377
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Nutritional Epigenetics and the Prevention of Hepatocellular Carcinoma with Bioactive Food Constituents

, &
Pages 719-733 | Received 13 Aug 2015, Accepted 08 Feb 2016, Published online: 08 Jun 2016

References

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, et al.: Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108, 2015.
  • El-Serag HB: Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264–1273, 2012.
  • Stewart BW and Wild CP: World Cancer Report 2014. International Agency for Research on Cancer, Lyon, France, 2014.
  • El-Serag HB and Kanwal F: Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go? Hepatology 60, 767–1775, 2014.
  • Stickel F: Alcoholic cirrhosis and hepatocellular carcinoma. Adv Exp Med Biol 815, 113–130, 2015.
  • Simard EP, Ward EM, Siegel R, and Jemal A: Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J Clin 62, 118–128, 2012.
  • American Association for Cancer Research: AACR Cancer Progress Report 2014. Clin Cancer Res 20, S1–S112, 2014.
  • Altekruse SF, McGlynn KA, and Reichman ME: Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol 27, 1485–1491, 2009.
  • Singal AG and El-Serag HB: Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol 13, 2140–2151, 2015.
  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, et al.: Cancer genome landscapes. Science 339, 1546–1558, 2013.
  • Villanueva A and Llovet JM: Mutational landscape of HCC—the end of beginning. Nat Rev Clin Oncol 11, 73–74, 2014.
  • Hussain SP, Schwank J, Staib F, Wang XW, and Harris CC: TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene 26, 2166–2176, 2007.
  • Tornesello ML, Buonaguro L, Tatangelo F, Botti G, Izzo F, et al.: Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics 102, 74–83, 2013.
  • Nault JC, Mallet M, Pilati C, Calderaro J, Bioulac-Sage P, et al.: High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun 4, 2218, 2013.
  • Zucman-Rossi J, Villanueva A, Nault JC, and Llovet JM: The genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226–1239, 2015.
  • Nault JC, Calderaro J, Di Tommaso L, Balabaudet C, Zafrani ES, et al.: Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology 60, 1983–1992, 2014.
  • Nishida N and Goel A: Genetic and epigenetic signatures in human hepatocellular carcinoma: a systematic review. Curr Genomics 12, 130–137, 2011.
  • Pogribny IP and Rusyn I: Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 342, 223–230, 2014.
  • Wang ZC, Gao Q, Shi JY, Guo WJ, Yang LX, et al.: PTPRS acts as a metastatic suppressor in hepatocellular carcinoma by control of EGFR induced epithelial-mesenchymal transition. Hepatology, 62, 1201–1214, 2015.
  • Xie Q, Chen L, Shan X, Shan X, Tang J, et al.: Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signaling pathway. Int J Cancer 135, 635–646, 2014.
  • Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, et al.: Deregulation of RB1 expression by loss of imprinting in human hepatocellular carcinoma. J Pathol 233, 392–401, 2014.
  • Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, et al.: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117, 2713–2722, 2007.
  • Martin M and Herceg Z: From hepatitis to hepatocellular carcinoma: a proposed model for crosstalk between inflammation and epigenetic mechanisms. Genome Med 4, 8, 2012.
  • Fernández-Alvarez A, Llorente-Izquierdo C, Mayoral R, Agra N, Bosca L, et al.: Evaluation of epigenetic modulation of cyclooxygenase-2 as a prognostic marker for hepatocellular carcinoma. Oncogenesis 1, e23, 2012.
  • Nishida N and Kudo M: Oxidative stress and epigenetic instability in human hepatocarcinogenesis. Dig Dis 31, 447–453, 2013.
  • Lim SO, Gu JM, Kim MS, Kim HS, Park YN, et al.: Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135, 2128–2140, 2008.
  • Xue X, Gao W, Sun B, Xu Y, Han B, et al.: Vasohibin 2 is transcriptionally activated and promotes angiogenesis in hepatocellular carcinoma. Oncogene 32, 1724–1734, 2013.
  • Forner A, Gilabert M, Bruix J, and Raoul JL: Treatment of intermediate-stage hepatocellular carcinoma. Nat Rev Clin Oncol 11, 525–535, 2014.
  • Singh S, Singh PP, Roberts LR, and Sanchez W: Chemopreventive strategies in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 11, 45–54, 2014.
  • Ooi SK, O'Donnell AH, and Bestor TH: Mammalian cytosine methylation at a glance. J Cell Sci 122, 2787–2791, 2009.
  • Chen ZX and Riggs AD: DNA methylation and demethylation in mammals. J Biol Chem 286, 18347–18353, 2011.
