Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 2
725
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Surface modification of metallic catalysts for the design of selective processes

, , , , &
Pages 640-686 | Received 21 Nov 2021, Accepted 15 May 2022, Published online: 02 Jun 2022

References

  • Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chem. Rev. 2020, 120(2), 623–682. DOI: 10.1021/acs.chemrev.9b00311.
  • Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120(2), 683–733. DOI: 10.1021/acs.chemrev.9b00230.
  • Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z. Surface Strategies for Catalytic CO2 Reduction: From two-dimensional Materials to Nanoclusters to Single Atoms. Chem. Soc. Rev. 2019, 48(21), 5310–5349. DOI: 10.1039/c9cs00163h.
  • Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the Art and Perspectives in Heterogeneous Catalysis of CO2 Hydrogenation to Methanol. Chem. Soc. Rev. 2020, 49(5), 1385–1413. DOI: 10.1039/c9cs00614a.
  • Mäki-Arvela, P.; Simakova, I. L.; Murzin, D. Y. One-pot Amination of Aldehydes and Ketones over Heterogeneous Catalysts for Production of Secondary Amines. Catal. Rev. Sci. Eng. 2021, 1–68. DOI: 10.1080/01614940.2021.1942689.
  • Lu, L.; Zou, S.; Fang, B. The Critical Impacts of Ligands on Heterogeneous Nanocatalysis: A Review. ACS Catal. 2021, 11(10), 6020–6058. DOI: 10.1021/acscatal.1c00903.
  • Gu, B.; Peron, D. V.; Barrios, A. J.; Bahri, M.; Ersen, O.; Vorokhta, M.; Smid, B.; Banerjee, D.; Virginie, M.; Marceau, E., et al. Mobility and Versatility of the Liquid Bismuth Promoter in the Working Iron Catalysts for Light Olefin Synthesis from Syngas. Chem. Sci. 2020, 11(24), 6167–6182. DOI: 10.1039/d0sc01600d.
  • Owen J. Nanocrystal Structure. The Coordination Chemistry of Nanocrystal Surfaces. Science. 2015, 347(6222), 615–616. DOI: 10.1126/science.1259924.
  • Kano, S.; Tada, T.; Majima, Y. Nanoparticle Characterization Based on STM and STS. Chem. Soc. Rev. 2015, 44(4), 970–987. DOI: 10.1039/c4cs00204k.
  • Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier Principle to a Predictive Theory of transition-metal Heterogeneous Catalysis. J. Catal. 2015, 328, 36–42. DOI: 10.1016/j.jcat.2014.12.033.
  • Liang, G.; Zhou, Y.; Zhao, J.; Khodakov, A. Y.; Ordomsky, V. V. Structure-Sensitive and Insensitive Reactions in Alcohol Amination over Nonsupported Ru Nanoparticles. ACS Catal. 2018, 8(12), 11226–11234. DOI: 10.1021/acscatal.8b02866.
  • Wu, B.; Zheng, N. Surface and Interface Control of Noble Metal Nanocrystals for Catalytic and Electrocatalytic Applications. Nano Today. 2013, 8(2), 168–197. DOI: 10.1016/j.nantod.2013.02.006.
  • Liu, P.; Qin, R.; Fu, G.; Zheng, N. Surface Coordination Chemistry of Metal Nanomaterials. J. Am. Chem. Soc. 2017, 139(6), 2122–2131. DOI: 10.1021/jacs.6b10978.
  • Nguyen, L.; Tao, F. F.; Tang, Y.; Dou, J.; Bao, X.-J. Understanding Catalyst Surfaces during Catalysis through near Ambient Pressure X-ray Photoelectron Spectroscopy. Chem. Rev. 2019, 119(12), 6822–6905. DOI: 10.1021/acs.chemrev.8b00114.
  • Staiger, L.; Kratky, T.; Günther, S.; Tomanek, O.; Zbořil, R.; Fischer, R. W.; Fischer, R. A.; Cokoja, M. Steric and Electronic Effects of Phosphane Additives on the Catalytic Performance of Colloidal Palladium Nanoparticles in the Semi-Hydrogenation of Alkynes. ChemCatChem. 2021, 13(1), 227–234. DOI: 10.1002/cctc.202001121.
  • Gavia, D. J.; Shon, Y. S. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands. ChemCatChem. 2015, 7(6), 892–900. DOI: 10.1002/cctc.201402865.
  • Samantaray, M. K.; D’Elia, V.; Pump, E.; Falivene, L.; Harb, M.; Ould Chikh, S.; Cavallo, L.; Basset, J. M. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem. Rev. 2020, 120(2), 734–813. DOI: 10.1021/acs.chemrev.9b00238.
  • Niu, Z.; Li, Y. Removal and Utilization of Capping Agents in Nanocatalysis. Chem. Mater. 2013, 26(1), 72–83. DOI: 10.1021/cm4022479.
  • Rossi, L. M.; Fiorio, J. L.; Garcia, M. A. S.; Ferraz, C. P. The Role and Fate of Capping Ligands in Colloidally Prepared Metal Nanoparticle Catalysts. Dalton Trans. 2018, 47(17), 5889–5915. DOI: 10.1039/c7dt04728b.
  • Wu, W.; Shevchenko, E. V. The Surface Science of Nanoparticles for Catalysis: Electronic and Steric Effects of Organic Ligands. J. Nanopart. Res. 2018, 20(9), 255. DOI: 10.1007/s11051-018-4319-y.
  • Zhang, C.; Wang, F. Catalytic Lignin Depolymerization to Aromatic Chemicals. Acc. Chem. Res. 2020, 53(2), 470–484. DOI: 10.1021/acs.accounts.9b00573.
  • Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chem. Rev. 2018, 118(22), 11023–11117. DOI: 10.1021/acs.chemrev.8b00134.
  • Xu, C.; Paone, E.; Rodriguez-Padron, D.; Luque, R.; Mauriello, F. Recent Catalytic Routes for the Preparation and the Upgrading of Biomass Derived Furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 2020, 49(13), 4273–4306. DOI: 10.1039/d0cs00041h.
  • van Scodeller, I.; De Oliveira Vigier, K.; Muller, E.; Ma, C.; Guegan, F.; Wischert, R.; Jerome, F. A Combined Experimental-Theoretical Study on Diels-Alder Reaction with Bio-Based Furfural: Towards Renewable Aromatics. ChemSusChem. 2021, 14(1), 313–323. DOI: 10.1002/cssc.202002111.
  • Jiang, S.; Muller, E.; Jerôme, F.; Pera-Titus, M.; De Oliveira Vigier, K. Conversion of Furfural to tetrahydrofuran-derived Secondary Amines under Mild Conditions. Green Chem. 2020, 22(6), 1832–1836. DOI: 10.1039/d0gc00119h.
  • Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. A Heterogeneous Nickel Catalyst for the Hydrogenolysis of Aryl Ethers without Arene Hydrogenation. J. Am. Chem. Soc. 2012, 134(50), 20226–20229. 20226-9.10.1021/ja3085912.
  • Liu, Y.; Zhao, G.; Wang, D.; Li, Y. Heterogeneous Catalysis for Green Chemistry Based on Nanocrystals. Natl. Sci. Rev. 2015, 2(2), 150–166. DOI: 10.1093/nsr/nwv014.
  • Zhang, J.; Ellis, L. D.; Wang, B.; Dzara, M. J.; Sievers, C.; Pylypenko, S.; Nikolla, E.; Medlin, J. W. Control of Interfacial acid–metal Catalysis with Organic Monolayers. Nat. Catal. 2018, 1(2), 148–155. DOI: 10.1038/s41929-017-0019-8.
