Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 40, 2018 - Issue 6
254
Views
11
CrossRef citations to date
0
Altmetric
Special Issue Paper

Omega-3 fatty acid supplement reduces activation of NADPH oxidase in intracranial atherosclerosis stenosis

, , , , , & show all
Pages 499-507 | Received 05 Jan 2018, Accepted 07 Mar 2018, Published online: 24 Mar 2018

References

  • Qureshi AI, Caplan LR. Intracranial atherosclerosis. Lancet. 2014;383:984–998.10.1016/S0140-6736(13)61088-0
  • Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25–146.
  • Holmstedt CA, Turan TN, Chimowitz MI. Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol. 2013;12:1106–1114.10.1016/S1474-4422(13)70195-9
  • Das UN. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins Leukot Essent Fatty Acids. 2000;63:351–362.10.1054/plef.2000.0226
  • Gorelick PB, Wong KS, Bae HJ, et al. Large artery intracranial occlusive disease: a large worldwide burden but a relatively neglected frontier. Stroke. 2008;39:2396–2399.10.1161/STROKEAHA.107.505776
  • Rizos EC, Ntzani EE, Bika E, et al. Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA. 2012;308:1024–1033.10.1001/2012.jama.11374
  • Turunen AW, Jula A, Suominen AL, et al. Fish consumption, omega-3 fatty acids, and environmental contaminants in relation to low-grade inflammation and early atherosclerosis. Environ Res. 2013;120:43–54.10.1016/j.envres.2012.09.007
  • Zendedel A, Habib P, Dang J, et al. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J Neuroimmunol. 2015;278:200–211.10.1016/j.jneuroim.2014.11.007
  • Cleverley K, Du X, Premecz S, et al. The effects of fish oil consumption on cardiovascular remodeling in ApoE deficient mice. Can J Physiol Pharmacol. 2013;91:960–965.10.1139/cjpp-2013-0077
  • Brown AL, Zhu X, Rong S, et al. Omega-3 fatty acids ameliorate atherosclerosis by favorably altering monocyte subsets and limiting monocyte recruitment to aortic lesions. Arterioscler Thromb Vasc Biol. 2012;32:2122–2130.10.1161/ATVBAHA.112.253435
  • Shapiro H. Could n-3 polyunsaturated fatty acids reduce pathological pain by direct actions on the nervous system? Prostaglandins Leukot Essent Fatty Acids. 2003;68:219–224.10.1016/S0952-3278(02)00273-9
  • Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–1230.
  • Arnoldussen IA, Kiliaan AJ. Impact of DHA on metabolic diseases from womb to tomb. Marine Drugs. 2014;12:6190–6212.10.3390/md12126190
  • Yoshihara T, Shimada K, Fukao K, et al. Omega 3 polyunsaturated fatty acids suppress the development of aortic aneurysms through the inhibition of macrophage-mediated inflammation. Circulation J. 2015;79:1470–1478.10.1253/circj.CJ-14-0471
  • Yamagishi K, Folsom AR, Steffen LM, et al. Plasma fatty acid composition and incident ischemic stroke in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Cerebrovasc Dis. 2013;36:38–46.10.1159/000351205
  • Lagarde M. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res. 1999;40:205–206.10.1006/phrs.1999.0497
  • Park K, Son H, Kim SW, et al. Initial validation of a novel rat model of vasculogenic erectile dysfunction with generalized atherosclerosis. Int J Impot Res. 2005;17:424–430.10.1038/sj.ijir.3901339
  • Park K, Lee DG, Kim SW, et al. Dimethylarginine dimethylaminohydrolase in rat penile tissue: reduced enzyme activity is responsible for erectile dysfunction in a rat model of atherosclerosis. Int J Impot Res. 2009;21:228–234.10.1038/ijir.2009.20
  • Yamakawa H, Jezova M, Ando H, et al. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab. 2003;23:371–380.10.1097/01.WCB.0000047369.05600.03
