Publication Cover
Catalysis Reviews
Science and Engineering
Volume 66, 2024 - Issue 2
1,531
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid

, , , & ORCID Icon
Pages 687-712 | Received 01 Nov 2021, Accepted 20 May 2022, Published online: 06 Jun 2022

References

  • Xu, B.; Liu, S.; Zhou, J. L.; Zheng, C.; Jin, W.; Chen, B.; Zhang, T.; Qiu, W. PFAS and Their Substitutes in Groundwater: Occurrence, Transformation and Remediation. J. Hazard. Mater. 2021, 412, 125159. DOI: 10.1016/j.jhazmat.2021.125159.
  • Kwiatkowski, C. F.; Andrews, D. Q.; Birnbaum, L. S.; Bruton, T. A.; DeWitt, J. C.; Knappe, D. R. U.; Maffini, M. V.; Miller, M. F.; Pelch, K. E.; Reade, A., et al. A. Scientific Basis for Managing PFAS as a Chemical Class. Environ. Sci. Technol. Lett. 2020, 7(8), 532–543.
  • Abunada, Z.; Alazaiza, M. Y. D.; Bashir, M. J. K. An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations. Water. 2020, 12(12), 3590. DOI: 10.3390/w12123590.
  • DeWitt, J. C.; Peden-Adams, M. M.; Keller, J. M.; Germolec, D. R. Immunotoxicity of Perfluorinated Compounds: Recent Developments. Toxicol. Pathol. 2012, 40(2), 300–311. DOI: 10.1177/0192623311428473.
  • Boonya-atichart, A.; Boontanon, S. K.; Boontanon, N. Removal of Perfluorooctanoic Acid (PFOA) in Groundwater by Nanofiltration Membrane. Water Sci. Technol. 2016, 74(11), 2627–2633. DOI: 10.2166/wst.2016.434.
  • Gao, P.; Cui, J.; Deng, Y. Direct Regeneration of Ion Exchange Resins with Sulfate Radical-Based Advanced Oxidation for Enabling a Cyclic Adsorption – Regeneration Treatment Approach to Aqueous Perfluorooctanoic Acid (PFOA). Chem. Eng. J. 2021, 405, 126698. DOI: 10.1016/j.cej.2020.126698.
  • Rattanaoudom, R.; Visvanathan, C. Removal of PFOA by Hybrid Membrane Filtration Using PAC and Hydrotalcite. Desalin. Water Treat. 2011, 32(1–3), 262–270. DOI: 10.5004/dwt.2011.2709.
  • Parsons, J.; Saez, M.; Dolfing, J.; De Voogt, P. Biodegradation of Perfluorinated Compounds. Rev. Environ. Contam. Toxicol. 2008, 196, 53–71. DOI: 10.1007/978-0-387-78444-1_2.
  • Son, H.; Kim, T.; Yoom, H.-S.; Zhao, D.; An, B. The Adsorption Selectivity of Short and Long Per- and Polyfluoroalkyl Substances (Pfass) from Surface Water Using Powder-Activated Carbon. Water. 2020, 12(11), 3287. DOI: 10.3390/w12113287.
  • Wang, S.; Yang, Q.; Chen, F.; Sun, J.; Luo, K.; Yao, F.; Wang, X.; Wang, D.; Li, X.; Zeng, G. Photocatalytic Degradation of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Water: A Critical Review. Chem. Eng. J. 2017, 328, 927–942. DOI: 10.1016/j.cej.2017.07.076.
  • Li, Z.; Zhang, P.; Shao, T.; Wang, J.; Jin, L.; Li, X. Different Nanostructured In2O3 for Photocatalytic Decomposition of Perfluorooctanoic Acid (PFOA). J. Hazard. Mater. 2013, 260, 40–46. DOI: 10.1016/j.jhazmat.2013.04.042.
  • Li, X.; Zhang, P.; Jin, L.; Shao, T.; Li, Z.; Cao, J. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol. 2012, 46(10), 5528–5534. DOI: 10.1021/es204279u.
