • Chawachart, N.; Anbarasan, S.; Turunen, S.; Li, H.; Khanongnuch, C.; Hummel, M.; Sixta, H.; Granstrom, T.; Lumyong, S.; Turunen, O. Thermal Behaviour and Tolerance to Ionic Liquid [Emim]oac in GH10 Xylanase from Thermoascus Aurantiacus SL16W. Extremophiles. 2014, 18, 1023–1034. DOI: 10.1007/s00792-014-0679-0.
  • Fan, Y. C.; Dong, X.; Zhong, Y. Y.; Li, J.; Miao, J.; Hua, S. F.; Li, Y.; Cheng, B. Y.; Chen, W. Q. Effects of Ionic Liquids on the Hydrolysis of Casein by Lumbrokinase. Biochem. Eng. J. 2016, 109, 35–42. DOI: 10.1016/j.bej.2015.12.020.
  • Goldfeder, M.; Egozy, M.; Shuster Ben-Yosef, V.; Adir, N.; Fishman, A. Changes in Tyrosinase Specificity by Ionic Liquids and Sodium Dodecyl Sulfate. Appl. Microbiol. Biotechnol. 2013, 97, 1953–1961. DOI: 10.1007/s00253-012-4050-z.
  • Heitz, M. P.; Rupp, J. W. Determining Mushroom Tyrosinase Inhibition by Imidazolium Ionic Liquids: A Spectroscopic and Molecular Docking Study. Int. J. Biol. Macromol. 2018, 107, 1971–1981. DOI: 10.1016/j.ijbiomac.2017.10.066.
  • Dong, X.; Fan, Y.; Zhang, H.; Zhong, Y.; Yang, Y.; Miao, J.; Hua, S. Inhibitory Effects of Ionic Liquids on the Lactic Dehydrogenase Activity. Int. J. Biol. Macromol. 2016, 86, 155–161. DOI: 10.1016/j.ijbiomac.2016.01.059.
  • Wu, M.; Hu, J.; Wu, Y.; Tang, Y.; Zhang, Y.; Guan, Y.; Lou, Z.; Yu, Z.; Yu, J. Enhanced Dechlorination of an Enzyme-Catalyzed Electrolysis System by Ionic Liquids: Electron Transfer, Enzyme Activity and Dichloromethane Diffusion. Chemosphere. 2021, 281, 130913. DOI: 10.1016/j.chemosphere.2021.130913.
  • Liu, K. L.; Wang, S. Y.; Duan, L. X.; Jiang, L.; Wang, S. Z. Effect of Ionic Liquids on Catalytic Characteristics of Hyperthermophilic and Halophilic Phenylalanine Dehydrogenase and Mechanism Study. Biochem. Eng. J. 2021, 176. DOI: 10.1016/j.bej.2021.108175.
  • Brogan, A. P. S.; Bui-Le, L.; Hallett, J. P. Non-Aqueous Homogenous Biocatalytic Conversion of Polysaccharides in Ionic Liquids Using Chemically Modified Glucosidase. Nat. Chem. 2018, 10, 859–865. DOI: 10.1038/s41557-018-0088-6.
  • Xu, Y.; Sheng, S.; Liu, X.; Wang, C.; Xiao, W.; Wang, J.; Wu, F. A. Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an in Vitro Inhibitor of Plant Pathogenic Bacteria. Molecules. 2017, 22. DOI: 10.3390/molecules22010072.
  • Han, J.; Cai, Y.; Wang, L.; Mao, Y.; Ni, L.; Wang, Y. A High Efficiency Method Combining Metal Chelate Ionic Liquid-Based Aqueous Two-Phase Flotation with Two-Step Precipitation Process for Bromelain Purification. Food Chem. 2020, 309, 125749. DOI: 10.1016/j.foodchem.2019.125749.
  • Ferreira, A. M.; Valente, A. I.; Castro, L. S.; Coutinho, J. A. P.; Freire, M. G.; Tavares, A. P. M. Sustainable Liquid Supports for Laccase Immobilization and Reuse: Degradation of Dyes in Aqueous Biphasic Systems. Biotechnol. Bioeng. 2021, 118, 2514–2523. DOI: 10.1002/bit.27764.
  • Kaleem, I.; Rasool, A.; Lv, B.; Riaz, N.; Ul Hassan, J.; Manzoor, R.; Li, C. Immobilization of Purified β-Glucuronidase on ZnO Nanoparticles for Efficient Biotransformation of Glycyrrhizin in Ionic Liquid/Buffer Biphasic System. Chem. Eng. Sci. 2017, 162, 332–340. DOI: 10.1016/j.ces.2016.12.074.
  • Rehmann, L.; Ivanova, E.; Gunaratne, H. Q. N.; Seddon, K. R.; Stephens, G. Enhanced Laccase Stability through Mediator Partitioning into Hydrophobic Ionic Liquids. Green Chem. 2014, 16, 1462–1469. DOI: 10.1039/c3gc42189a.
  • Wallraf, A. M.; Liu, H. F.; Zhu, L. L.; Khalfallah, G.; Simons, C.; Alibiglou, H.; Davari, M. D.; Schwaneberg, U. A Loop Engineering Strategy Improves Laccase Lcc2 Activity in Ionic Liquid and Aqueous Solution. Green Chem. 2018, 20, 2801–2812. DOI: 10.1039/c7gc03776g.
  • Liu, H. F.; Zhu, L. L.; Bocola, M.; Chen, N.; Spiess, A. C.; Schwaneberg, U. Directed Laccase Evolution for Improved Ionic Liquid Resistance. Green Chem. 2013, 15, 1348–1355. DOI: 10.1039/c3gc36899h.