  • Questell-Santiago, Y. M.; Galkin, M. V.; Barta, K.; Luterbacher, J. S. Stabilization Strategies in Biomass Depolymerization Using Chemical Functionalization. Nat. Rev. Chem. 2020, 4(6), 311–330. DOI: 10.1038/s41570-020-0187-y.
  • Sergeev, A. G.; Hartwig, J. F. Selective, nickel-catalyzed Hydrogenolysis of Aryl Ethers. Science. 2011, 332(6028), 439–443. DOI: 10.1126/science.1200437.
  • Zhang, F.; Zeng, M.; Yappert, R. D.; Sun, J.; Lee, Y. H.; LaPointe, A. M.; Peters, B.; Abu-Omar, M. M.; Scott, S. L. Polyethylene Upcycling to long-chain Alkylaromatics by Tandem hydrogenolysis/aromatization. Science. 2020, 370(6515), 437–441. DOI: 10.1126/science.abc5441.
  • Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem. Rev. 2020, 120(2), 526–622. DOI: 10.1021/acs.chemrev.8b00726.
  • Xie, C.; Yan, D.; Li, H.; Du, S.; Chen, W.; Wang, Y.; Zou, Y.; Chen, R.; Wang, S. Defect Chemistry in Heterogeneous Catalysis: Recognition, Understanding, and Utilization. ACS Catal. 2020, 10(19), 11082–11098. DOI: 10.1021/acscatal.0c03034.
  • Schlogl, R. Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2015, 54(11), 3465–3520. DOI: 10.1002/anie.201410738.
  • Medlin J. W.; Montemore, M. M. Heterogeneous Catalysis: Scaling the Rough Heights. Nat. Chem. 2015, 7(5), 378–380. DOI: 10.1038/nchem.2245.
  • Calle-Vallejo, F.; Loffreda, D.; Koper, M. T.; Sautet, P. Introducing Structural Sensitivity into adsorption-energy Scaling Relations by Means of Coordination Numbers. Nat. Chem. 2015, 7(5), 403–410. DOI: 10.1038/nchem.2226.
  • Jin, R.; Li, G.; Sharma, S.; Li, Y.; Du, X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem. Rev. 2021, 121(2), 567–648. DOI: 10.1021/acs.chemrev.0c00495.
  • Zhong, R.-Y.; Sun, K.-Q.; Hong, Y.-C.; Xu, B.-Q. Impacts of Organic Stabilizers on Catalysis of Au Nanoparticles from Colloidal Preparation. ACS Catal. 2014, 4(11), 3982–3993. DOI: 10.1021/cs501161c.
  • Zhao, Y.; Baeza, J. A.; Koteswara Rao, N.; Calvo, L.; Gilarranz, M. A.; Li, Y. D.; Lefferts, L. Unsupported PVA- and PVP-stabilized Pd Nanoparticles as Catalyst for Nitrite Hydrogenation in Aqueous Phase. J. Catal. 2014, 318, 162–169. DOI: 10.1016/j.jcat.2014.07.011.
  • F. de L. e Freitas, L.; Puértolas, B.; Zhang, J.; Wang, B.; Hoffman, A. S.; Bare, S. R.; Pérez-Ramírez, J.; Medlin, J., and Nikolla, E. Tunable Catalytic Performance of Palladium Nanoparticles for H2O2 Direct Synthesis via Surface-Bound Ligands. ACS Catal. 2020, 10(9), 5202–5207. DOI: 10.1021/acscatal.0c01517.
  • Dai, Y.; Liu, S.; Zheng, N. C2H2 Treatment as a Facile Method to Boost the Catalysis of Pd Nanoparticulate Catalysts. J. Am. Chem. Soc. 2014, 136(15), 5583–5586. DOI: 10.1021/ja501530n.
  • Jones, S.; Qu, J.; Tedsree, K.; Gong, X. Q.; Tsang, S. C. Prominent Electronic and Geometric Modifications of Palladium Nanoparticles by Polymer Stabilizers for Hydrogen Production under Ambient Conditions. Angew. Chem. Int. Ed. 2012, 51(45), 11275–11278. DOI: 10.1002/anie.201206035.
  • Zhong, R.-Y.; Yan, X.-H.; Gao, Z.-K.; Zhang, R.-J.; Xu, B.-Q. Stabilizer Substitution and Its Effect on the Hydrogenation Catalysis by Au Nanoparticles from Colloidal Synthesis. Catal. Sci. Technol. 2013, 3(11), 3013–3019. DOI: 10.1039/c3cy00308f.
  • Sadeghmoghaddam, E.; Gu, H., and Shon, Y. S. Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity. ACS Catal. 2012, 2(9), 1838–1845. DOI: 10.1021/cs300270d.
  • Witte, P. T.; Berben, P. H.; Boland, S.; Boymans, E. H.; Vogt, D.; Geus, J. W.; Donkervoort, J. G. BASF NanoSelect™ Technology: Innovative Supported Pd- and Pt-based Catalysts for Selective Hydrogenation Reactions. Top. Catal. 2012, 55(7–10), 505–511. DOI: 10.1007/s11244-012-9818-y.
  • Albani, D.; Li, Q.; Vilé, G.; Mitchell, S.; Almora-Barrios, N.; Witte, P. T.; López, N., and Pérez-Ramírez, J. Interfacial Acidity in Ligand-modified Ruthenium Nanoparticles Boosts the Hydrogenation of Levulinic Acid to Gamma-valerolactone. Green Chem. 2017, 19(10), 2361–2370. DOI: 10.1039/c6gc02586b.
  • Albani, D.; Vilé, G.; Mitchell, S.; Witte, P. T.; Almora-Barrios, N.; Verel, R.; López, N.; Pérez-Ramírez, J. Ligand Ordering Determines the Catalytic Response of Hybrid Palladium Nanoparticles in Hydrogenation. Catal. Sci. Technol. 2016, 6(6), 1621–1631. DOI: 10.1039/c5cy01921d.
  • Vile, G.; Almora-Barrios, N.; Mitchell, S.; Lopez, N., and Perez-Ramirez, J. From the Lindlar Catalyst to Supported Ligand-modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuous-flow Three-phase Hydrogenation of Acetylenic Compounds. Chemistry. 2014, 20(20), 5926–5937. DOI: 10.1002/chem.201304795.
  • Lari, G. M.; Puertolas, B.; Shahrokhi, M.; Lopez, N.; Perez-Ramirez, J. Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand. Angew. Chem. Int. Ed. 2017, 56(7), 1775–1779. DOI: 10.1002/anie.201610552.
  • Zhang, F.; Fang, J.; Huang, L.; Sun, W.; Lin, Z.; Shi, Z.; Kang, X.; Chen, S. Alkyne-Functionalized Ruthenium Nanoparticles: Impact of Metal–Ligand Interfacial Bonding Interactions on the Selective Hydrogenation of Styrene. ACS Catal. 2018, 9(1), 98–104. DOI: 10.1021/acscatal.8b04028.
  • Ernst, J. B.; Schwermann, C.; Yokota, G. I.; Tada, M.; Muratsugu, S.; Doltsinis, N. L.; Glorius, F. Molecular Adsorbates Switch on Heterogeneous Catalysis: Induction of Reactivity by N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2017, 139(27), 9144–9147. DOI: 10.1021/jacs.7b05112.