  • Mahapatra, C. T.; Damayanti, N. P.; Guffey, S. C.; Serafin, J. S.; Irudayaraj, J.; Sepúlveda, M. S. Comparative in Vitro Toxicity Assessment of Perfluorinated Carboxylic Acids. J. Appl. Toxicol. 2017, 37(6), 699–708. DOI: 10.1002/jat.3418.
  • Shao, T.; Zhang, P.; Jin, L.; Li, Z. Photocatalytic Decomposition of Perfluorooctanoic Acid in Pure Water and Sewage Water by Nanostructured Gallium Oxide. Appl. Catal. B. 2013, 142–143, 654–661.
  • Sariket, D.; Shyamal, S.; Hajra, P.; Mandal, H.; Bera, A.; Maity, A.; Bhattacharya, C. Improvement of Photocatalytic Activity of Surfactant Modified In2O3 Towards Environmental Remediation. New J. Chem. 2018, 42(4), 2467–2475. DOI: 10.1039/C7NJ04645F.
  • Zhao, B.; Zhang, P. Photocatalytic Decomposition of Perfluorooctanoic Acid with β-Ga2O3 Wide Bandgap Photocatalyst. Catal. Commun. 2009, 10(8), 1184–1187. DOI: 10.1016/j.catcom.2009.01.017.
  • Navidpour, A. H.; Salehi, M.; Salimijazi, H. R.; Kalantari, Y.; Azarpour Siahkali, M. Photocatalytic Activity of Flame-Sprayed Coating of Zinc Ferrite Powder. J. Therm. Spray. Technol. 2017, 26(8), 2030–2039. DOI: 10.1007/s11666-017-0648-0.
  • Navidpour, A. H.; Fakhrzad, M. Photocatalytic and Magnetic Properties of ZnFe2O4 Nanoparticles Synthesised by Mechanical Alloying. Int. J. Environ. Anal. Chem. 2022, 102(3), 690–706. DOI: 10.1080/03067319.2020.1726331.
  • Navidpour, A. H.; Kalantari, Y.; Salehi, M.; Salimijazi, H. R.; Amirnasr, M.; Rismanchian, M.; Azarpour Siahkali, M. Plasma-Sprayed Photocatalytic Zinc Oxide Coatings. J. Therm. Spray. Technol. 2017, 26(4), 717–727. DOI: 10.1007/s11666-017-0541-x.
  • Kamranifar, M.; Al-Musawi, T. J.; Amarzadeh, M.; Hosseinzadeh, A.; Nasseh, N.; Qutob, M.; Arghavan, F. S. Quick Adsorption Followed by Lengthy Photodegradation Using FeNi3@SiO2@ZnO: A Promising Method for Complete Removal of Penicillin G from Wastewater. J. Water Process. Eng. 2021, 40, 101940. DOI: 10.1016/j.jwpe.2021.101940.
  • Djilali, T.; Lebouachera, S. E. I.; Dechir, S.; Chekir, N.; Benhabiles, O.; Bentahar, F. Comparison between TiO2 and ZnO Photocatalytic Efficiency for the Degradation of Tartrazine Contaminant in Water. Int. J. Environ. Sci. Technol. 2016, 1, 357–360.
  • Shinde, D.; Tambade, P.; Chaskar, M.; Gadave, K. Photocatalytic Degradation of Dyes in Water by Analytical Reagent Grades ZnO, TiO2 and SnO2: A Comparative Study. Drink. Water Eng. Sci. 2017, 10(2), 109–117. DOI: 10.5194/dwes-10-109-2017.
  • Tang, H.; Zhang, W.; Meng, Y.; Xia, S. A Direct Z-Scheme Heterojunction with Boosted Transportation of Photogenerated Charge Carriers for Highly Efficient Photodegradation of PFOA: Reaction Kinetics and Mechanism. Appl. Catal. B. 2021, 285, 119851. DOI: 10.1016/j.apcatb.2020.119851.