  • Dominguez, A.; Rodriguez, O.; Tavares, A. P.; Macedo, E. A.; Longo, M. A.; Sanroman, M. A. Studies of Laccase from Trametes Versicolor in Aqueous Solutions of Several Methylimidazolium Ionic Liquids. Bioresour. Technol. 2011, 102, 7494–7499. DOI: 10.1016/j.biortech.2011.05.063.
  • de Oliveira Júnior, S. D.; de Araújo Padilha, C. E.; de Asevedo, E. A.; de Macedo, G. R.; Dos Santos, E. S. Recovery and Purification of Cellulolytic Enzymes from Aspergillus Fumigatus Cct 7873 Using an Aqueous Two-Phase Micellar System. Ann. Microbiol. 2020, 70. DOI: 10.1186/s13213-020-01573-w.
  • Bussamra, B. C.; Meerman, P.; Viswanathan, V.; Mussatto, S. I.; Carvalho da Costa, A.; van der Wielen, L.; Ottens, M. Enzymatic Hydrolysis of Sugarcane Bagasse in Aqueous Two-Phase Systems (ATPS): Exploration and Conceptual Process Design. Front. Chem. 2020, 8, 587. DOI: 10.3389/fchem.2020.00587.
  • Varadavenkatesan, T.; Pai, S.; Vinayagam, R.; Pugazhendhi, A.; Selvaraj, R. Recovery of Value-Added Products from Wastewater Using Aqueous Two-Phase Systems - A Review. Sci. Total Environ. 2021, 778, 146293. DOI: 10.1016/j.scitotenv.2021.146293.
  • Ahmed, T.; Yamanishi, C.; Kojima, T.; Takayama, S. Aqueous Two-Phase Systems and Microfluidics for Microscale Assays and Analytical Measurements. Annu. Rev. Anal. Chem. 2021, 14, 231–255. DOI: 10.1146/annurev-anchem-091520-101759.
  • Mizuno, H.; Yoshikawa, H.; Usuki, T. Extraction of Nobiletin and Tangeretin from Peels of Shekwasha and Ponkan Using [C2mim][(MeO)(H)PO2] and Centrifugation. Nat. Prod. Commun. 2019, 14. DOI: 10.1177/1934578x19845816.
  • Hejazifar, M.; Lanaridi, O.; Bica-Schroder, K. Ionic Liquid Based Microemulsions: A Review. J. Mol. Liq. 2020, 303. DOI: 10.1016/j.molliq.2019.112264.
  • Kaur, M.; Singh, G.; Kumar, S.; Navnidhi; Kang, T. S. Thermally Stable Microemulsions Comprising Imidazolium Based Surface Active Ionic Liquids, Non-Polar Ionic Liquid and Ethylene Glycol as Polar Phase. J. Colloid Interface Sci. 2018, 511, 344–354. DOI: 10.1016/j.jcis.2017.10.025.
  • Li, Q.; Huang, X. R. Formation of 1-Butyl-3-Methylimidazolium Bis(2-Ethyl-1-Hexyl)Sulfosuccinate Stabilized Water-in-1-Butyl-3-Methylimidazolium Bis(Trifluoromethanesulfonyl)Imide Microemulsion and the Effects of Additives. J. Solution Chem. 2017, 46, 1792–1804. DOI: 10.1007/s10953-017-0632-9.
  • Cui, J. D.; Lin, T.; Feng, Y. X.; Tan, Z. L.; Jia, S. R. Preparation of Spherical Cross-Linked Lipase Aggregates with Improved Activity, Stability and Reusability Characteristic in Water-in-Ionic Liquid Microemulsion. J. Chem. Technol. Biotechnol. 2017, 92, 1785–1793. DOI: 10.1002/jctb.5179.
  • Sun, Y.; Yan, K.; Huang, X. F. Characterization and Enzyme Activity in Water-in-Hydrophobic Ionic Liquid Microemulsion Stabilized by Mixed Cationic/Nonionic Surfactants. Colloids Surf. B. 2014, 122, 66–71. DOI: 10.1016/j.colsurfb.2014.06.040.
  • Kogan, A.; Shalev, D. E.; Raviv, U.; Aserin, A.; Garti, N. Formation and Characterization of Ordered Bicontinuous Microemulsions. J. Phys. Chem. B. 2009, 113, 10669–10678. DOI: 10.1021/jp901617g.
  • Goswami, D. Lipase Catalysis in Presence of Nonionic Surfactants. Appl. Biochem. Biotechnol. 2020, 191, 744–762. DOI: 10.1007/s12010-019-03212-w.
  • Kaur, M.; Kaur, H.; Singh, M.; Singh, G.; Kang, T. S. Biamphiphilic Ionic Liquid Based Aqueous Microemulsions as an Efficient Catalytic Medium for Cytochrome C. Phys. Chem. Chem. Phys. 2021, 23, 320–328. DOI: 10.1039/d0cp04513f.
  • Wang, R. R.; Jin, W.; Huang, X. R. Construction of Zwitterionic Surfactant-Stabilized Hydrophobic Ionic Liquid-Based Bicontinuous Microemulsion and Microstructure-Dependent Activity of Solubilized Lipase. J. Mol. Liq. 2020, 317. DOI: 10.1016/j.molliq.2020.114011.
  • Alves, M.; Vieira, N. S. M.; Rebelo, L. P. N.; Araujo, J. M. M.; Pereiro, A. B.; Archer, M. Fluorinated Ionic Liquids for Protein Drug Delivery Systems: Investigating Their Impact on the Structure and Function of Lysozyme. Int. J. Pharm. 2017, 526, 309–320. DOI: 10.1016/j.ijpharm.2017.05.002.