  • Lara, P.; Suárez, A.; Collière, V.; Philippot, K.; Chaudret, B. Platinum N-Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective Hydrogenation of Nitroaromatics. ChemCatChem. 2014, 6(1), 87–90. DOI: 10.1002/cctc.201300821.
  • Kaeffer, N.; Liu, H. J.; Lo, H. K.; Fedorov, A.; Coperet, C. An N-heterocyclic Carbene Ligand Promotes Highly Selective Alkyne Semihydrogenation with Copper Nanoparticles Supported on Passivated Silica. Chem. Sci. 2018, 9(24), 5366–5371. DOI: 10.1039/c8sc01924j.
  • de Los Bernardos, M. D.; Perez-Rodriguez, S.; Gual, A.; Claver, C.; Godard, C. Facile Synthesis of NHC-stabilized Ni Nanoparticles and Their Catalytic Application in the Z-selective Hydrogenation of Alkynes. Chem. Commun. 2017, 53(56), 7894–7897. DOI: 10.1039/c7cc01779k.
  • Chen, G.; Xu, C.; Huang, X.; Ye, J.; Gu, L.; Li, G.; Tang, Z.; Wu, B.; Yang, H.; Zhao, Z., et al. Interfacial Electronic Effects Control the Reaction Selectivity of Platinum Catalysts. Nat. Mater. 2016, 15(5), 564–569. DOI: 10.1038/nmat4555.
  • Wu, B.; Huang, H.; Yang, J.; Zheng, N., and Fu, G. Selective Hydrogenation of alpha,beta-unsaturated Aldehydes Catalyzed by Amine-capped Platinum-Cobalt Nanocrystals. Angew. Chem. Int. Ed. 2012, 51(14), 3440–3443. DOI: 10.1002/anie.201108593.
  • Schrader, I.; Warneke, J.; Backenkohler, J.; Kunz, S. Functionalization of Platinum Nanoparticles with L -proline: Simultaneous Enhancements of Catalytic Activity and Selectivity. J. Am. Chem. Soc. 2015, 137(2), 905–912. DOI: 10.1021/ja511349p.
  • Schrader, I.; Neumann, S.; Šulce, A.; Schmidt, F.; Azov, V.; Kunz, S. Asymmetric Heterogeneous Catalysis: Transfer of Molecular Principles to Nanoparticles by Ligand Functionalization. ACS Catal. 2017, 7(6), 3979–3987. DOI: 10.1021/acscatal.7b00422.
  • Jeong, H.; Kim, C.; Yang, S.; Lee, H. Selective Hydrogenation of Furanic Aldehydes Using Ni Nanoparticle Catalysts Capped with Organic Molecules. J. Catal. 2016, 344, 609–615. DOI: 10.1016/j.jcat.2016.11.002.
  • Yang, Y.; Li, S.; Xie, C.; Liu, H.; Wang, Y.; Mei, Q.; Liu, H.; Han, B. Ethylenediamine Promoted the Hydrogenative Coupling of Nitroarenes over Ni/C Catalyst. Chin. Chem. Lett. 2019, 30(1), 203–206. DOI: 10.1016/j.cclet.2018.04.006.
  • Šulce, A.; Mitschke, N.; Azov, V.; Kunz, S. Molecular Insights into the Ligand-Reactant Interactions of Pt Nanoparticles Functionalized with α-Amino Acids as Asymmetric Catalysts for β-Keto Esters. ChemCatChem. 2019, 11(11), 2732–2742. DOI: 10.1002/cctc.201900238.
  • Liu, H.; Mei, Q.; Li, S.; Yang, Y.; Wang, Y.; Liu, H.; Zheng, L.; An, P.; Zhang, J.; Han, B. Selective Hydrogenation of Unsaturated Aldehydes over Pt Nanoparticles Promoted by the Cooperation of Steric and Electronic Effects. Chem. Commun. 2018, 54(8), 908–911. DOI: 10.1039/c7cc08942b.
  • Fiorio, J. L.; Barbosa, E. C. M.; Kikuchi, D. K.; Camargo, P. H. C.; Rudolph, M.; Hashmi, A. S. K., and Rossi, L. M. Piperazine-promoted Gold-catalyzed Hydrogenation: The Influence of Capping Ligands. Catal. Sci. Technol. 2020, 10(7), 1996–2003. DOI: 10.1039/c9cy02016k.
  • Fiorio, J. L.; López, N.; Rossi, L. M. Gold–Ligand-Catalyzed Selective Hydrogenation of Alkynes into Cis -alkenes via H 2 Heterolytic Activation by Frustrated Lewis Pairs. ACS Catal. 2017, 7(4), 2973–2980. DOI: 10.1021/acscatal.6b03441.
  • Kwon, S. G.; Krylova, G.; Sumer, A.; Schwartz, M. M.; Bunel, E. E.; Marshall, C. L.; Chattopadhyay, S.; Lee, B.; Jellinek, J.; Shevchenko, E. V. Capping Ligands as Selectivity Switchers in Hydrogenation Reactions. Nano Lett. 2012, 12(10), 5382–5388. DOI: 10.1021/nl3027636.
  • Guo, M.; Li, H.; Ren, Y.; Ren, X.; Yang, Q.; Li, C. Improving Catalytic Hydrogenation Performance of Pd Nanoparticles by Electronic Modulation Using Phosphine Ligands. ACS Catal. 2018, 8(7), 6476–6485. DOI: 10.1021/acscatal.8b00872.
  • McKenna, F. M.; Wells, R. P.; Anderson, J. A. Enhanced Selectivity in Acetylene Hydrogenation by Ligand Modified Pd/TiO2 Catalysts. Chem. Commun. 2011, 47(8), 2351–2353. DOI: 10.1039/C0CC01742F.
  • Snelders, D. J. M.; Yan, N.; Gan, W.; Laurenczy, G.; Dyson, P. J. Tuning the Chemoselectivity of Rh Nanoparticle Catalysts by Site-Selective Poisoning with Phosphine Ligands: The Hydrogenation of Functionalized Aromatic Compounds. ACS Catal. 2012, 2(2), 201–207. DOI: 10.1021/cs200575r.
  • McCue, A. J.; McKenna, F.-M.; Anderson, J. A. Triphenylphosphine: A Ligand for Heterogeneous Catalysis Too? Selectivity Enhancement in Acetylene Hydrogenation over Modified Pd/TiO 2 Catalyst. Catal. Sci. Technol. 2015, 5(4), 2449–2459. DOI: 10.1021/jacs.6b10817.
  • Rafter, E.; Gutmann, T.; Löw, F.; Buntkowsky, G.; Philippot, K.; Chaudret, B., and van Leeuwen, P. W. N. M. Secondary Phosphineoxides as Pre-ligands for Nanoparticle Stabilization. Catal. Sci. Technol. 2013, 3(3), 595–599. DOI: 10.1039/c2cy20683h.
  • Cano, I.; Chapman, A. M.; Urakawa, A.; van Leeuwen, P. W. Air-stable Gold Nanoparticles Ligated by Secondary Phosphine Oxides for the Chemoselective Hydrogenation of Aldehydes: Crucial Role of the Ligand. J. Am. Chem. Soc. 2014, 136(6), 2520–2528. DOI: 10.1021/ja411202h.
  • Fedorov, A.; Liu, H. J.; Lo, H. K.; Coperet, C. Silica-Supported Cu Nanoparticle Catalysts for Alkyne Semihydrogenation: Effect of Ligands on Rates and Selectivity. J. Am. Chem. Soc. 2016, 138(50), 16502–16507. DOI: 10.1021/jacs.6b10817.