  • Navidpour, A. H.; Hosseinzadeh, A.; Zhou, J. L.; Huang, Z. Progress in the Application of Surface Engineering Methods in Immobilizing TiO2 and ZnO Coatings for Environmental Photocatalysis. Catal. Rev. 2022. DOI: 10.1080/01614940.2021.1983066.
  • Wu, D.; Li, X.; Zhang, J.; Chen, W.; Lu, P.; Tang, Y.; Li, L. Efficient PFOA Degradation by Persulfate-Assisted Photocatalytic Ozonation. Sep. Purif. Technol. 2018, 207, 255–261. DOI: 10.1016/j.seppur.2018.06.059.
  • Xu, B.; Zhou, J. L.; Altaee, A.; Ahmed, M. B.; Johir, M. A. H.; Ren, J.; Li, X. Improved Photocatalysis of Perfluorooctanoic Acid in Water and Wastewater by Ga2O3/UV System Assisted by Peroxymonosulfate. Chemosphere. 2020, 239, 124722. DOI: 10.1016/j.chemosphere.2019.124722.
  • Xu, B.; Ahmed, M. B.; Zhou, J. L.; Altaee, A. Visible and UV Photocatalysis of Aqueous Perfluorooctanoic Acid by TiO2 and Peroxymonosulfate: Process Kinetics and Mechanistic Insights. Chemosphere. 2020, 243, 125366. DOI: 10.1016/j.chemosphere.2019.125366.
  • Sanongraj, W.; Chen, Y.; Crittenden, J. C.; Destaillats, H.; Hand, D. W.; Perram, D. L.; Taylor, R. Mathematical Model for Photocatalytic Destruction of Organic Contaminants in Air. J. Air Waste Manag. Assoc. 2007, 57(9), 1112–1122. DOI: 10.3155/1047-3289.57.9.1112.
  • Zekri, M. E. M.; Colbeau-Justin, C. A Mathematical Model to Describe the Photocatalytic Reality: What Is the Probability that A Photon Does Its Job? Chem. Eng. J. 2013, 225, 547–557. DOI: 10.1016/j.cej.2013.03.129.
  • Sannino, D.; Vaiano, V.; Sacco, O.; Ciambelli, P. Mathematical Modelling of Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation. J. Environ. Chem. Eng. 2013, 1(1), 56–60. DOI: 10.1016/j.jece.2013.03.003.
  • Tokode, O.; Prabhu, R.; Lawton, L. A.; Robertson, P. K. J. Mathematical Modelling of Quantum Yield Enhancements of Methyl Orange Photooxidation in Aqueous TiO2 Suspensions under Controlled Periodic UV LED Illumination. Appl. Catal. B. 2014, 156–157, 398–403.
  • Hamedi, H.; Mohammadzadeh, O.; Rasouli, S.; Zendehboudi, S. A Critical Review of Biomass Kinetics and Membrane Filtration Models for Membrane Bioreactor Systems. J. Environ. Chem. Eng. 2021, 9(6), 106406. DOI: 10.1016/j.jece.2021.106406.
  • Abdi, J.; Hadipoor, M.; Hadavimoghaddam, F.; Hemmati-Sarapardeh, A. Estimation of Tetracycline Antibiotic Photodegradation from Wastewater by Heterogeneous Metal-Organic Frameworks Photocatalysts. Chemosphere. 2022, 287, 132135.
  • Heijungs, R. On the Number of Monte Carlo Runs in Comparative Probabilistic LCA. Int. J. Life Cycle Assess. 2020, 25(2), 394–402. DOI: 10.1007/s11367-019-01698-4.
  • Afzal, A.; Saleel, C. A.; Bhattacharyya, S.; Satish, N.; Samuel, O. D.; Badruddin, I. A. Merits and Limitations of Mathematical Modeling and Computational Simulations in Mitigation of COVID-19 Pandemic: A Comprehensive Review. Arch. Comput. Methods Eng. 2022, 29(2), 1311–1337. DOI: 10.1007/s11831-021-09634-2.
