Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 46, 2024 - Issue 6
133
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transcranial direct current stimulation combined with swimming exercise improves the learning and memory abilities of vascular dementia rats by regulating microglia through miR-223-3p/PRMT8

, , , , , , , & ORCID Icon show all
Pages 525-537 | Received 23 Sep 2023, Accepted 26 Mar 2024, Published online: 02 Apr 2024

References

  • Zhou T, L Lin, C Hao, et al. Environmental enrichment rescues cognitive impairment with suppression of TLR4-p38MAPK signaling pathway in vascular dementia rats. Neurosci Lett. 2020;737:135318. doi: 10.1016/j.neulet.2020.135318
  • QI D, X Hou, C Jin, et al. HNSC exosome-derived MIAT improves cognitive disorders in rats with vascular dementia via the miR-34b-5p/CALB1 axis. Am J Transl Res. 2021;13(9):10075–10093.
  • Akhter F, Persaud A, Zaokari Y, et al. Vascular dementia and underlying sex differences. Front Aging Neurosci. 2021;13:720715. doi: 10.3389/fnagi.2021.720715
  • X Liu, Zhang R, Wu Z, et al. miR‑134‑5p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular dementia rat model. Int J Mol Med. 2019;44(5):1729–1740. doi: 10.3892/ijmm.2019.4331
  • N Zhu, Liang X, Zhang M, et al. Astaxanthin protects cognitive function of vascular dementia. Behav Brain Funct. 2020;16(1):10. doi: 10.1186/s12993-020-00172-8
  • Wang Q, Yang W, Zhang J, et al. TREM2 overexpression attenuates cognitive deficits in experimental models of vascular dementia. Neural Plasticity. 2020;2020:1–10. doi: 10.1155/2020/8834275
  • Levit A, Hachinski V, Whitehead S. Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease. Geroscience. 2020;42(2):445–465. doi: 10.1007/s11357-020-00164-6
  • Dhapola R, Hota S, Sarma P, et al. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology. 2021;29(6):1669–1681. doi: 10.1007/s10787-021-00889-6
  • Yang Y, Zhao X, Z Zhu, et al. Vascular dementia: a microglia’s perspective. Ageing Res Rev. 2022;81:101734. doi: 10.1016/j.arr.2022.101734
  • Tian Z, JI X, J Liu. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and prospects. Int J Mol Sci. 2022;23(11):6224. doi: 10.3390/ijms23116224
  • Park SW, Jun YW, Choi HE, et al. Deciphering the molecular mechanisms underlying the plasma membrane targeting of PRMT8. BMB Rep. 2019;52(10):601–606. doi: 10.5483/BMBRep.2019.52.10.272
  • Couto E Silva A, Wu, CY, Clemons, GA, et al. Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. J Neurochem. 2021;159(4):742–761. doi: 10.1111/jnc.15462
  • Li WJ, He YH, Yang JJ, et al. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Nat Commun. 2021;12(1):1946. doi: 10.1038/s41467-021-21963-1
  • Chen T, J Liu, Li S, et al. The role of protein arginine N-methyltransferases in inflammation [J]. Semin Cell Dev Biol. 2022;154(Pt C):208–214. doi: 10.1016/j.semcdb.2022.08.005
  • Kim JD, Park KE, Ishida J, et al. PRMT8 as a phospholipase regulates purkinje cell dendritic arborization and motor coordination. Sci Adv. 2015;1(11):e1500615. doi: 10.1126/sciadv.1500615
  • Simandi Z, Pajer K, Karolyi K, et al. Arginine methyltransferase PRMT8 provides cellular stress tolerance in aging motoneurons. J Neurosci. 2018;38(35):7683–7700. doi: 10.1523/JNEUROSCI.3389-17.2018