  • Wang, R. R.; Huang, X. R. Anionic Surfactant-Stabilized Hydrophobic Ionic Liquid-Based Bicontinuous Microemulsion: Formulation, Microstructure and Laccase Kinetics. J. Mol. Liq. 2019, 292. DOI: 10.1016/j.molliq.2019.111404.
  • Weng, J. J.; Zhang, X. G. Enzymatic Hydrolysis of p-Nitrophenyl Butyrate in Water-in-Ionic Liquid Microemulsion. Ferroelectrics. 2018, 528, 122–130. DOI: 10.1080/00150193.2018.1449439.
  • Wang, M. M.; Du, N.; Zhong, Y. H.; Huang, X. R. Additive Effects on the Phase Behavior of Cationic Surfactant ([C16mim]Br) Stabilized Hydrophobic Ionic Liquid Based Middle-Phase Microemulsions. J. Chem. Eng. Data. 2017, 62, 878–884. DOI: 10.1021/acs.jced.6b00956.
  • Yu, X.; Li, Q.; Wang, M.; Du, N.; Huang, X. Study on the Catalytic Performance of Laccase in the Hydrophobic Ionic Liquid-Based Bicontinuous Microemulsion Stabilized by Polyoxyethylene-Type Nonionic Surfactants. Soft Matter. 2016, 12, 1713–1720. DOI: 10.1039/c5sm02704g.
  • Ferreira, A. M.; Passos, H.; Okafuji, A.; Tavares, A. P. M.; Ohno, H.; Freire, M. G.; Coutinho, J. A. P. An Integrated Process for Enzymatic Catalysis Allowing Product Recovery and Enzyme Reuse by Applying Thermoreversible Aqueous Biphasic Systems. Green Chem. 2018, 20, 1218–1223. DOI: 10.1039/C7GC03880A.
  • Meyer, L. E.; Gummesson, A.; Kragl, U.; von Langermann, J. Development of Ionic Liquid-Water-Based Thermomorphic Solvent (Tms)-systems for Biocatalytic Reactions. Biotechnol. J. 2019, 14, e1900215. DOI: 10.1002/biot.201900215.
  • Chu, Y. H.; Cheng, M. F.; Chiang, Y. H. Combinatorial Discovery of Small-Molecule 1,2,3-Triazolium Ionic Liquids Exhibiting Lower Critical Solution Temperature Phase Transition. Sci. Rep. 2020, 10, 18247. DOI: 10.1038/s41598-020-75392-z.
  • Passos, H.; Luis, A.; Coutinho, J. A.; Freire, M. G. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems. Sci. Rep. 2016, 6. 20276. DOI:10.1038/srep20276.
  • Lozano, P.; Bernal, J. M.; Garcia-Verdugo, E.; Sanchez-Gomez, G.; Vaultier, M.; Burguete, M. I.; Luis, S. V. Sponge-Like Ionic Liquids: A New Platform for Green Biocatalytic Chemical Processes. Green Chem. 2015, 17, 3706–3717. DOI: 10.1039/c5gc00894h.
  • Lozano, P.; Gomez, C.; Nicolas, A.; Polo, R.; Nieto, S.; Bernal, J. M.; Garcia-Verdugo, E.; Luis, S. V. Clean Enzymatic Preparation of Oxygenated Biofuels from Vegetable and Waste Cooking Oils by Using Spongelike Ionic Liquids Technology. ACS Sustain. Chem. Eng. 2016, 4, 6125–6132. DOI: 10.1021/acssuschemeng.6b01570.
  • Bauer, G.; Lima, S.; Chenevard, J.; Sugnaux, M.; Fischer, F. Biodiesel via in Situ Wet Microalgae Biotransformation: Zwitter-Type Ionic Liquid Supported Extraction and Transesterification. ACS Sustain. Chem. Eng. 2017, 5, 1931–1937. DOI: 10.1021/acssuschemeng.6b02665.
  • Villa, R.; Alvarez, E.; Nieto, S.; Donaire, A.; Garcia-Verdugo, E.; Luis, S. V.; Lozano, P. Chemo-Enzymatic Production of Omega-3 Monoacylglycerides Using Sponge-Like Ionic Liquids and Supercritical Carbon Dioxide. Green Chem. 2020, 22, 5701–5710. DOI: 10.1039/d0gc02033h.
  • Alvarez, E.; Rodriguez, J.; Villa, R.; Gomez, C.; Nieto, S.; Donaire, A.; Lozano, P. Clean Enzymatic Production of Flavor Esters in Spongelike Ionic Liquids. ACS Sustain. Chem. Eng. 2019, 7, 13307–13314. DOI: 10.1021/acssuschemeng.9b02537.
  • Banerjee, P.; Anas, M.; Jana, S.; Mandal, T. K. Recent Developments in Stimuli-Responsive Poly(Ionic Liquid)s. J. Polym. Res. 2020, 27. DOI: 10.1007/s10965-020-02091-8.
  • Tivendale, N. D.; Belt, K.; Berkowitz, O.; Whelan, J.; Millar, A. H.; Huang, S. Knockdown of Succinate Dehydrogenase Assembly Factor 2 Induces Reactive Oxygen Species-Mediated Auxin Hypersensitivity Causing pH-Dependent Root Elongation. Plant Cell Physiol. 2021, 62, 1185–1198. DOI: 10.1093/pcp/pcab061.
  • Ferreira, A. M.; Claudio, A. F. M.; Valega, M.; Domingues, F. M. J.; Silvestre, A. J. D.; Rogers, R. D.; Coutinho, J. A. P.; Freire, M. G. Switchable (pH-Driven) Aqueous Biphasic Systems Formed by Ionic Liquids as Integrated Production-Separation Platforms. Green Chem. 2017, 19, 2768–2773. DOI: 10.1039/C7GC00157F.