  • Hosseinzadeh, A.; Zhou, J. L.; Altaee, A.; Li, D. Machine Learning Modeling and Analysis of Biohydrogen Production from Wastewater by Dark Fermentation Process. Bioresour. Technol. 2022, 343, 126111. DOI: 10.1016/j.biortech.2021.126111.
  • Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine Learning in Manufacturing: Advantages, Challenges, and Applications. Prod. Manuf. Res. 2016, 4(1), 23–45.
  • Sultana, N.; Hossain, S. M. Z.; Abusaad, M.; Alanbar, N.; Senan, Y.; Razzak, S. A. Prediction of Biodiesel Production from Microalgal Oil Using Bayesian Optimization Algorithm-Based Machine Learning Approaches. Fuel. 2022, 309, 122184. DOI: 10.1016/j.fuel.2021.122184.
  • Chen, M.-J.; Lo, S.-L.; Lee, Y.-C.; Kuo, J.; Wu, C.-H. Decomposition of Perfluorooctanoic Acid by Ultraviolet Light Irradiation with Pb-Modified Titanium Dioxide. J. Hazard. Mater. 2016, 303, 111–118. DOI: 10.1016/j.jhazmat.2015.10.011.
  • Duan, L.; Wang, B.; Heck, K.; Guo, S.; Clark, C. A.; Arredondo, J.; Wang, M.; Senftle, T. P.; Westerhoff, P.; Wen, X., et al. Efficient Photocatalytic PFOA Degradation over Boron Nitride. Environ. Sci. Technol. Lett. 2020, 7(8), 613–619.
  • Yao, X.; Zuo, J.; Wang, Y.-J.; Song, -N.-N.; Li, -H.-H.; Qiu, K. Enhanced Photocatalytic Degradation of Perfluorooctanoic Acid by Mesoporous Sb2O3/TiO2 Heterojunctions. Front. Chem. 2021, 9(352), 690520. DOI: 10.3389/fchem.2021.690520.
  • Xu, T.; Zhu, Y.; Duan, J.; Xia, Y.; Tong, T.; Zhang, L.; Zhao, D. Enhanced Photocatalytic Degradation of Perfluorooctanoic Acid Using Carbon-Modified Bismuth Phosphate Composite: Effectiveness, Material Synergy and Roles of Carbon. Chem. Eng. J. 2020, 395, 124991. DOI: 10.1016/j.cej.2020.124991.
  • Qanbarzadeh, M.; Wang, D.; Ateia, M.; Sahu, S. P.; Cates, E. L. Impacts of Reactor Configuration, Degradation Mechanisms, and Water Matrices on Perfluorocarboxylic Acid Treatment Efficiency by the UV/Bi3O(OH)(PO4)2 Photocatalytic Process. ACS ES&T Eng. 2021, 1(2), 239–248. DOI: 10.1021/acsestengg.0c00086.
  • Song, Z.; Dong, X.; Fang, J.; Xiong, C.; Wang, N.; Tang, X. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis. J. Hazard. Mater. 2019, 377, 371–380. DOI: 10.1016/j.jhazmat.2019.05.084.
  • Li, Z.; Zhang, P.; Shao, T.; Li, X. In2O3 Nanoporous Nanosphere: A Highly Efficient Photocatalyst for Decomposition of Perfluorooctanoic Acid. Appl. Catal. B. 2012, 125, 350–357. DOI: 10.1016/j.apcatb.2012.06.017.
  • Wu, D.; Li, X.; Tang, Y.; Lu, P.; Chen, W.; Xu, X.; Li, L. Mechanism Insight of PFOA Degradation by ZnO Assisted-Photocatalytic Ozonation: Efficiency and Intermediates. Chemosphere. 2017, 180, 247–252. DOI: 10.1016/j.chemosphere.2017.03.127.