  • Wu H and Zhang Y: Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68, 2014.
  • Kohli RM and Zhang Y: TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479, 2013.
  • Hamm S, Just G, Lacoste N, Moitessier N, Szyf M, et al.: On the mechanism of demethylation of 5-methylcytosine in DNA. Bioorg Med Chem Lett 18, 1046–1049, 2008.
  • Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, et al.: 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 28, 4157–4165, 2000.
  • Kienhöfer S, Musheev MU, Stapf U, Helm M, Schomacher L, et al.: GADD45a physically and functionally interacts with TET1. Differentiation 90, 59–68, 2015.
  • Li Z, Gu T-P, Weber AR, Shen J-Z, Li B-Z, et al.: Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Res 43, 3986–3997, 2015.
  • Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, et al.: Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61, 4238–4243, 2001.
  • Tischoff I and Tannapfe A: DNA methylation in hepatocellular carcinoma. World J Gastroenterol 14, 1741–1748, 2008.
  • Stefanska B, Huang J, Bhattacharyya B, Suderman M, Hallett M, et al.: Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res 71, 5891–5903, 2011.
  • Udali S, Guarini P, Moruzzi S, Ruzzenente A, Tammen SA, et al.: Global DNA methylation and hydroxymethylation differ in hepatocellular carcinoma and cholangiocarcinoma and relate to survival rate. Hepatology 62, 496–504, 2015.
  • Nishida N, Kudo M, Nishimura T, Arizumi T, Takita M, et al.: Unique association between global DNA hypomethylation and chromosomal alterations in human hepatocellular carcinoma. PLoS One 8, e72312, 2013.
  • Stefanska B, Cheishvili D, Suderman M, Arakelian A, Huang J, et al.: Genome-wide study of hypomethyalted and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res 20, 3118–3132, 2014.
  • Fan H, Zhang H, Pascuzzi PE, and Andrisani O: Hepetitis B virus X protein induces EpCAM expression via active DNA demethylation directed by RelA in complex with EZH2 and TET2. Oncogene 35, 715–726, 2016.
  • Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, et al.: Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 33, 561–568, 2001.
  • Saito Y, Kanai Y, Nakagawa T, Sakamoto M, Saito H, et al.: Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 105, 27–532, 2003.
  • Fan H, Zhao ZJ, Cheng J, Su XW, Wu QX, et al.: Overexpression of DNA methyltransferase 1 and its biological significance in primary hepatocellular carcinoma. World J Gastroenterol 15, 2020–2026, 2009.
  • Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, et al.: UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25, 196–209, 2014.
  • Stefanska B, Suderman M, Machnes Z, Bhattacharyya B, Hallett M, et al.: Transcription onset of genes critical in liver carcinogenesis is epigenetically regulated by methylated DNA-binding protein MBD2. Carcinogenesis 34, 2738–2749, 2013.
  • Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, et al.: Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci USA 99, 10060–10065, 2002.
  • Kouzarides T: Chromatin modifications and their function. Cell 128, 693–705, 2007.
  • Bannister AJ and Kouzarides T: Regulation of chromatin by histone modifications. Cell Res 21, 381–395, 2011.
  • Pogribny IP, Ross SA, Tryndyak VP, Pogribna M, Poirier LA, et al.: Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27, 1180–1186, 2006.
  • Sistayanarain A, Tsuneyama K, Zheng H, Takahashi H, Nomoto K, et al.: Expression of Aurora-B kinase and phosphorylated histone H3 in hepatocellular carcinoma. Anticancer Res 26, 3585–3593, 2006.
  • Cai MY, Hou JH, Rao HL, Luo RZ, Li M, et al.: High expression of H3K27me3 in human hepatocellular carcinomas correlates closely with vascular invasion and predicts worse prognosis in patients. Mol Med 17, 12–20, 2011.
  • Hayashi A, Yamauchi N, Shibahara J, Kimura H, Morikawa T, et al.: Concurrent activation of acetylation and tri-methylation of H3K27 in a subset of hepatocellular carcinoma with aggressive behavior. PLoS One 9, e91330, 2014.
  • He C, Xu J, Zhang J, Xie D, Ye H, et al.: High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Hum Pathol 43, 1425–1435, 2012.
  • Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, et al.: Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 92, 1754–1758, 2005.
  • Fan DN, Tsang FH, Tam AH, Au SL, Wong CC, et al.: Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology 57, 637–647, 2013.