  • Liu, Y.; McCue, A. J.; Miao, C.; Feng, J.; Li, D.; Anderson, J. A. Palladium Phosphide Nanoparticles as Highly Selective Catalysts for the Selective Hydrogenation of Acetylene. J. Catal. 2018, 364, 406–414. DOI: 10.1021/acscatal.6b03460.
  • Huang, L.; Hu, K.; Ye, G.; Ye, Z. Highly Selective semi-hydrogenation of Alkynes with a Pd Nanocatalyst Modified with sulfide-based solid-phase Ligands. Mol. Catal. 2021, 506, 111535. DOI: 10.1016/j.mcat.2021.111535.
  • Marshall, S. T.; O’Brien, M.; Oetter, B.; Corpuz, A.; Richards, R. M.; Schwartz, D. K.; Medlin, J. W. Controlled Selectivity for Palladium Catalysts Using self-assembled Monolayers. Nat. Mater. 2010, 9(10), 853–858. DOI: 10.1038/nmat2849.
  • Makosch, M.; Lin, W.-I.; Bumbálek, V.; Sá, J.; Medlin, J. W.; Hungerbühler, K.; van Bokhoven, J. A. Organic Thiol Modified Pt/TiO2 Catalysts to Control Chemoselective Hydrogenation of Substituted Nitroarenes. ACS Catal. 2012, 2(10), 2079–2081. DOI: 10.1021/cs300378p.
  • McKenna, F.-M.; Anderson, J. A. Selectivity Enhancement in Acetylene Hydrogenation over Diphenyl sulphide-modified Pd/TiO2 Catalysts. J. Catal. 2011, 281(2), 231–240. DOI: 10.1016/j.jcat.2011.05.003.
  • Albani, D.; Shahrokhi, M.; Chen, Z.; Mitchell, S.; Hauert, R.; Lopez, N.; Perez-Ramirez, J. Selective Ensembles in Supported Palladium Sulfide Nanoparticles for Alkyne semi-hydrogenation. Nat. Commun. 2018, 9(1), 2634. DOI: 10.1038/s41467-018-05052-4.
  • Kahsar, K. R.; Schwartz, D. K.; Medlin, J. W. Selective Hydrogenation of Polyunsaturated Fatty Acids Using Alkanethiol Self-Assembled Monolayer-Coated Pd/Al 2 O 3 Catalysts. ACS Catal. 2013, 3(9), 2041–2044. DOI: 10.1021/cs4004563.
  • Pang, S. H.; Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Effects of Thiol Modifiers on the Kinetics of Furfural Hydrogenation over Pd Catalysts. ACS Catal. 2014, 4(9), 3123–3131. DOI: 10.1021/cs500598y.
  • Taguchi, T.; Isozaki, K.; Miki, K. Enhanced Catalytic Activity of self-assembled-monolayer-capped Gold Nanoparticles. Adv. Mater. 2012, 24(48), 6462–6467. DOI: 10.1002/adma.201202979.
  • Zhang, Q.; Su, C.; Cen, J.; Feng, F.; Ma, L.; Lu, C.; Li, X. The Modification of Diphenyl Sulfide to Pd/C Catalyst and Its Application in Selective Hydrogenation of p-Chloronitrobenzene. Chin. J. Chem. Eng. 2014, 22(10), 1111–1116. DOI: 10.1016/j.cjche.2014.08.007.
  • Altmann, L.; Kunz, S.; Bäumer, M. Influence of Organic Amino and Thiol Ligands on the Geometric and Electronic Surface Properties of Colloidally Prepared Platinum Nanoparticles. J. Phys. Chem. C. 2014, 118(17), 8925–8932. DOI: 10.1021/jp4116707.
  • Pang, S. H.; Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Directing Reaction Pathways by Catalyst active-site Selection Using self-assembled Monolayers. Nat. Commun. 2013, 4, 2448. DOI: 10.1038/ncomms3448.
  • Priyadarshini, P.; Ricciardulli, T.; Adams, J. S.; Yun, Y. S.; Flaherty, D. W. Effects of Bromide Adsorption on the Direct Synthesis of H2O2 on Pd Nanoparticles: Formation Rates, Selectivities, and Apparent Barriers at steady-state. J. Catal. 2021, 399, 24–40. DOI: 10.1016/j.jcat.2021.04.020.
  • Wu, D.; Hernández, W. Y.; Zhang, S.; Vovk, E. I.; Zhou, X.; Yang, Y.; Khodakov, A. Y.; Ordomsky, V. V. In Situ Generation of Brønsted Acidity in the Pd-I Bifunctional Catalysts for Selective Reductive Etherification of Carbonyl Compounds under Mild Conditions. ACS Catal. 2019, 9(4), 2940–2948. DOI: 10.1021/acscatal.8b04925.
  • Meng, Q.; Hou, M.; Liu, H.; Song, J.; Han, B. Synthesis of Ketones from biomass-derived Feedstock. Nat. Commun. 2017, 8, 14190. DOI: 10.1038/ncomms14190.
  • Wu, D.; Zhang, S.; Hernández, W. Y.; Baaziz, W.; Ersen, O.; Marinova, M.; Khodakov, A. Y.; Ordomsky, V. V. Dual Metal–Acid Pd-Br Catalyst for Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural (HMF) to 2,5-Dimethylfuran at Ambient Temperature. ACS Catal. 2021, 11(1), 19–30. DOI: 10.1021/acscatal.0c03955.
  • Wu, D.; Wang, Q.; Safonova, O. V.; Peron, D. V.; Zhou, W.; Yan, Z.; Marinova, M.; Khodakov, A. Y.; Ordomsky, V. V. Lignin Compounds to Monoaromatics: Selective Cleavage of C−O Bonds over a Brominated Ruthenium Catalyst. Angewandte Chemie Int. Ed. 2021, 60(22), 12513–12523. DOI: 10.1002/anie.202101325.
  • Campisi, S.; Ferri, D.; Villa, A.; Wang, W.; Wang, D.; Kröcher, O.; Prati, L. Selectivity Control in Palladium-Catalyzed Alcohol Oxidation through Selective Blocking of Active Sites. J. Phy. Chem. C. 2016, 120(26), 14027–14033. DOI: 10.1021/acs.jpcc.6b01549.
  • Freakley, S. J.; Agarwal, N.; McVicker, R. U.; Althahban, S.; Lewis, R. J.; Morgan, D. J.; Dimitratos, N.; Kiely, C. J.; Hutchings, G. J. Gold–palladium Colloids as Catalysts for Hydrogen Peroxide Synthesis, Degradation and Methane Oxidation: Effect of the PVP Stabiliser. Catal. Sci. Technol. 2020, 10(17), 5935–5944. DOI: 10.1039/d0cy00915f.
  • Niu, F.; Xie, S.; Bahri, M.; Ersen, O.; Yan, Z.; Kusema, B. T.; Pera-Titus, M.; Khodakov, A. Y.; Ordomsky, V. V. Catalyst Deactivation for Enhancement of Selectivity in Alcohols Amination to Primary Amines. ACS Catal. 2019, 9(7), 5986–5997. DOI: 10.1021/acscatal.9b00864.
  • Shifrina, Z. B.; Matveeva, V. G.; Bronstein, L. M. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem. Rev. 2020, 120(2), 1350–1396. DOI: 10.1021/acs.chemrev.9b00137.
  • Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of Electronic Structures of Au Clusters Stabilized by poly(N-vinyl-2-pyrrolidone) on Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2009, 131(20), 7086–7093. DOI: 10.1021/ja810045y.