  • Rajapriya, G.; Morya, V. K.; Mai, N. L.; Koo, Y. M. Aspergillus Niger Whole-Cell Catalyzed Synthesis of Caffeic Acid Phenethyl Ester in Ionic Liquids. Enzyme Microb. Technol. 2018, 111, 67–73. DOI: 10.1016/j.enzmictec.2017.10.005.
  • Xiao, X.; He, J. K.; Guan, Y. X.; Yao, S. J. Effect of Cholinium Amino Acids Ionic Liquids as Cosolvents on the Bioconversion of Phytosterols by Mycobacterium Sp. Resting Cells. ACS Sustain. Chem. Eng. 2020, 8, 17124–17132. DOI: 10.1021/acssuschemeng.0c05296.
  • Li, J.; Fan, M. L.; Zhang, R. J.; Tian, Z. Y.; Zeng, J.; Song, Y. N.; Du, W. T. New Ionic Liquid Increase the Catalytic Efficiency of Recombinant Escherichia Coli Cells-Mediated Asymmetric Reduction. J. Chem. Technol. Biotechnol. 2019, 94, 159–166. DOI: 10.1002/jctb.5757.
  • Xu, J. X.; Zhou, S. Y.; Zhao, Y. J.; Xia, J.; Liu, X. Y.; Xu, J. M.; He, B. F.; Wu, B.; Zhang, J. F. Asymmetric Whole-Cell Bioreduction of Sterically Bulky 2-Benzoylpyridine Derivatives in Aqueous Hydrophilic Ionic Liquid Media. Chem. Eng. J. 2017, 316, 919–927. DOI: 10.1016/j.cej.2017.02.028.
  • Zou, S.; Hua, D.; Jiang, Z.; Han, X.; Xue, Y.; Zheng, Y. A Integrated Process for Nitrilase-Catalyzed Asymmetric Hydrolysis and Easy Biocatalyst Recycling by Introducing Biocompatible Biphasic System. Bioresour. Technol. 2021, 320, 124392. DOI: 10.1016/j.biortech.2020.124392.
  • Huang, X. L.; Xie, H.; Cao, H.; Jin, H. J.; Li, C.; Wu, T. H. Preparation, Characterization of Magnetic Core Gel Microspheres Loaded Ionic Liquids and Its Application in Cells Immobilization Technique. Chem. J. Chin. Univ.-Chin. 2019, 40, 793–799. DOI: 10.7503/cjcu20180660.
  • Yang, R. L.; Wu, T. T.; Xu, N. N.; Zhao, X. J.; Wang, Z. Y.; Luo, H. Z.; Bilal, M.; Nie, Z. K.; Song, Y. Y. Improving Whole-Cell Biocatalysis for Helicid Benzoylation by the Addition of Ionic Liquids. Biochem. Eng. J. 2020, 161. DOI: 10.1016/j.bej.2020.107695.
  • Sadaf, A.; Khare, S. K. Efficacy of Ionic Liquids on the Growth and Simultaneous Xylanase Production by Sporotrichum Thermophile: Membrane Integrity, Composition and Morphological Investigation. RSC Adv. 2017, 7, 21114–21123. DOI: 10.1039/c6ra27979a.
  • Lennartsson, P. R.; Erlandsson, P.; Taherzadeh, M. J. Integration of the First and Second Generation Bioethanol Processes and the Importance of By-Products. Bioresour. Technol. 2014, 165, 3–8. DOI: 10.1016/j.biortech.2014.01.127.
  • Bernal, M. P.; Sommer, S. G.; Chadwick, D.; Qing, C.; Guoxue, L., and Michel, F.C. Advances in Agronomy, Sparks, D. (San Diego: Elsevier), Ed.; 2017 Chapter Three - Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits ; Vol. 144. pp 143–233 doi:10.1016/bs.agron.2017.03.002.
  • Zabed, H.; Sahu, J. N.; Boyce, A. N.; Faruq, G. Fuel Ethanol Production from Lignocellulosic Biomass: An Overview on Feedstocks and Technological Approaches. Renew. Sust. Energ. Rev. 2016, 66, 751–774. DOI: 10.1016/j.rser.2016.08.038.
  • Balat, M. Production of Bioethanol from Lignocellulosic Materials via the Biochemical Pathway: A Review. Energy Conv. Manag. 2011, 52, 858–875. DOI: 10.1016/j.enconman.2010.08.013.
  • Badgujar, K. C.; Bhanage, B. M. Factors Governing Dissolution Process of Lignocellulosic Biomass in Ionic Liquid: Current Status, Overview and Challenges. Bioresour. Technol. 2015, 178, 2–18. DOI: 10.1016/j.biortech.2014.09.138.
  • Halder, P.; Kundu, S.; Patel, S.; Setiawan, A.; Atkin, R.; Parthasarthy, R.; Paz-Ferreiro, J.; Surapaneni, A.; Shah, K. Progress on the Pre-Treatment of Lignocellulosic Biomass Employing Ionic Liquids. Renew. Sust. Energ. Rev. 2019, 105, 268–292. DOI: 10.1016/j.rser.2019.01.052.
  • Usmani, Z.; Sharma, M.; Gupta, P.; Karpichev, Y.; Gathergood, N.; Bhat, R.; Gupta, V. K. Ionic Liquid Based Pretreatment of Lignocellulosic Biomass for Enhanced Bioconversion. Bioresour. Technol. 2020, 304, 123003. DOI: 10.1016/j.biortech.2020.123003.
  • Cox, B. J.; Jia, S. Y.; Zhang, Z. C.; Ekerdt, J. G. Catalytic Degradation of Lignin Model Compounds in Acidic Imidazolium Based Ionic Liquids: Hammett Acidity and Anion Effects. Polym. Degrad. Stab. 2011, 96, 426–431. DOI: 10.1016/j.polymdegradstab.2011.01.011.