  • Zheng K, Zhang Y, Zhang C, et al. PRMT8 attenuates cerebral Ischemia/Reperfusion injury via modulating microglia activation and polarization to suppress neuroinflammation by upregulating Lin28a. ACS Chem Neurosci. 2022;13(7):1096–1104. doi: 10.1021/acschemneuro.2c00096
  • Tian C, Gao L, Zimmerman MC, et al. Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol. 2018;314(5):H928–h39. doi: 10.1152/ajpheart.00602.2017
  • Liu J, Jiang M, Deng S, et al. miR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage. Mol Ther Nucleic Acids. 2018;11:103–115. doi: 10.1016/j.omtn.2018.01.010
  • Wang Y, Jiang Y, Sun XI, et al. Downregulation of miR-200a protects cardiomyocyte against apoptosis. Biomed Pharmacother. 2020;123:109303. doi: 10.1016/j.biopha.2019.109303
  • Nie L, Zou H, Ma C, et al. Regulates NLRP3 to inhibit proliferation and promote apoptosis of ONG cells. Comput Math Meth Med. 2022;2022:1–9. doi: 10.1155/2022/2805645
  • Xu J, Wang B, Liu, ZT, et al. miR-223-3p regulating the occurrence and development of liver cancer cells by targeting FAT1 gene. Math Biosci Eng. 2019;17(2):1534–1547. doi: 10.3934/mbe.2020079
  • Li, S, Feng, Y, Huang, Y, et al. MiR-223-3p regulates cell viability, migration, invasion, and apoptosis of non-small cell lung cancer cells by targeting RHOB. Open Life Sci. 2020;15(1):389–399. doi: 10.1515/biol-2020-0040
  • Birba A, Ibáñez A, Sedeño L, et al. Non-invasive brain stimulation: a new strategy in mild cognitive impairment? Front Aging Neurosci. 2017;9:16. doi: 10.3389/fnagi.2017.00016
  • Šimko P, Kent JA, Rektorova I. Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer’s disease? An updated meta-analysis. Clin Neurophysiol. 2022;144:23–40. doi: 10.1016/j.clinph.2022.09.010
  • André S, Heinrich S, Kayser F, et al. At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia. J Neurol Sci. 2016;369:185–190. doi: 10.1016/j.jns.2016.07.065
  • Guo T, Fang J, Tong, ZY, et al. Transcranial direct Current stimulation ameliorates cognitive impairment via modulating oxidative stress, inflammation, and autophagy in a rat Model of vascular dementia. Front neurosci. 2020;14:28. doi: 10.3389/fnins.2020.00028
  • Peña J, Sampedro A, Balboa-bandeira Y, et al. Comparing transcranial direct current stimulation and transcranial random noise stimulation over left dorsolateral prefrontal cortex and left inferior frontal gyrus: effects on divergent and convergent thinking. Front Hum Neurosci. 2022;16:997445. doi: 10.3389/fnhum.2022.997445
  • Hurley R, Machado L. Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes? Neurosci Biobehav Rev. 2017;83:155–159. doi: 10.1016/j.neubiorev.2017.09.029
  • Trigiani, LJ, Lacalle‐Aurioles M, Bourourou M, et al. Benefits of physical exercise on cognition and glial white matter pathology in a mouse model of vascular cognitive impairment and dementia. Glia. 2020;68(9):1925–1940. doi: 10.1002/glia.23815
  • Lin H, Zhang J, Dai Y, et al. Neurogranin as an important regulator in swimming training to improve the spatial memory dysfunction of mice with chronic cerebral hypoperfusion. J Sport Health Sci. 2022;12(1):116–129. doi: 10.1016/j.jshs.2022.01.008
  • Guo T, Fang J, Tong ZY, et al. Transcranial direct Current stimulation ameliorates cognitive impairment via modulating oxidative stress, inflammation, and autophagy in a rat Model of vascular dementia. Front Neurosci. 2020;14:28. doi: 10.3389/fnins.2020.00028