  • Villa, A.; Wang, D.; Veith, G. M.; Vindigni, F.; Prati, L. Sol Immobilization Technique: A Delicate Balance between Activity, Selectivity and Stability of Gold Catalysts. Catal. Sci. Technol. 2013, 3(11), 3036–3041. DOI: 10.1039/c3cy00260h.
  • Xia, H.; An, J.; Zhang, W. Aerobic Oxidation of 5-Hydroxymethylfurfural over Ag Nanoparticle Catalysts Stabilized by Polyvinylpyrrolidone with Different Molecular Weights. Nanomater. (basel). 2020, 10(9), 1624. DOI: 10.3390/nano10091624.
  • Chen, K.; Wu, H.; Hua, Q.; Chang, S.; Huang, W. Enhancing Catalytic Selectivity of Supported Metal Nanoparticles with Capping Ligands. Phys. Chem. Chem. Phys. 2013, 15(7), 2273–2277. DOI: 10.1039/c2cp44571a.
  • Wang, Q.; Santos, S.; Urbina-Blanco, C. A.; Hernández, W. Y.; Impéror-Clerc, M.; Vovk, E. I.; Marinova, M.; Ersen, O.; Baaziz, W.; Safonova, O. V., et al. Solid Micellar Ru single-atom Catalysts for the water-free Hydrogenation of CO2 to Formic Acid. Appl. Catal. B. 2021, 290, 120036. DOI: 10.1016/j.apcatb.2021.120036.
  • Wang, Q.; Santos, S.; Urbina-Blanco, C. A.; Zhou, W.; Yang, Y.; Marinova, M.; Heyte, S.; Joelle, T.-R.; Ersen, O.; Baaziz, W., et al. Ru(III) Single Site Solid Micellar Catalyst for Selective Aqueous Phase Hydrogenation of Carbonyl Groups in biomass-derived Compounds. Appl. Catal. B. 2022, 300, 120730. DOI: 10.1016/j.apcatb.2021.120730.
  • Witte, P. T.; Boland, S.; Kirby, F.; Van maanen, R.; Bleeker, B. F.; De winter, D. A. M.; Post, J. A.; Geus, J. W.; Berben, P. H. NanoSelect Pd Catalysts: What Causes the High Selectivity of These Supported Colloidal Catalysts in Alkyne Semi-Hydrogenation? ChemCatChem. 2013, 5(2), 582–587. DOI: 10.1002/cctc.201200460.
  • Chernyshev, V. M.; Denisova, E. A.; Eremin, D. B.; Ananikov, V. P. The Key Role of R-NHC Coupling (R = C, H, Heteroatom) and M-NHC Bond Cleavage in the Evolution of M/NHC Complexes and Formation of Catalytically Active Species. Chem. Sci. 2020, 11(27), 6957–6977. DOI: 10.1039/d0sc02629h.
  • Ernst, J. B.; Muratsugu, S.; Wang, F.; Tada, M.; Glorius, F. Tunable Heterogeneous Catalysis: N-Heterocyclic Carbenes as Ligands for Supported Heterogeneous Ru/K-Al2O3 Catalysts to Tune Reactivity and Selectivity. J. Am. Chem. Soc. 2016, 138(34), 10718–10721. DOI: 10.1021/jacs.6b03821.
  • Kaeffer, N.; Mance, D.; Coperet, C. N-Heterocyclic Carbene Coordination to Surface Copper Sites in Selective Semihydrogenation Catalysts from Solid-State NMR Spectroscopy. Angew. Chem. Int. Ed. 2020, 59(45), 19999–20007. DOI: 10.1002/anie.202006209.
  • Shen, H.; Deng, G.; Kaappa, S.; Tan, T.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Hakkinen, H.; Zheng, N. Highly Robust but Surface-Active: An N-Heterocyclic Carbene-Stabilized Au25 Nanocluster. Angew. Chem. Int. Ed. 2019, 58(49), 17731–17735. DOI: 10.1002/anie.201908983.
  • Yang, Y.; Liu, H.; Li, S.; Chen, C.; Wu, T.; Mei, Q.; Wang, Y.; Chen, B.; Liu, H.; Han, B. Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran under Mild Conditions without Any Additive. ACS Sustain. Chem. Eng. 2019, 7(6), 5711–5716. DOI: 10.1021/acssuschemeng.8b04937.
  • Zhao, J. P.; Hernández, W. Y.; Zhou, W. J.; Yang, Y.; Vovk, E. I.; Wu, M.; Naghavi, N.; Capron, M.; Ordomsky, V. Nanocell Type Ru@quinone core-shell Catalyst for Selective Oxidation of Alcohols to Carbonyl Compounds. Appl. Catal. A. 2020, 602, 117693. DOI: 10.1016/j.apcata.2020.117693.
  • Cure, J.; Coppel, Y.; Dammak, T.; Fazzini, P. F.; Mlayah, A.; Chaudret, B.; Fau, P. Monitoring the Coordination of Amine Ligands on Silver Nanoparticles Using NMR and SERS. Langmuir. 2015, 31(4), 1362–1367. DOI: 10.1021/la504715f.
  • Duran Pachon, L.; Yosef, I.; Markus, T. Z.; Naaman, R.; Avnir, D.; Rothenberg, G. Chiral Imprinting of Palladium with Cinchona Alkaloids. Nat. Chem. 2009, 1(2), 160–164. DOI: 10.1038/nchem.180.
  • Neal, R. D.; Hughes, R. A.; Sapkota, P.; Ptasinska, S.; Neretina, S. Effect of Nanoparticle Ligands on 4-Nitrophenol Reduction: Reaction Rate, Induction Time, and Ligand Desorption. ACS Catal. 2020, 10(17), 10040–10050. DOI: 10.1021/acscatal.0c02759.
  • Rodriguez-Garcia, L.; Hungerbuhler, K.; Baiker, A.; Meemken, F. Enantioselection on Heterogeneous Noble Metal Catalyst: Proline-Induced Asymmetry in the Hydrogenation of Isophorone on Pd Catalyst. J. Am. Chem. Soc. 2015, 137(37), 12121–12130. DOI: 10.1021/jacs.5b07904.
  • Rodríguez-García, L.; Hungerbühler, K.; Baiker, A.; Meemken, F. The Critical Role of Tilted Cinchona Surface Species for Enantioselective Hydrogenation. ACS Catal. 2017, 7(6), 3799–3809. DOI: 10.1021/acscatal.7b00324.
  • Šulce, A.; Backenköhler, J.; Schrader, I.; Piane, M. D.; Müller, C.; Wark, A.; Ciacchi, L. C.; Azov, V.; Kunz, S. Ligand-functionalized Pt Nanoparticles as Asymmetric Heterogeneous Catalysts: Molecular Reaction Control by ligand–reactant Interactions. Catal. Sci. Technol. 2018, 8(23), 6062–6075. DOI: 10.1039/c8cy01836g.
  • Šulce, A.; Flaherty, D. W.; Kunz, S. Kinetic Analysis of the Asymmetric Hydrogenation of ß-keto Esters over α-amino acid-functionalized Pt Nanoparticles. J. Catal. 2019, 374, 82–92. DOI: 10.1016/j.jcat.2019.04.020.
  • Almora-Barrios, N.; Cano, I.; van Leeuwen, P. W. N. M.; López, N. Concerted Chemoselective Hydrogenation of Acrolein on Secondary Phosphine Oxide Decorated Gold Nanoparticles. ACS Catal. 2017, 7(6), 3949–3954. DOI: 10.1021/acscatal.7b00355.