  • Wu, Y.; Hu, Y.; Han, M.; Ouyang, Y.; Xia, L.; Huang, X.; Hu, Z.; Li, C. Mechanism Insights into the Facet-Dependent Photocatalytic Degradation of Perfluorooctanoic Acid on BiOCl Nanosheets. Chem. Eng. J. 2021, 425, 130672. DOI: 10.1016/j.cej.2021.130672.
  • Li, M.; Yu, Z.; Liu, Q.; Sun, L.; Huang, W. Photocatalytic Decomposition of Perfluorooctanoic Acid by Noble Metallic Nanoparticles Modified TiO2. Chem. Eng. J. 2016, 286, 232–238. DOI: 10.1016/j.cej.2015.10.037.
  • Chen, M.-J.; Lo, S.-L.; Lee, Y.-C.; Huang, -C.-C. Photocatalytic Decomposition of Perfluorooctanoic Acid by Transition-Metal Modified Titanium Dioxide. J. Hazard. Mater. 2015, 288, 168–175. DOI: 10.1016/j.jhazmat.2015.02.004.
  • Shang, E.; Li, Y.; Niu, J.; Li, S.; Zhang, G.; Wang, X. Photocatalytic Degradation of Perfluorooctanoic Acid over Pb-BiFeO3/rGO Catalyst: Kinetics and Mechanism. Chemosphere. 2018, 211, 34–43. DOI: 10.1016/j.chemosphere.2018.07.130.
  • Song, C.; Chen, P.; Wang, C.; Zhu, L. Photodegradation of Perfluorooctanoic Acid by Synthesized TiO2–MWCNT Composites under 365nm UV Irradiation. Chemosphere. 2012, 86(8), 853–859. DOI: 10.1016/j.chemosphere.2011.11.034.
  • Sahu, S. P.; Qanbarzadeh, M.; Ateia, M.; Torkzadeh, H.; Maroli, A. S.; Cates, E. L. Rapid Degradation and Mineralization of Perfluorooctanoic Acid by a New Petitjeanite Bi3O(OH)(PO4)2 Microparticle Ultraviolet Photocatalyst. Environ. Sci. Technol. Lett. 2018, 5(8), 533–538. DOI: 10.1021/acs.estlett.8b00395.
  • Hosseinzadeh, A.; Baziar, M.; Alidadi, H.; Zhou, J. L.; Altaee, A.; Najafpoor, A. A.; Jafarpour, S. Application of Artificial Neural Network and Multiple Linear Regression in Modeling Nutrient Recovery in Vermicompost under Different Conditions. Bioresour. Technol. 2020, 303, 122926. DOI: 10.1016/j.biortech.2020.122926.
  • Hosseinzadeh, A.; Zhou, J. L.; Altaee, A.; Baziar, M.; Li, D. Effective Modelling of Hydrogen and Energy Recovery in Microbial Electrolysis Cell by Artificial Neural Network and Adaptive network-based Fuzzy Inference System. Bioresour. Technol. 2020, 316, 123967. DOI: 10.1016/j.biortech.2020.123967.
  • Jerome, H. F. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29(5), 1189–1232.
  • Cai, J.; Xu, K.; Zhu, Y.; Hu, F.; Li, L. Prediction and Analysis of Net Ecosystem Carbon Exchange Based on Gradient Boosting Regression and Random Forest. Appl. Energy. 2020, 262, 114566. DOI: 10.1016/j.apenergy.2020.114566.
  • Sarker, I. H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2(3), 160. DOI: 10.1007/s42979-021-00592-x.
  • Natekin, A.; Knoll, A. Gradient Boosting Machines, A Tutorial. Front. Neurorobot. 2013, 7, 21. DOI: 10.3389/fnbot.2013.00021.
  • Nguyen, H.; Vu, T.; Vo, T. P.; Thai, H.-T. Efficient Machine Learning Models for Prediction of Concrete Strengths. Constr. Build. Mater. 2021, 266, 120950. DOI: 10.1016/j.conbuildmat.2020.120950.