  • Xu, F.; Sun, J.; Konda, N. V. S. N. M.; Shi, J.; Dutta, T.; Scown, C. D.; Simmons, B. A.; Singh, S. Transforming Biomass Conversion with Ionic Liquids: Process Intensification and the Development of a High-Gravity, One-Pot Process for the Production of Cellulosic Ethanol. Energy Environ. Sci. 2016, 9, 1042–1049. DOI: 10.1039/c5ee02940f.
  • Gao, P. F.; Li, A. T.; Lee, H. H.; Wang, D. I. C.; Li, Z. Enhancing Enantioselectivity and Productivity of P450-Catalyzed Asymmetric Sulfoxidation with an Aqueous/Ionic Liquid Biphasic System. ACS Catal. 2014, 4, 3763–3771. DOI: 10.1021/cs5010344.
  • Calderon, C.; Contreras, R.; Campodonico, R. Surfactant-Mediated Enzymatic Superactivity in Water/Ionic Liquid Mixtures, Evaluated on a Model Hydrolytic Reaction Catalyzed by α-Chymotrypsin. J. Mol. Liq. 2019, 283, 522–531. DOI: 10.1016/j.molliq.2019.03.106.
  • Li, M.; Huang, X. R.; Guo, Y.; Shang, Y. Z.; Liu, H. L. A Novel Efficient Medium for Chromogenic Catalysis of Tetramethylbenzidine with Horseradish Peroxidase. Chin. Chem. Lett. 2017, 28, 1453–1459. DOI: 10.1016/j.cclet.2017.03.012.
  • Li, Z. G.; Yang, Z. Y.; Chen, H.; Chen, H.; Yang, B.; Wang, Y. H. A Highly Efficient and Recoverable Enzymatic Method for Removing Phospholipids from Soybean Oil via an Ionic Liquid-Based Three-Liquid-Phase. Sep. Purif. Technol. 2021, 264. DOI: 10.1016/j.seppur.2021.118404.
  • Suo, H.; Xu, L.; Xue, Y.; Qiu, X.; Huang, H.; Hu, Y. Ionic Liquids-Modified Cellulose Coated Magnetic Nanoparticles for Enzyme Immobilization: Improvement of Catalytic Performance. Carbohydr. Polym. 2020, 234, 115914. DOI: 10.1016/j.carbpol.2020.115914.
  • Pang, S. L.; Wu, Y. W.; Zhang, X. Q.; Li, B. N.; Ouyang, J.; Ding, M. Y. Immobilization of Laccase via Adsorption onto Bimodal Mesoporous Zr-MOF. Process Biochem. 2016, 51, 229–239. DOI: 10.1016/j.procbio.2015.11.033.
  • Majewski, M. B.; Howarth, A. J.; Li, P.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K. Enzyme Encapsulation in Metal-Organic Frameworks for Applications in Catalysis. CrystEngComm. 2017, 19, 4082–4091. DOI: 10.1039/c7ce00022g.
  • Mehta, J.; Dhaka, S.; Paul, A. K.; Dayananda, S.; Deep, A. Organophosphate Hydrolase Conjugated UiO-66-NH2 Mof Based Highly Sensitive Optical Detection of Methyl Parathion. Environ. Res. 2019, 174, 46–53. DOI: 10.1016/j.envres.2019.04.018.
  • Akkas, T.; Zakharyuta, A.; Taralp, A.; Ow-Yang, C. W. Cross-Linked Enzyme Lyophilisates (CLELs) of Urease: A New Method to Immobilize Ureases. Enzyme Microb. Technol. 2020, 132, 109390. DOI: 10.1016/j.enzmictec.2019.109390.
  • Liu, D. M.; Dong, C. Recent Advances in Nano-Carrier Immobilized Enzymes and Their Applications. Process Biochem. 2020, 92, 464–475. DOI: 10.1016/j.procbio.2020.02.005.
  • Cipolatti, E. P.; Valério, A.; Henriques, R. O.; Moritz, D. E.; Ninow, J. L.; Freire, D. M. G.; Manoel, E. A.; Fernandez-Lafuente, R.; de Oliveira, D. Nanomaterials for Biocatalyst Immobilization – State of the Art and Future Trends. RSC Adv. 2016, 6, 104675–104692. DOI: 10.1039/c6ra22047a.
  • Jiaojiao, X.; Bin, Z.; Gangbin, Z.; Ping, W.; Zhenjiang, L. Quick Separation and Enzymatic Performance Improvement of Lipase by Ionic Liquid-Modified Fe3O4 Carrier Immobilization. Bioprocess Biosyst. Eng. 2018, 41, 739–748. DOI: 10.1007/s00449-018-1907-2.
  • Kumar, S.; Sindhu, A.; Venkatesu, P. Ionic Liquid-Modified Gold Nanoparticles for Enhancing Antimicrobial Activity and Thermal Stability of Enzymes. ACS Appl. Nano Mater. 2021, 4, 3185–3196. DOI: 10.1021/acsanm.1c00401.
  • Suo, H.; Li, M.; Liu, R.; Xu, L. Enhancing Bio-Catalytic Performance of Lipase Immobilized on Ionic Liquids Modified Magnetic Polydopamine. Colloids Surf. B. 2021, 206, 111960. DOI: 10.1016/j.colsurfb.2021.111960.
  • Nordwald, E. M.; Kaar, J. L. Stabilization of Enzymes in Ionic Liquids via Modification of Enzyme Charge. Biotechnol. Bioeng. 2013, 110, 2352–2360. DOI: 10.1002/bit.24910.
