Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 46, 2024 - Issue 6
50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of serum inflammatory parameters in RRMS and SPMS patients

ORCID Icon, , , , , & ORCID Icon show all
Pages 495-504 | Received 05 Sep 2023, Accepted 26 Mar 2024, Published online: 02 May 2024

References

  • Adamczyk-Sowa M, Nowak-Kiczmer M, Jaroszewicz J, et al. Immunosenescence and multiple sclerosis. Neurol Neurochir Pol. 2022;56(3):220–227. doi: 10.5603/PJNNS.a2022.0045
  • McKay KA, Kwan V, Duggan T, et al. Risk factors associated with the onset of relapsing-remitting and primary progressive multiple sclerosis: a systematic review. Biomed Res Int. 2015;2015:817238. doi: 10.1155/2015/817238
  • Cree BAC, Arnold DL, Chataway J, et al. Secondary progressive multiple sclerosis: new insights. Neurology. 2021;97(8):378–388. doi: 10.1212/WNL.0000000000012323
  • Zeydan B, Kantarci OH. Impact of age on multiple sclerosis disease activity and progression. Curr Neurol Neurosci Rep. 2020;20(7):24. doi: 10.1007/s11910-020-01046-2
  • Ruiz F, Vigne S, Pot C. Resolution of inflammation during multiple sclerosis. Semin Immunopathol. 2019;41(6):711–726. doi: 10.1007/s00281-019-00765-0
  • Roe K. An inflammation classification system using cytokine parameters. Scand J Immunol. 2021;93(2):e12970. doi: 10.1111/sji.12970
  • Sonar S, Lal G. Role of tumor necrosis factor superfamily in neuroinflammation and autoimmunity. Front Immunol. 2015;6:364. doi: 10.3389/fimmu.2015.00364
  • Capobianchi MR, Uleri E, Caglioti C, et al. Type I IFN family members: similarity, differences and interaction. Cytokine Growth Factor Rev. 2015;26(2):103–111. doi: 10.1016/j.cytogfr.2014.10.011
  • Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–532. doi: 10.1038/nri2343
  • Balasa R, Bianca C, Septimiu V, et al. The matrix metalloproteinases panel in multiple sclerosis patients treated with Natalizumab: a possible answer to Natalizumab non- responders. CNS Neurol Disord Drug Targets. 2018;17(6):464–472. doi: 10.2174/1871527317666180703102536
  • Grudzińska E, Grzegorczyn S, Czuba ZP. Chemokines and growth factors produced by lymphocytes in the incompetent great saphenous vein. Mediators Inflamm. 2019;2019:7057303. doi: 10.1155/2019/7057303
  • Lejawa M, Osadnik K, Czuba Z, et al. Association of metabolically healthy and unhealthy obesity phenotype with markers related to obesity, diabetes among young, healthy adult men. Analysis of MAGNETIC study. Life (Basel). 2021;11(12):11. doi: 10.3390/life11121350
  • Idzik M, Poloczek J, Skrzep-Poloczek B, et al. The effects of 21-day general rehabilitation after hip or knee surgical implantation on plasma levels of selected Interleukins, VEGF, TNF-α, PDGF-BB, and eotaxin-1. Biomolecules. 2022;12(5):12. doi: 10.3390/biom12050605
  • Piazza F, DiFrancesco JC, Fusco ML, et al. Cerebrospinal fluid levels of BAFF and APRIL in untreated multiple sclerosis. J Neuroimmunol. 2010;220(1–2):104–107. doi: 10.1016/j.jneuroim.2010.01.011
  • Wang H, Wang K, Zhong X, et al. Cerebrospinal fluid BAFF and APRIL levels in neuromyelitis optica and multiple sclerosis patients during relapse. J Clin Immunol. 2012;32(5):1007–1011. doi: 10.1007/s10875-012-9709-9
  • Braun T, Juenemann M, Dornes K, et al. BAFF serum and CSF levels in patients with multiple sclerosis and infectious nervous system diseases. Int J Neurosci. 2021;131(12):1231–1236. doi: 10.1080/00207454.2020.1784167
  • Puthenparampil M, Miante S, Federle L, et al. BAFF is decreased in the cerebrospinal fluid of multiple sclerosis at clinical onset. J Neuroimmunol. 2016;297:63–67. doi: 10.1016/j.jneuroim.2016.05.013
  • Ragheb S, Li Y, Simon K, et al. Multiple sclerosis: BAFF and CXCL13 in cerebrospinal fluid. Mult Scler. 2011;17(7):819–829. doi: 10.1177/1352458511398887
  • Magliozzi R, Marastoni D, Calabrese M. The BAFF/APRIL system as therapeutic target in multiple sclerosis. Expert Opin Ther Targets. 2020;24(11):1135–1145. doi: 10.1080/14728222.2020.1821647
  • Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol. 2016;64(6):1403–1415. doi: 10.1016/j.jhep.2016.02.004
  • Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82. doi: 10.1016/j.coi.2015.02.008
  • Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta. 2016;1863(6):1218–1227. doi: 10.1016/j.bbamcr.2016.03.018
  • Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol. 1997;15(1):797–819. doi: 10.1146/annurev.immunol.15.1.797
  • Rose-John S. Interleukin-6 Family Cytokines. Cold Spring Harb Perspect Biol. 2018;10(2):10. doi: 10.1101/cshperspect.a028415
  • Gurfein BT, Zhang Y, Lopez CB, et al. IL-11 regulates autoimmune demyelination. J Immunol. 2009;183(7):4229–4240. doi: 10.4049/jimmunol.0900622
  • Maheshwari A, Janssens K, Bogie J, et al. Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination. Mediators Inflamm. 2013;2013:685317. doi: 10.1155/2013/685317
  • Padberg F, Feneberg W, Schmidt S, et al. CSF and serum levels of soluble interleukin-6 receptors (sIL-6R and sgp130), but not of interleukin-6 are altered in multiple sclerosis1Part of this work was presented in abstract form at the twenty-seventh annual meeting of the society for neuroscience, October 25–30, 1997, New Orleans, LA, USA.1. J Neuroimmunol. 1999;99(2):218–223. doi: 10.1016/S0165-5728(99)00120-4
  • Amini R, Karampoor S, Zahednasab H, et al. Serum levels of matrix metalloproteinase-2, -9, and vitamin D in patients with multiple sclerosis with or without herpesvirus-6 seropositivity. Braz J Infect Dis. 2020;24(2):144–149. doi: 10.1016/j.bjid.2020.02.001
  • Benesová Y, Vasku A, Novotná H, et al. Matrix metalloproteinase-9 and matrix metalloproteinase-2 as biomarkers of various courses in multiple sclerosis. Mult Scler. 2009;15(3):316–322. doi: 10.1177/1352458508099482
  • Castellazzi M, Ligi D, Contaldi E, et al. Multiplex matrix metalloproteinases analysis in the cerebrospinal fluid reveals potential specific patterns in multiple sclerosis patients. Front Neurol. 2018;9:1080. doi: 10.3389/fneur.2018.01080
  • Galboiz Y, Shapiro S, Lahat N, et al. Matrix metalloproteinases and their tissue inhibitors as markers of disease subtype and response to interferon-β therapy in relapsing and secondary-progressive multiple sclerosis patients. Ann Neurol. 2001;50(4):443–451. doi: 10.1002/ana.1218
  • Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood–brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab. 2016;36(9):1481–1507. doi: 10.1177/0271678X16655551
  • Niino M, Kikuchi S. Osteopontin and multiple sclerosis: An update. Clin Exp Immunol. 2011;2(2):33–40. doi: 10.1111/j.1759-1961.2011.00019.x
  • Iaffaldano P, Ribatti D, Trojano M. Natalizumab reduces serum pro-angiogenic activity in MS patients. Neurol Sci. 2018;39(4):725–731. doi: 10.1007/s10072-018-3266-9
  • Orsi G, Cseh T, Hayden Z, et al. Microstructural and functional brain abnormalities in multiple sclerosis predicted by osteopontin and neurofilament light. Mult Scler Relat Disord. 2021;51:102923. doi: 10.1016/j.msard.2021.102923
  • Agah E, Zardoui A, Saghazadeh A, et al. Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: a systematic review and meta-analysis. PLoS One. 2018;13(1):e0190252. doi: 10.1371/journal.pone.0190252
  • Comabella M, Pericot I, Goertsches R, et al. Plasma osteopontin levels in multiple sclerosis. J Neuroimmunol. 2005;158(1–2):231–239. doi: 10.1016/j.jneuroim.2004.09.004
  • Gong L, Dong C, Cai Q, et al. Interleukin 32: a novel player in perioperative neurocognitive disorders. Med Hypotheses. 2020;144:110158. doi: 10.1016/j.mehy.2020.110158
  • Parray Z, Zargar MH, Asimi R, et al. Interleukin 32 gene promoter polymorphism: a genetic risk factor for multiple sclerosis in Kashmiri population. Gene. 2022;824:146261. doi: 10.1016/j.gene.2022.146261
  • Morsaljahan Z, Rafiei A, Valadan R, et al. Association between interleukin-32 polymorphism and multiple sclerosis. J Neurol Sci. 2017;379:144–150. doi: 10.1016/j.jns.2017.05.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.