  • Grillone, B.; Danov, S.; Sumper, A.; Cipriano, J.; Mor, G. A Review of Deterministic and Data-Driven Methods to Quantify Energy Efficiency Savings and to Predict Retrofitting Scenarios in Buildings. Renew. Sustain. Energy Rev. 2020, 131, 110027. DOI: 10.1016/j.rser.2020.110027.
  • Zhou, L.; Fujita, H.; Ding, H.; Ma, R. Credit Risk Modeling on Data with Two Timestamps in Peer-To-Peer Lending by Gradient Boosting. Appl. Soft Comput. 2021, 110, 107672. DOI: 10.1016/j.asoc.2021.107672.
  • Li, Y.; Zou, C.; Berecibar, M.; Nanini-Maury, E.; Chan, J. C. W.; van den Bossche, P.; Van Mierlo, J.; Omar, N. Random Forest Regression for Online Capacity Estimation of Lithium-Ion Batteries. Appl. Energy. 2018, 232, 197–210. DOI: 10.1016/j.apenergy.2018.09.182.
  • Breiman, L. Random Forests. Mach. Learn. 2001, 45(1), 5–32. DOI: 10.1023/A:1010933404324.
  • Min, H.; Luo, X. Calibration of Soft Sensor by Using Just-In-Time Modeling and AdaBoost Learning Method. Chin. J. Chem. Eng. 2016, 24(8), 1038–1046. DOI: 10.1016/j.cjche.2016.05.015.
  • Wei, P.; Lu, Z.; Song, J. A Comprehensive Comparison of Two Variable Importance Analysis Techniques in High Dimensions: Application to an Environmental Multi-Indicators System. Environ. Model. Software. 2015, 70, 178–190. DOI: 10.1016/j.envsoft.2015.04.015.
  • Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics. 2010, 26(10), 1340–1347. DOI: 10.1093/bioinformatics/btq134.
  • Antoniadis, A.; Lambert-Lacroix, S.; Poggi, J.-M. Random Forests for Global Sensitivity Analysis: A Selective Review. Reliab. Eng. Syst. Saf. 2021, 206, 107312. DOI: 10.1016/j.ress.2020.107312.
  • Mohammadifar, A.; Gholami, H.; Comino, J. R.; Collins, A. L. Assessment of the Interpretability of Data Mining for the Spatial Modelling of Water Erosion Using Game Theory. Catena. 2021, 200, 105178. DOI: 10.1016/j.catena.2021.105178.
  • Hosseinzadeh, A.; Zhou, J. L.; Altaee, A.; Baziar, M.; Li, X. Modeling Water Flux in Osmotic Membrane Bioreactor by Adaptive Network-Based Fuzzy Inference System and Artificial Neural Network. Bioresour. Technol. 2020, 310, 123391. DOI: 10.1016/j.biortech.2020.123391.
  • Ahmed, S. N.; Haider, W. Heterogeneous Photocatalysis and Its Potential Applications in Water and Wastewater Treatment: A Review. Nanotechnology. 2018, 29(34), 342001. DOI: 10.1088/1361-6528/aac6ea.
  • Tan, X.; Chen, G.; Xing, D.; Ding, W.; Liu, H.; Li, T.; Huang, Y. Indium-Modified Ga2O3 Hierarchical Nanosheets as Efficient Photocatalysts for the Degradation of Perfluorooctanoic Acid. Environ. Sci. Nano. 2020, 7(8), 2229–2239. DOI: 10.1039/D0EN00259C.
  • Jiang, Z.; Hu, J.; Tong, M.; Samia, A. C.; Zhang, H.; Yu, X. A Novel Machine Learning Model to Predict the Photo-Degradation Performance of Different Photocatalysts on A Variety of Water Contaminants. Catalysts. 2021, 11(9), 1107. DOI: 10.3390/catal11091107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.