  • Bourkaib, M. C.; Guiavarc’h, Y.; Chevalot, I.; Delaunay, S.; Gleize, J.; Ghanbaja, J.; Valsaque, F.; Berrada, N.; Desforges, A.; Vigolo, B. Non-Covalent and Covalent Immobilization of Candida Antarctica Lipase B on Chemically Modified Multiwalled Carbon Nanotubes for a Green Acylation Process in Supercritical CO2. Catal. Today. 2020, 348, 26–36. DOI: 10.1016/j.cattod.2019.08.046.
  • Xiang, X. R.; Wan, X. M.; Suo, H. B.; Hu, Y. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida Antarctica Lipase B. Acta Phys. Chim. Sin. 2018, 34, 99–107. DOI: 10.3866/Pku.Whxb201706262.
  • Liu, X.; Bu, C.; Nan, Z.; Zheng, L.; Qiu, Y.; Lu, X. Enzymes Immobilized on Amine-Terminated Ionic Liquid-Functionalized Carbon Nanotube for Hydrogen Peroxide Determination. Talanta. 2013, 105, 63–68. DOI: 10.1016/j.talanta.2012.11.059.
  • Shangguan, X. D.; Zheng, J. B.; Zhang, H. F.; Tang, H. S. Direct Electrochemistry and Electrocatalysis Behaviors of Glucose Oxidase Based on Hyaluronic Acid-Carbon Nanotubes-Ionic Liquid Composite Film. Chin. J. Chem. 2010, 28, 1890–1896. DOI: 10.1002/cjoc.201090315.
  • Li, J. W.; Zhao, F. Q.; Wang, G. Y.; Gui, Z.; Xiao, F.; Zeng, B. Z. Novel Composite of Multiwalled Carbon Nanotubes and Gold Nanoparticles Stabilized by Chitosan and Hydrophilic Ionic Liquid for Direct Electron Transfer of Glucose Oxidase. Electroanalysis. 2009, 21, 150–156. DOI: 10.1002/elan.200804413.
  • Sun, L. F.; Zhang, X. H.; Wang, W. Y.; Chen, J. H. Carbon Nanotube-Ionic Liquid Composite Gel Based High-Performance Bioanode for Glucose/O2 Biofuel Cells. Anal. Methods. 2015, 7, 5060–5066. DOI: 10.1039/c5ay00863h.
  • Wan, X.; Xiang, X.; Tang, S.; Yu, D.; Huang, H.; Hu, Y. Immobilization of Candida Antarctica Lipase B on MWNTs Modified by Ionic Liquids with Different Functional Groups. Colloids Surf. B. 2017, 160, 416–422. DOI: 10.1016/j.colsurfb.2017.09.037.
  • Suo, H.; Xu, L.; Xu, C.; Chen, H.; Yu, D.; Gao, Z.; Huang, H.; Hu, Y. Enhancement of Catalytic Performance of Porcine Pancreatic Lipase Immobilized on Functional Ionic Liquid Modified Fe3O4-Chitosan Nanocomposites. Int. J. Biol. Macromol. 2018, 119, 624–632. DOI: 10.1016/j.ijbiomac.2018.07.187.
  • Suo, H.; Gao, Z.; Xu, L.; Xu, C.; Yu, D.; Xiang, X.; Huang, H.; Hu, Y. Synthesis of Functional Ionic Liquid Modified Magnetic Chitosan Nanoparticles for Porcine Pancreatic Lipase Immobilization. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 96, 356–364. DOI: 10.1016/j.msec.2018.11.041.
  • Zou, B.; Chu, Y.; Xia, J.; Chen, X.; Huo, S. Immobilization of Lipase by Ionic Liquid-Modified Mesoporous SiO2 Adsorption and Calcium Alginate-Embedding Method. Appl. Biochem. Biotechnol. 2018, 185, 606–618. DOI: 10.1007/s12010-017-2676-0.
  • Mathesh, M.; Luan, B. Q.; Akanbi, T. O.; Weber, J. K.; Liu, J. Q.; Barrow, C. J.; Zhou, R. H.; Yang, W. R. Opening Lids: Modulation of Lipase Immobilization by Graphene Oxides. ACS Catal. 2016, 6, 4760–4768. DOI: 10.1021/acscatal.6b00942.
  • Suo, H. B.; Xu, L. L.; Xu, C.; Qu, X.; Chen, H. Y.; Huang, H.; Hu, Y. Graphene Oxide Nanosheets Shielding of Lipase Immobilized on Magnetic Composites for the Improvement of Enzyme Stability. ACS Sustain. Chem. Eng. 2019, 7, 4486–4494. DOI: 10.1021/acssuschemeng.8b06542.
  • Zhou, H. C.; Yang, L. R.; Li, W.; Shou, Q. H.; Xu, P.; Li, W.; Wang, F. C.; Yu, P. H.; Liu, H. Z. Improving the Stability of Immobilized Penicillin G Acylase via the Modification of Supports with Ionic Liquids. Ind. Eng. Chem. Res. 2012, 51, 4582–4590. DOI: 10.1021/ie202745c.
  • Zhou, H. C.; Li, W.; Shou, Q. H.; Gao, H. S.; Xu, P.; Deng, F. L.; Liu, H. Z. Immobilization of Penicillin G Acylase on Magnetic Nanoparticles Modified by Ionic Liquids. Chin. J. Chem. Eng. 2012, 20, 146–151. DOI: 10.1016/S1004-9541(12)60374-7.
  • Qiu, X.; Wang, Y.; Xue, Y.; Li, W. X.; Hu, Y. Laccase Immobilized on Magnetic Nanoparticles Modified by Amino-Functionalized Ionic Liquid via Dialdehyde Starch for Phenolic Compounds Biodegradation. Chem. Eng. J. 2020, 391. DOI: 10.1016/j.cej.2019.123564.