  • Cano, I.; Martinez-Prieto, L. M.; Fazzini, P. F.; Coppel, Y.; Chaudret, B.; van Leeuwen, P. Characterization of Secondary Phosphine Oxide Ligands on the Surface of Iridium Nanoparticles. Phys. Chem. Chem. Phys. 2017, 19(32), 21655–21662. DOI: 10.1039/c7cp03439c.
  • Chatterjee, A.; Jensen, V. R. A Heterogeneous Catalyst for the Transformation of Fatty Acids to α-Olefins. ACS Catal. 2017, 7(4), 2543–2547. DOI: 10.1021/acscatal.6b03460.
  • Kaeffer, N.; Larmier, K.; Fedorov, A.; Copéret, C. Origin of ligand-driven Selectivity in Alkyne Semihydrogenation over silica-supported Copper Nanoparticles. J. Catal. 2018, 364, 437–445. DOI: 10.1016/j.jcat.2018.06.006.
  • Ortuño, M. A.; López, N. Creating Cavities at Palladium–Phosphine Interfaces for Enhanced Selectivity in Heterogeneous Biomass Conversion. ACS Catal. 2018, 8(7), 6138–6145. DOI: 10.1039/C5CY00065C.
  • Salnikov, O. G.; Liu, H.-J.; Fedorov, A.; Burueva, D. B.; Kovtunov, K. V.; Coperet, C.; Koptyug, I. V. Pairwise Hydrogen Addition in the Selective Semihydrogenation of Alkynes on silica-supported Cu Catalysts. Chem. Sci. 2017, 8(3), 2426–2430. DOI: 10.1039/c6sc05276b.
  • Zhao, X.; Zhou, L.; Zhang, W.; Hu, C.; Dai, L.; Ren, L.; Wu, B.; Fu, G.; Zheng, N. Thiol Treatment Creates Selective Palladium Catalysts for Semihydrogenation of Internal Alkynes. Chem. 2018, 4(5), 1080–1091. DOI: 10.1016/j.chempr.2018.02.011.
  • Kahsar, K. R.; Schwartz, D. K.; Medlin, J. W. Control of Metal Catalyst Selectivity through Specific Noncovalent Molecular Interactions. J. Am. Chem. Soc. 2014, 136(1), 520–526. DOI: 10.1021/ja411973p.
  • Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Controlling Surface Crowding on a Pd Catalyst with Thiolate self-assembled Monolayers. J. Catal. 2013, 303, 92–99. DOI: 10.1016/j.jcat.2013.03.012.
  • Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Controlling the Surface Environment of Heterogeneous Catalysts Using self-assembled Monolayers. Acc. Chem. Res. 2014, 47(4), 1438–1445. DOI: 10.1021/ar500029y.
  • Haider, P.; Urakawa, A.; Schmidt, E.; Baiker, A. Selective Blocking of Active Sites on Supported Gold Catalysts by Adsorbed Thiols and Its Effect on the Catalytic Behavior: A Combined Experimental and Theoretical Study. J. Mol. Catal. A: Chem. 2009, 305(1–2), 161–169. DOI: 10.1016/j.molcata.2009.02.025.
  • Huang, L.; Subramanian, R.; Wang, J.; Kwon Oh, J.; Ye, Z. Ligand Screening for Palladium Nanocatalysts Towards Selective Hydrogenation of Alkynes. Mol. Catal. 2020, 488, 110923. DOI: 10.1016/j.mcat.2020.110923.
  • McCue, A. J.; Guerrero-Ruiz, A.; Ramirez-Barria, C.; Rodríguez-Ramos, I.; Anderson, J. A. Selective Hydrogenation of Mixed alkyne/alkene Streams at Elevated Pressure over a Palladium Sulfide Catalyst. J. Catal. 2017, 355, 40–52. DOI: 10.1016/j.jcat.2017.09.004.
  • Andryushechkin, B. V.; Pavlova, T. V.; Eltsov, K. N. Adsorption of Halogens on Metal Surfaces. Surf. Sci. Rep. 2018, 73(3), 83–115. DOI: 10.1016/j.surfrep.2018.03.001.
  • Bjork, J.; Hanke, F.; Stafstrom, S. Mechanisms of halogen-based Covalent self-assembly on Metal Surfaces. J. Am. Chem. Soc. 2013, 135(15), 5768–5775. DOI: 10.1021/ja400304b.
  • Choudhary, V.; Samanta, C. Role of Chloride or Bromide Anions and Protons for Promoting the Selective Oxidation of H2 by O2 to H2O2 over Supported Pd Catalysts in an Aqueous Medium. J. Catal. 2006, 238(1), 28–38. DOI: 10.1016/j.jcat.2005.11.024.
  • Harris, J. W.; Herron, J. A.; DeWilde, J. F.; Bhan, A. Molecular Characteristics Governing Chlorine Deposition and Removal on Promoted Ag Catalysts during Ethylene Epoxidation. J. Catal. 2019, 377, 378–388. DOI: 10.1016/j.jcat.2019.07.043.
  • Ma, X.; Liu, S.; Liu, Y.; Gu, G.; Xia, C. Comparative Study on Catalytic Hydrodehalogenation of Halogenated Aromatic Compounds over Pd/C and Raney Ni Catalysts. Sci. Rep. 2016, 6, 25068. DOI: 10.1038/srep25068.
  • Oliveira, V.; Cremer, D. Transition from metal-ligand Bonding to Halogen Bonding Involving a Metal as Halogen Acceptor a Study of Cu, Ag, Au, Pt, and Hg Complexes. Chem. Phys. Lett. 2017, 681, 56–63. DOI: 10.1016/j.cplett.2017.05.045.
  • Ramirez, A.; Hueso, J. L.; Suarez, H.; Mallada, R.; Ibarra, A.; Irusta, S.; Santamaria, J. A Nanoarchitecture Based on Silver and Copper Oxide with an Exceptional Response in the Chlorine-Promoted Epoxidation of Ethylene. Angew. Chem. Int. Ed. 2016, 55(37), 11158–11161. DOI: 10.1002/anie.201603886.
  • Rocha, T. C. R.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R. Promoters in Heterogeneous Catalysis: The Role of Cl on Ethylene Epoxidation over Ag. J. Catal. 2014, 312, 12–16. DOI: 10.1016/j.jcat.2014.01.002.
  • Roman, T.; Gossenberger, F.; Forster-Tonigold, K.; Gross, A. Halide Adsorption on close-packed Metal Electrodes. Phys. Chem. Chem. Phys. 2014, 16(27), 13630–13634. DOI: 10.1039/c4cp00237g.
  • Seshu Babu, N.; Lingaiah, N.; Sai Prasad, P. S. Characterization and Reactivity of Al2O3 Supported Pd-Ni Bimetallic Catalysts for Hydrodechlorination of Chlorobenzene. Appl. Catal. B Environ. 2012, 111-112, 309–316. DOI: 10.1016/j.apcatb.2011.10.013.
  • Zhu, Q.; Wang, S.-Q. Trends and Regularities for Halogen Adsorption on Various Metal Surfaces. J. Electrochem. Soc. 2016, 163(9), H796–H808. DOI: 10.1149/2.0821609jes.
  • Duan, H.; Wang, D.; Li, Y. Green Chemistry for Nanoparticle Synthesis. Chem. Soc. Rev. 2015, 44(16), 5778–5792. DOI: 10.1039/c4cs00363b.