  • Zhao K, Zeng L, Cai Z, et al. RNA sequencing-based identification of the regulatory mechanism of microRnas, transcription factors, and corresponding target genes involved in vascular dementia. Front neurosci. 2022;16:917489. doi: 10.3389/fnins.2022.917489
  • Xu JJ, Guo S, Xue R, et al. Adalimumab ameliorates memory impairments and neuroinflammation in chronic cerebral hypoperfusion rats J]. Aging (Albany NY). Aging. 2021;13(10):14001–14014. doi: 10.18632/aging.203009
  • Wang L, Yang, JW, Lin, LT, et al. Acupuncture attenuates inflammation in microglia of vascular dementia rats by inhibiting miR-93-mediated TLR4/MyD88/NF- κ B signaling pathway. Oxid Med Cell Longev. 2020;2020:1–15. doi: 10.1155/2020/8253904
  • Han B, Jiang W, Liu H, et al. Upregulation of neuronal PGC-1α ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Theranostics. 2020;10(6):2832–2848. doi: 10.7150/thno.37119
  • Wu C, Yang L, Feng S, et al. Therapeutic non-invasive brain treatments in Alzheimer’s disease: recent advances and challenges. Inflamm Regen. 2022;42(1):31. doi: 10.1186/s41232-022-00216-8
  • Lo LH, Dong R, Lyu Q, et al. The protein arginine methyltransferase PRMT8 and substrate G3BP1 control Rac1-PAK1 signaling and actin cytoskeleton for dendritic spine maturation. Cell Rep. 2020;31(10):107744. doi: 10.1016/j.celrep.2020.107744
  • Jin P, Jiang J, Zhou L, et al. Disrupting metformin adaptation of liver cancer cells by targeting the TOMM34/ATP5B axis. EMBO Mol Med. 2022;14(12):e16082. doi: 10.15252/emmm.202216082
  • Kim GD, Ng HP, Patel N, et al. Kruppel-like factor 6 and miR-223 signaling axis regulates macrophage-mediated inflammation. FASEB J. 2019;33(10):10902–10915. doi: 10.1096/fj.201900867RR
  • Zhang MW, Shen YJ, Shi J, et al. MiR-223-3p in cardiovascular diseases: a biomarker and potential therapeutic target. Front Cardiovasc Med. 2020;7:610561. doi: 10.3389/fcvm.2020.610561
  • Shu J, Wei W, Zhang L. Identification of molecular signatures and Candidate drugs in vascular dementia by bioinformatics analyses. Front Mol Neurosci. 2022;15:751044. doi: 10.3389/fnmol.2022.751044
  • Kashoo FZ, Al-Baradie RS, Alzahrani M, et al. Effect of transcranial direct Current stimulation augmented with motor imagery and upper-limb functional training for upper-limb stroke rehabilitation: a prospective randomized controlled trial. Int J Environ Res Public Health. 2022;19(22):15199. doi: 10.3390/ijerph192215199
  • La Rocca M, Clemente L, Gentile E, et al. Effect of single session of anodal M1 transcranial direct Current stimulation—TDCS—on cortical hemodynamic activity: a Pilot study in fibromyalgia. Brain Sci. 2022;12(11):1569. doi: 10.3390/brainsci12111569
  • Quinn DK, Story-Remer J, Brandt E, et al. Transcranial direct current stimulation modulates working memory and prefrontal-insula connectivity after mild-moderate traumatic brain injury. Front Hum Neurosci. 2022;16:1026639. doi: 10.3389/fnhum.2022.1026639
  • Ethridge VT, Gargas NM, Sonner MJ, et al. Altered functional connectivity between primary motor cortex subregions and the whole brain in patients with incomplete cervical spinal cord injury. Front Neurosci. 2022;16:996325. doi: 10.3389/fnins.2022.996325
  • Ethridge, VT, Gargas, NM, Sonner, MJ, et al. Effects of transcranial direct current stimulation on brain cytokine levels in rats. Front Neurosci. 2022;16:1069484. doi: 10.3389/fnins.2022.1069484

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.