  • Hosseini, S. H.; Hosseini, S. A.; Zohreh, N.; Yaghoubi, M.; Pourjavadi, A. Covalent Immobilization of Cellulase Using Magnetic Poly(Ionic Liquid) Support: Improvement of the Enzyme Activity and Stability. J. Agric. Food. Chem. 2018, 66, 789–798. DOI: 10.1021/acs.jafc.7b03922.
  • Souza, R. L.; Faria, E. L. P.; Figueiredo, R. T.; Fricks, A. T.; Zanin, G. M.; Santos, O. A. A.; Lima, A. S.; Soares, C. M. F. Use of Polyethylene Glycol in the Process of Sol-Gel Encapsulation of Burkholderia Cepacia Lipase. J. Therm. Anal. Calorim. 2014, 117, 301–306. DOI: 10.1007/s10973-014-3663-0.
  • Souza, R. L.; Faria, E. L. P.; Figueiredo, R. T.; Mettedi, S.; Santos, O. A. A.; Lima, A. S.; Soares, C. M. F. Protic Ionic Liquid Applied to Enhance the Immobilization of Lipase in Sol-Gel Matrices. J. Therm. Anal. Calorim. 2017, 128, 833–840. DOI: 10.1007/s10973-016-5950-4.
  • Lee, S. H.; Doan, T. T. N.; Ha, S. H.; Chang, W.-J.; Koo, Y.-M. Influence of Ionic Liquids as Additives on Sol–Gel Immobilized Lipase. J. Mol. Catal. B-Enzym. 2007, 47, 129–134. DOI: 10.1016/j.molcatb.2007.05.002.
  • Lee, S. H.; Doan, T. T. N.; Ha, S. H.; Koo, Y.-M. Using Ionic Liquids to Stabilize Lipase within Sol–Gel Derived Silica. J. Mol. Catal. B-Enzym. 2007, 45, 57–61. DOI: 10.1016/j.molcatb.2006.11.008.
  • Park, S.; Kim, S. H.; Kim, J. H.; Yu, H.; Kim, H. J.; Yang, Y. H.; Kim, H.; Kim, Y. H.; Ha, S. H.; Lee, S. H. Application of Cellulose/Lignin Hydrogel Beads as Novel Supports for Immobilizing Lipase. J. Mol. Catal. B-Enzym. 2015, 119, 33–39. DOI: 10.1016/j.molcatb.2015.05.014.
  • Kim, H. J.; Jin, J. N.; Kan, E.; Kim, K. J.; Lee, S. H. Bacterial Cellulose-Chitosan Composite Hydrogel Beads for Enzyme Immobilization. Biotechnol. Bioprocess Eng. 2017, 22, 89–94. DOI: 10.1007/s12257-016-0381-4.
  • Jo, S.; Park, S.; Oh, Y.; Hong, J.; Kim, H. J.; Kim, K. J.; Oh, K. K.; Lee, S. H. Development of Cellulose Hydrogel Microspheres for Lipase Immobilization. Biotechnol. Bioprocess Eng. 2019, 24, 145–154. DOI: 10.1007/s12257-018-0335-0.
  • de Souza, R. L.; de Faria, E. L.; Figueiredo, R. T.; Freitas Ldos, S.; Iglesias, M.; Mattedi, S.; Zanin, G. M.; Dos Santos, O. A.; Coutinho, J. A.; Lima, A. S., et al. Protic Ionic Liquid as Additive on Lipase Immobilization Using Silica Sol-Gel. Enzyme. Microb. Technol. 2013, 52, 141–150. DOI: 10.1016/j.enzmictec.2012.12.007.
  • Zou, B.; Yan, Y.; Xia, J.; Zhang, L.; Adesanya, I. O. Enhancing Bio-Catalytic Activity and Stability of Lipase Nanogel by Functional Ionic Liquids Modification. Colloids Surf. B. 2020, 195, 111275. DOI: 10.1016/j.colsurfb.2020.111275.
  • Escudero, A.; de Los Rios, A. P.; Godinez, C.; Tomas, F.; Hernandez-Fernandez, F. J. Immobilization in Ionogel: A New Way to Improve the Activity and Stability of Candida Antarctica Lipase B. Molecules. 2020, 25. DOI: 10.3390/molecules25143233.
  • Qin, Z.; Feng, N.; Ma, Y.; Li, Y.; Xu, L.; Wang, Y.; Fei, X.; Tian, J. A Lipase/Poly (Ionic Liquid)-Styrene Microspheres/PVA Composite Hydrogel for Esterification Application. Enzyme Microb. Technol. 2021, 152, 109935. DOI: 10.1016/j.enzmictec.2021.109935.
  • Zhou, Z.; Ju, X.; Zhou, M.; Xu, X.; Fu, J.; Li, L. An Enhanced Ionic Liquid-Tolerant Immobilized Cellulase System via Hydrogel Microsphere for Improving in Situ Saccharification of Biomass. Bioresour. Technol. 2019, 294, 122146. DOI: 10.1016/j.biortech.2019.122146.
  • Zhong, N. J.; Li, Y.; Cai, C. S.; Gao, Y. Q.; Liu, N.; Liu, G. Q.; Tan, W. Y.; Zeng, Y. Y. Enhancing the Catalytic Performance of Candida Antarctica Lipase B by Immobilization onto the Ionic Liquids Modified SBA-15. Eur. J. Lipid Sci. Technol. 2018, 120. DOI: 10.1002/ejlt.201700357.