  • Favier, I.; Pla, D.; Gomez, M. Palladium Nanoparticles in Polyols: Synthesis, Catalytic Couplings, and Hydrogenations. Chem. Rev. 2020, 120(2), 1146–1183. DOI: 10.1021/acs.chemrev.9b00204.
  • Gu, J.; Zhang, Y.-W.; Tao, F. (. Shape Control of Bimetallic Nanocatalysts through well-designed Colloidal Chemistry Approaches. Chem. Soc. Rev. 2012, 41(24), 8050–8065. DOI: 10.1039/c2cs35184f.
  • Rodrigues, T. S.; da Silva, A. G. M.; Camargo, P. H. C. Nanocatalysis by Noble Metal Nanoparticles: Controlled Synthesis for the Optimization and Understanding of Activities. J. Mater. Chem. A. 2019, 7(11), 5857–5874. DOI: 10.1039/c9ta00074g.
  • An, -Y.-Y.; Yu, J.-G.; Han, Y.-F. Recent Advances in the Chemistry of N -Heterocyclic-Carbene-Functionalized Metal-Nanoparticles and Their Applications. Chin. J. Chem. 2019, 37(1), 76–87. DOI: 10.1002/cjoc.201800450.
  • Koy, M.; Bellotti, P.; Das, M.; Glorius, F. N-Heterocyclic Carbenes as Tunable Ligands for Catalytic Metal Surfaces. Nat. Catal. 2021, 4(5), 352–363. DOI: 10.1038/s41929-021-00607-z.
  • Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C.-H.; Crudden, C. M. N -heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 2019, 119(8), 4986–5056. DOI: 10.1021/acs.chemrev.8b00514.
  • Leeuwen, P. W. N. M.; Cano, I.; Freixa, Z. Secondary Phosphine Oxides: Bifunctional Ligands in Catalysis. ChemCatChem. 2020, 12(16), 3982–3994. DOI: 10.1002/cctc.202000493.
  • Wang, Y.-X.; Qi, S.-L.; Luan, Y.-X.; Han, X.-W.; Wang, S.; Chen, H.; Ye, M. Enantioselective Ni–Al Bimetallic Catalyzed Exo -selective C–H Cyclization of Imidazoles with Alkenes. J. Am. Chem. Soc. 2018, 140(16), 5360–5364. DOI: 10.1021/jacs.8b02547.
  • Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 2005, 44(48), 7852–7872. DOI: 10.1002/anie.200500766.
  • Rambukwella, M.; Sakthivel, N. A.; Delcamp, J. H.; Sementa, L.; Fortunelli, A.; Dass, A. Ligand Structure Determines Nanoparticles’ Atomic Structure, Metal-Ligand Interface and Properties. Front. Chem. 2018, 6, 330. DOI: 10.3389/fchem.2018.00330.
  • Sá, J.; Medlin, J. W. On-the-fly Catalyst Modification: Strategy to Improve Catalytic Processes Selectivity and Understanding. ChemCatChem. 2019, 11(15), 3355–3365. DOI: 10.1002/cctc.201900770.
  • Bachar, O.; Meirovich, M. M.; Kurzion, R.; Yehezkeli, O. In Vivo and in Vitro Protein Mediated Synthesis of Palladium Nanoparticles for Hydrogenation Reactions. Chem. Commun. 2020, 56(76), 11211–11214. DOI: 10.1039/d0cc04812g.
  • Collins, G.; Davitt, F.; O’Dwyer, C.; Holmes, J. D. Comparing Thermal and Chemical Removal of Nanoparticle Stabilizing Ligands: Effect on Catalytic Activity and Stability. Acs Appl. Nano Mater. 2018, 1(12), 7129–7138. DOI: 10.1021/acsanm.8b02019.
  • Farshad, M.; Suvlu, D.; Rasaiah, J. C. Ligand-Mediated Nanocluster Formation with Classical and Autocatalytic Growth. J. Phys. Chem. C. 2019, 123(49), 29954–29963. DOI: 10.1021/acs.jpcc.9b07683.
  • Lai, J.; Niu, W.; Luque, R.; Xu, G. Solvothermal Synthesis of Metal Nanocrystals and Their Applications. Nano Today. 2015, 10(2), 240–267. DOI: 10.1016/j.nantod.2015.03.001.
  • Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem. Rev. 2021, 121(2), 649–735. DOI: 10.1021/acs.chemrev.0c00454.
  • Yang, T. H.; Shi, Y.; Janssen, A.; Xia, Y. Surface Capping Agents and Their Roles in Shape-Controlled Synthesis of Colloidal Metal Nanocrystals. Angew. Chem. Int. Ed. 2020, 59(36), 15378–15401. DOI: 10.1002/anie.201911135.
  • Huo, D.; Kim, M. J.; Lyu, Z.; Shi, Y.; Wiley, B. J.; Xia, Y. One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chem. Rev. 2019, 119(15), 8972–9073. DOI: 10.1021/acs.chemrev.8b00745.
  • Fievet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.-Y.; Sicard, L.; Viau, G. The Polyol Process: A Unique Method for Easy Access to Metal Nanoparticles with Tailored Sizes, Shapes and Compositions. Chem. Soc. Rev. 2018, 47(14), 5187–5233. DOI: 10.1021/jp412364d.
  • Lu, Y.; Chen, W. Sub-nanometre Sized Metal Clusters: From Synthetic Challenges to the Unique Property Discoveries. Chem. Soc. Rev. 2012, 41(9), 3594–3623. DOI: 10.1016/j.cplett.2017.05.045.
  • Tong, Z.; Li, X.; Zhu, J.; Chen, S.; Dai, G.; Deng, Q.; Wang, J.; Yang, W.; Zeng, Z.; Zou, -J.-J. Iodine-Modified Pd Catalysts Promote the Bifunctional Catalytic Synthesis of 2,5-Hexanedione from C6 Furan Aldehydes. ChemSusChem. 2021, e202102444. DOI: 10.1002/cssc.202102444.
  • Scanlon, M. D.; Peljo, P.; Mendez, M. A.; Smirnov, E.; Girault, H. H. Charging and Discharging at the Nanoscale: Fermi Level Equilibration of Metallic Nanoparticles. Chem. Sci. 2015, 6(5), 2705–2720. DOI: 10.1021/acs.chemrev.0c00454.
  • Fogg, D. E.; Dos Santos, E. N. Tandem Catalysis: A Taxonomy and Illustrative Review. Coord. Chem. Rev. 2004, 248(21–24), 2365–2379. DOI: 10.1002/cssc.202102444.
  • Wu, D.; Baaziz, W.; Gu, B.; Marinova, M.; Hernandez, W. Y.; Zhou, W. J.; Vovk, E. I.; Ersen, O.; Safonova, O. V.; Addad, A., et al. Surface Molecular Imprinting over Supported Metal Catalysts for size-dependent Selective Hydrogenation Reactions. Nat. Catal. 2021, 4(7), 595–606. DOI: 10.1038/s41929-021-00649-3.
  • Chan, C. W.; Mahadi, A. H.; Li, M. M.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C.; Cookson, J.; Brown, C. M.; Bishop, P. T., et al. Interstitial Modification of Palladium Nanoparticles with Boron Atoms as a Green Catalyst for Selective Hydrogenation. Nat. Commun. 2014, 5, 5787. DOI: 10.1038/ncomms6787.