  • Chiba T, Saito T, Yuki K, Zen Y, Koide S, et al.: Histone lysine methyltransferase SUV39H1 is a potent target for epigenetic therapy of hepatocellular carcinoma. Int J Cancer 136, 289–298, 2015.
  • Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, et al.: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6, 731–740, 2004.
  • Au SL, Wong CC, Lee JM, Wong CM, and Ng IO: EZH2-Mediated H3K27me3 is involved in epigenetic repression of deleted in liver cancer 1 in human cancers. PLoS One 8, e68226, 2013.
  • Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, et al.: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology 56, 622–631, 2012.
  • Cheng AS, Lau SS, Chen Y, Kondo Y, Li MS, et al.: EZH2-mediated concordant repression of Wnt antagonists promotes β-catenin-dependent hepatocarcinogenesis. Cancer Res 71, 4028–4039, 2011.
  • Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, et al.: The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874, 2006.
  • Zhao ZK, Yu HF, Wang DR, Dong P, Chen L, et al.: Overexpression of lysine specific demethylase 1 predicts worse prognosis in primary hepatocellular carcinoma patients. World J Gastroenterol 18, 6651–6656, 2012.
  • Liang X, Zeng J, Wang L, Fang M, Wang Q, et al.: Histone demethylase retinoblastoma binding protein 2 is overexpressed in hepatocellular carcinoma and negatively regulated by hsa-miR-212. PLos One 8, e69784, 2013.
  • Cech TR and Steitz JA: The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94, 2014.
  • St Laurent G, Wahlestedt C, and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet 31, 239–251, 2015.
  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, et al.: The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22, 1775–1789, 2012.
  • Londin E, Loher P, Telonis AG, Quann K, Clark P, et al.: Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad USA 112, E1106–E1115, 2015.
  • Quagliata L, Matter MS, Piscuoglio S, Arabi L, Ruiz C, et al.: Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients. Hepatology 59, 911–923, 2014.
  • Huang JL, Zheng L, Hu YW, and Wang Q: Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma. Carcinogenesis 35, 507–514, 2014.
  • Li C, Chen J, Zhang K, Feng B, Wang R, et al.: Progress and prospects of long noncoding RNAs (lncRNAs) in hepatocellular carcinoma. Cell Physiol Biochem 36, 423–434, 2015.
  • Cui M, Xiao Z, Wang Y, Zheng M, Song T, et al.: Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXPA signaling pathway. Cancer Res 75, 846–857, 2015.
  • Yuan SX, Wang J, Yang F, Tao QF, Zhang J, et al.: Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma via de-repression of CTNNB1. Hepatology 63, 499–511, 2016.
  • Fu WM, Zhu X, Wang WM, Lu YF, Hu BG, et al.: Hotair mediates hepatocarcinogenesis through suppressing MiRNA-218 expression and activating P14 and P16 signaling. J Hepatol 63, 886–895, 2015.
  • Li T, Xie J, Shen C, Cheng D, Shi Y, et al.: Upregulation of long noncoding RNA ZEB1-AS1 promotes tumor metastasis and predicts poor prognosis in hepatocellular carcinoma. Oncogene 35, 1575–1584, 2016.
  • Negrini M, Gramantieri L, Sabbioni S, and Croce CM: microRNA involvement in hepatocellular carcinoma. Anticancer Agents Med Chem 11, 500–521, 2011.
  • Braconi C, Henry JC, Kogure T, Schmittgen T, and Patel T: The role of microRNAs in human liver cancers. Semin Oncol 38, 752–763, 2011.
  • Szabo G and Bala S: MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 10, 542–552, 2013.
  • Otsuka M, Kishikawa T, Yoshikawa T, Ohno M, Takata A, et al.: The role of microRNAs in hepatocarcinogenesis: current knowledge and future prospects. J Gastroenterol 49, 173–184, 2014.
  • Bandiera S, Pfeffer S, Baumert TF, and Zeisel MB: miR-122—a key factor and therapeutic target in liver disease. J Hepatol 62, 448–457, 2015.
  • Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, et al.: Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99, 671–678, 2006.
  • Coulouarn C, Factor VM, Andersen JB, Durkin ME, and Thorgeirsson SS: Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28, 3526–3536, 2009.
  • Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, et al.: MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 122, 2884–2897, 2012.
  • Tili E, Croce CM, and Michaille JJ: miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol 28, 264–284, 2009.
  • Vigorito E, Kohlhaas S, Lu D, and Leyland R: miR-155: an ancient regulator of the immune system. Immunol Rev 253, 146–157, 2013.
  • Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, et al.: Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 50, 1152–1161, 2009.