  • Geng X, Fu P, Ji X, et al. Synergetic neuroprotection of normobaric oxygenation and ethanol in ischemic stroke through improved oxidative mechanism. Stroke. 2013;44:1418–1425.10.1161/STROKEAHA.111.000315
  • Wang T, Chou DY-T, Ding JY, et al. Reduction of brain edema and expression of aquaporins with acute ethanol treatment after traumatic brain injury. J Neurosurg. 2013;118:390–396.10.3171/2012.8.JNS12736
  • Wang H, Tri Anggraini F, Chen X, et al. Embryonic lethal abnormal vision proteins and adenine and uridine-rich element mRNAs after global cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2017;37:1494–1507.10.1177/0271678X16657572
  • Shen J, Hafeez A, Stevenson J, et al. Omega-3 fatty acid supplement prevents development of intracranial atherosclerosis. Neuroscience. 2016;334:226–235.10.1016/j.neuroscience.2016.08.013
  • Calder PC. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol Nutr Food Res. 2012;56:1073–1080.10.1002/mnfr.201100710
  • Connor WE. Importance of n-3 fatty acids in health and disease. Am J Clin Nutr. 2000;71:171S–175S.10.1093/ajcn/71.1.171S
  • Mahe G, Ronziere T, Laviolle B, et al. An unfavorable dietary pattern is associated with symptomatic ischemic stroke and carotid atherosclerosis. J Vasc Surgery. 2010;52:62–68.10.1016/j.jvs.2010.02.258
  • Ross R. Atherosclerosis – An Inflammatory Disease. N Engl J Med. 1999;340:115–126.10.1056/NEJM199901143400207
  • Guzik TJ, West NE, Black E, et al. Vascular superoxide production by NAD(P)H oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res. 2000;86:E85–e90.10.1161/01.RES.86.9.e85
  • Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86:494–501.10.1161/01.RES.86.5.494
  • Sorescu D, Weiss D, Lassegue B, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002;105:1429–1435.10.1161/01.CIR.0000012917.74432.66
  • Han CY, Umemoto T, Omer M, et al. NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes. J Biol Chem. 2012;287:10379–10393.10.1074/jbc.M111.304998
  • Rastogi R, Geng X, Li F, et al. NOX activation by subunit interaction and underlying mechanisms in disease. Front cell Neurosci. 2016;10:301.
  • Serrano F, Kolluri NS, Wientjes FB, et al. NADPH oxidase immunoreactivity in the mouse brain. Brain Res. 2003;988:193–198.10.1016/S0006-8993(03)03364-X
  • Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.10.1152/physrev.00044.2005
  • Tang XN, Cairns B, Kim JY, et al. NADPH oxidase in stroke and cerebrovascular disease. Neurol RES. 2012;34(4):338–345.
  • Bokoch GM, Knaus UG. NADPH oxidases: not just for leukocytes anymore!. Trends Biochem Sci. 2003;28:502–508.10.1016/S0968-0004(03)00194-4
  • Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J. 2005;386:401–416.10.1042/BJ20041835
  • Suh SW, Shin BS, Ma H, et al. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol. 2008;64:654–663.10.1002/ana.v64:6
  • Takeya R, Ueno N, Kami K, et al. Novel human homologues of p47 phox and p67 phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem. 2015;290:6003.10.1074/jbc.A114.212856
  • Pirillo A, Catapano AL. Update on the management of severe hypertriglyceridemia–focus on free fatty acid forms of omega-3. Drug Des Devel Ther. 2015;9:2129–2137.
  • Zhang L, Geng Y, Xiao N, et al. High dietary n-6/n-3 PUFA ratio promotes HDL cholesterol level, but does not suppress atherogenesis in apolipoprotein E-null mice 1. J Atheroscler Thromb. 2009;16:463–471.10.5551/jat.No1347

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.