  • Wei, Z.; Yao, Z.; Zhou, Q.; Zhuang, G.; Zhong, X.; Deng, S.; Li, X.; Wang, J. Optimizing Alkyne Hydrogenation Performance of Pd on Carbon in Situ Decorated with Oxygen-Deficient TiO2 by Integrating the Reaction and Diffusion. ACS Catal. 2019, 9(12), 10656–10667. DOI: 10.1021/acscatal.9b03300.
  • Tang, Y.; Dong, K.; Wang, S.; Sun, Q.; Meng, X.; Xiao, F.-S. Boosting the Hydrolytic Stability of Phosphite Ligand in Hydroformylation by the Construction of Superhydrophobic Porous Framework. Mol. Catal. 2019, 474. DOI: 10.1016/j.mcat.2019.110408.
  • Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C.; Meng, X.; Yang, H.; Mesters, C., et al. Hydrophobic Zeolite Modification for in Situ Peroxide Formation in Methane Oxidation to Methanol. Science. 2020, 367(6474), 193–197. DOI: 10.1126/science.aaw1108.
  • Wang, C.; Liu, Z.; Wang, L.; Dong, X.; Zhang, J.; Wang, G.; Han, S.; Meng, X.; Zheng, A.; Xiao, F.-S. Importance of Zeolite Wettability for Selective Hydrogenation of Furfural over Pd@Zeolite Catalysts. ACS Catal. 2017, 8(1), 474–481. DOI: 10.1021/acscatal.7b03443.
  • Luneau, M.; Lim, J. S.; Patel, D. A.; Sykes, E. C. H.; Friend, C. M.; Sautet, P. Guidelines to Achieving High Selectivity for the Hydrogenation of alpha,beta-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chem. Rev. 2020, 120(23), 12834–12872. DOI: 10.1021/acs.chemrev.0c00582.
  • Hahn, K. R.; Baiker, A. Comparative Density Functional Theory Study of Cinchonidine and Hydrogen Coadsorption on Platinum Group Metals (Rh, Ir, Pd, and Pt) and Its Implications on Surface Chiral Site Formation. J. Phys. Chem. C. 2020, 124(33), 18020–18030. DOI: 10.1021/acs.jpcc.0c03255.
  • Baiker A. Crucial Aspects in the Design of Chirally Modified Noble Metal Catalysts for Asymmetric Hydrogenation of Activated Ketones. Chem. Soc. Rev. 2015, 44(21), 7449–7464. DOI: 10.1039/c4cs00462k.
  • Mallat, T.; Orglmeister, E.; Baiker, A. Asymmetric Catalysis at Chiral Metal Surfaces. Chem. Rev 2007, 107(11), 4863–4890. DOI: 10.1021/cr0683663.
  • Meemken, F.; Baiker, A. Recent Progress in Heterogeneous Asymmetric Hydrogenation of C=O and C=C Bonds on Supported Noble Metal Catalysts. Chem. Rev. 2017, 117(17), 11522–11569. DOI: 10.1021/acs.chemrev.7b00272.
  • Katz, A.; Davis, M. E. Molecular Imprinting of Bulk, Microporous Silica. Nature. 2000, 403(6767), 286–289. DOI: 10.1038/35002032.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45(8), 2137–2211. DOI: 10.1039/c6cs00061d.
  • Canlas, C. P.; Lu, J.; Ray, N. A.; Grosso-Giordano, N. A.; Lee, S.; Elam, J. W.; Winans, R. E.; Van Duyne, R. P.; Stair, P. C.; Notestein, J. M. Shape-selective Sieving Layers on an Oxide Catalyst Surface. Nat. Chem. 2012, 4(12), 1030–1036. DOI: 10.1038/nchem.1477.
  • Somorjai, G. A.; Van Hove, M. A. Restructuring of Metal Surfaces and Adsorbed Monolayers during Chemisorption and Catalytic Reaction. Acta. Crystallogr. B. Struct. Sci. 1995, 51(4), 502–512. DOI: 10.1107/s0108768195001078.
  • Yamada, M.; Hirashima, H.; Kitada, A.; Izumi, K.-I.; Nakamura, J. Three-Ni-atom Cluster Formed by Sulfur Adsorption on Ni(111). Surf. Sci. 2008, 602(9), 1659–1668. DOI: 10.1016/j.susc.2008.02.033.
  • Strømsheim, M. D.; Svenum, I.-H.; Farstad, M. H.; Weststrate, C.-J. K.-J.; Borg, A.; Venvik, H. J. CO-Induced Surface Reconstruction of the Co(11–20) Surface—A Combined Theoretical and Experimental Investigation. J. Phys. Chem. C. 2020, 124(52), 28488–28499. DOI: 10.1021/acs.jpcc.0c07852.
  • Tian, J.; Cao, H.; Wu, W.; Yu, Q.; Guisinger, N. P.; Chen, Y. P. Graphene Induced Surface Reconstruction of Cu. Nano Lett. 2012, 12(8), 3893–3899. DOI: 10.1021/nl3002974.
  • Saini, B.; Khamari, L.; Mukherjee, T. K. Kinetic and Mechanistic Insight into the Surfactant-Induced Aggregation of Gold Nanoparticles and Their Catalytic Efficacy: Importance of Surface Restructuring. J. Phys. Chem. B. 2022, 126(10), 2130–2141. DOI: 10.1021/acs.jpcb.2c00702.
  • Francis, J.; Guillon, E.; Bats, N.; Pichon, C.; Corma, A.; Simon, L. J. Design of Improved Hydrocracking Catalysts by Increasing the Proximity between Acid and Metallic Sites. Appl. Catal. A. 2011, 409-410, 140–147. DOI: 10.1016/j.apcata.2011.09.040.
  • Ju, C.; Li, M.; Fang, Y.; Tan, T. Efficient hydro-deoxygenation of Lignin Derived Phenolic Compounds over Bifunctional Catalysts with Optimized acid/metal Interactions. Green Chem. 2018, 20(19), 4492–4499. DOI: 10.1039/c8gc01960f.
  • Guisnet M. “Ideal” Bifunctional Catalysis over Pt-acid Zeolites. Catal. Today. 2013, 218-219, 123–134. DOI: 10.1016/j.cattod.2013.04.028.
  • Zecevic, J.; Vanbutsele, G.; de Jong, K. P.; Martens, J. A. Nanoscale Intimacy in Bifunctional Catalysts for Selective Conversion of Hydrocarbons. Nature. 2015, 528(7581), 245–248. DOI: 10.1038/nature16173.
  • Liu, Q.; Yang, X.; Li, L.; Miao, S.; Li, Y.; Li, Y.; Wang, X.; Huang, Y.; Zhang, T. Direct Catalytic Hydrogenation of CO2 to Formate over a Schiff-base-mediated Gold Nanocatalyst. Nat. Commun. 2017, 8(1), 1407. DOI: 10.1038/s41467-017-01673-3.
  • Liu, Q.; Yang, X.; Huang, Y.; Xu, S.; Su, X.; Pan, X.; Xu, J.; Wang, A.; Liang, C.; Wang, X., et al. A Schiff Base Modified Gold Catalyst for Green and Efficient H2 Production from Formic Acid. Energy Environ. Sci. 2015, 8(11), 3204–3207. DOI: 10.1039/c5ee02506k.
  • Jin, Z.; Yi, X.; Wang, L.; Xu, S.; Wang, C.; Wu, Q.; Wang, L.; Zheng, A.; Xiao, F.-S. Metal-acid Interfaces Enveloped in Zeolite Crystals for Cascade Biomass Hydrodeoxygenation. Appl. Catal. B. 2019, 254, 560–568. DOI: 10.1016/j.apcatb.2019.05.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.