  • Lu, L.; Jieshan, Y.; Shitao, Y.; Shiwei, L.; Fusheng, L.; Congxia, X. Stability and Activity of Cellulase Modified with Polyethylene Glycol (PEG) at Different Amino Groups in the Ionic Liquid [C2OHmim][OAc]. Chem. Eng. Commun. 2018, 205, 986–990. DOI: 10.1080/00986445.2018.1428191.
  • Xiang, X.; Ding, S.; Suo, H.; Xu, C.; Gao, Z.; Hu, Y. Fabrication of Chitosan-Mesoporous Silica SBA-15 Nanocomposites via Functional Ionic Liquid as the Bridging Agent for PPL Immobilization. Carbohydr. Polym. 2018, 182, 245–253. DOI: 10.1016/j.carbpol.2017.11.031.
  • Martins, S. R. S.; Dos Santos, A.; Fricks, A. T.; Lima, A. S.; Mattedi, S.; Silva, D. P.; Soares, C. M. F.; Cabrera-Padilla, R. Y. Protic Ionic Liquids Influence on Immobilization of Lipase Burkholderia Cepacia on Hybrid Supports. J. Chem. Technol. Biotechnol. 2017, 92, 623–631. DOI: 10.1002/jctb.5044.
  • Zhou, H. C.; Yang, L. R.; Li, W.; Wang, F. C.; Li, W. S.; Zhao, J. M.; Liang, X. F.; Liu, H. Z. Immobilizing Penicillin G Acylase Using Silica-Supported Ionic Liquids: The Effects of Ionic Liquid Loadings. Ind. Eng. Chem. Res. 2012, 51, 13173–13181. DOI: 10.1021/ie301843v.
  • Bian, W. Y.; Yan, B. Y.; Shi, N.; Qiu, F. Y.; Lou, L. L.; Qi, B.; Liu, S. X. Room Temperature Ionic Liquid (RTIL)-decorated Mesoporous Silica SBA-15 for Papain Immobilization: RTIL Increased the Amount and Activity of Immobilized Enzyme. Mater. Sci. Eng. C. Mater. Biol. Appl. 2012, 32, 364–368. DOI: 10.1016/j.msec.2011.11.006.
  • Khademy, M.; Karimi, B.; Zareian, S. Ionic Liquid-Based Periodic Mesoporous Organosilica: An Innovative Matrix for Enzyme Immobilization. ChemistrySelect. 2017, 2, 9953–9957. DOI: 10.1002/slct.201701710.
  • Zou, B.; Song, C. Y.; Xu, X. P.; Xia, J. J.; Huo, S. H.; Cui, F. J. Enhancing Stabilities of Lipase by Enzyme Aggregate Coating Immobilized onto Ionic Liquid Modified Mesoporous Materials. Appl. Surf. Sci. 2014, 311, 62–67. DOI: 10.1016/j.apsusc.2014.04.210.
  • Zou, B.; Hu, Y.; Yu, D.; Jiang, L.; Liu, W.; Song, P. Functionalized Ionic Liquid Modified Mesoporous Silica SBA-15: A Novel, Designable and Efficient Carrier for Porcine Pancreas Lipase. Colloids Surf. B. 2011, 88, 93–99. DOI: 10.1016/j.colsurfb.2011.06.014.
  • Zou, B.; Hu, Y.; Yu, D. H.; Xia, J. J.; Tang, S. S.; Liu, W. M.; Huang, H. Immobilization of Porcine Pancreatic Lipase onto Ionic Liquid Modified Mesoporous Silica SBA-15. Biochem. Eng. J. 2010, 53, 150–153. DOI: 10.1016/j.bej.2010.09.005.
  • Xiang, X.; Suo, H.; Xu, C.; Hu, Y. Covalent Immobilization of Lipase onto Chitosan-Mesoporous Silica Hybrid Nanomaterials by Carboxyl Functionalized Ionic Liquids as the Coupling Agent. Colloids Surf. B. 2018, 165, 262–269. DOI: 10.1016/j.colsurfb.2018.02.033.
  • Jiang, Y. Y.; Guo, C.; Gao, H. S.; Xia, H. S.; Mahmood, I.; Liu, C. Z.; Liu, H. Z. Lipase Immobilization on Ionic Liquid-Modified Magnetic Nanoparticles: Ionic Liquids Controlled Esters Hydrolysis at Oil-Water Interface. AIChE J. 2012, 58, 1203–1211. DOI: 10.1002/aic.12644.
  • Jiang, Y. Y.; Guo, C.; Xia, H. S.; Mahmood, I.; Liu, C. Z.; Liu, H. Z. Magnetic Nanoparticles Supported Ionic Liquids for Lipase Immobilization: Enzyme Activity in Catalyzing Esterification. J. Mol. Catal. B-Enzym. 2009, 58, 103–109. DOI: 10.1016/j.molcatb.2008.12.001.
  • Grewal, J.; Ahmad, R.; Khare, S. K. Development of Cellulase-Nanoconjugates with Enhanced Ionic Liquid and Thermal Stability for in Situ Lignocellulose Saccharification. Bioresour. Technol. 2017, 242, 236–243. DOI: 10.1016/j.biortech.2017.04.007.
  • Park, S.; Oh, Y.; Jung, D.; Lee, S. H. Effect of Cellulose Solvents on the Characteristics of Cellulose/Fe2O3 Hydrogel Microspheres as Enzyme Supports. Polymers. 2020, 12. DOI: 10.3390/polym12091869.
  • Haj Kacem, S.; Galai, S.; Pérez de Los Ríos, A.; Hernández Fernández, F. J.; Smaali, I. New Efficient Laccase Immobilization Strategy Using Ionic Liquids for Biocatalysis and Microbial Fuel Cells Applications. J. Chem. Technol. Biotechnol. 2018, 93, 174–183. DOI: 10.1002/jctb.5337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.