  • Zhang Y, Wei W, Cheng N, Wang K, Li B, et al.: Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology 56, 1631–1640, 2012.
  • Yan XL, Jia YL, Chen L, Zeng Q, Zhou JN, et al.: Hepatocellular carcinoma-associated mesenchymal stem cells promote hepatocarcinoma progression: role of the S100A4-miR155-SOCS1-MMP9 axis. Hepatology 57, 2274–2286, 2013.
  • Ji J, Zheng X, Forgues M, Yamashita T, Wauthier EL, et al.: Identification of MicroRNAs specific for EpCAM+ tumor cells in hepatocellular carcinoma. Hepatology 62, 829–840, 2015.
  • Hazra A, Kraft P, Lazarus R, Chen C, Chanock SJ, et al.: Genome-wide significant predictors of metabolites in the one-carbon metabolism pathway. Hum Mol Genet 18, 4677–4687, 2009.
  • Stover PJ: Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J Nutrigenet Nutrigenomics 4, 293–305, 2011.
  • Finkelstein JD: Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 45, 1694–1699, 2007.
  • Liang CR, Leow CK, Neo JC, Tan GS, Lo SL, et al.: Proteome analysis of human hepatocellular carcinoma tissues by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5, 2258–2271, 2005.
  • Huang Q, Tan Y, Yin P, Ye G, Gao P, et al.: Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res 73, 4992–5002, 2013.
  • Frau M, Feo F, and Pascale RM: Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol 59, 830–841, 2013.
  • Teng YW, Mehedint MG, Garrow TA, and Zeisel SH: Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 286, 36258–36267, 2011.
  • Martínez-Chantar ML, Vázquez-Chantada M, Ariz U, Martínez N, Varela M, et al.: Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47, 1191–1199, 2008.
  • Poirier LA: Methyl group deficiency in hepatocarcinogenesis. Drug Metab Rev 26, 185–199, 1994.
  • Nakae D: Endogenous liver carcinogenesis in the rat. Pathol Int 49, 1028–1042, 1999.
  • Pogribny IP, James SJ, and Beland FA: Molecular alterations in hepatocarcinogenesis induced by dietary methyl deficiency. Mol Nutr Food Res 56, 116–125, 2012.
  • Corbin KD and Zeisel SH: Choline metabolism provides novel insights into nonalcoholic fatty liver disease and progression. Curr Opin Gastroenterol 28, 159–165, 2012.
  • Corbin KD, Abdelmalek MF, Spencer MD, da Costa KA, Galanko JA, et al.: Genetic signatures in choline and 1-carbon metabolism are associated woth the severity of hepatic steatosis. FASEB J 27, 1674–1689, 2013.
  • Qi X, Sun X, Xu J, Wang Z, Zhang J, et al.: Associations between methylenetetrahydrofolate reductase polymorphisms and hepatocellular carcinoma risk in Chinese population. Tumour Biol 35, 1757–1762, 2014.
  • Zhang H, Liu C, Han YC, Ma Z, Zhang H, et al.: Genetic variations in the one-carbon metabolism pathway genes and susceptibility to hepatocellular carcinoma risk: a case-control study. Tumour Biol 36, 997–1002, 2015.
  • Kuo CS, Lin Cy, Wu MY, Lu CL, and Huang RF: Relationship between folate status and tumour progression in patients with hepatocellular carcinoma. Br J Nutr 100, 596–602, 2008.
  • de Carvalho SC, Muniz MT, Siqueira MD, Siqueira ER, Gomes AV, et al.: Plasmatic higher levels of homocysteine in non-alcoholic fatty liver disease (NAFLD). Nutr J 12, 37, 2013.
  • Brunaud L, Alberto JM, Ayav A, Gerard P, Namour F, et al.: Effects of vitamin B12 and folate deficiencies on DNA methylation and carcinogenesis in rat liver. Clin Chem Lab Med 41, 1012–1019, 2003.
  • Pogribny IP, Shpyleva SI, Muskhelishvili L, Bagnyukova TV, James SJ, et al.: Role of DNA damage and alterations in cytosine DNA methylation in rat liver carcinogenesis induced by a methyl-deficient diet. Mutat Res 669, 56–62, 2009.
  • Huidobro C, Toraño EG, Fernández AF, Urdinguio RG, Rodriguez RM, et al.: A DNA methylation signature associated with the epigenetic repression of glycine N-methyltransferase in human hepatocellular carcinoma. J Mol Med (Berl) 91, 939–950, 2013.
  • Mirbahai L, Southam AD, Sommer U, Williams TD, Bignell JP, et al.: Disruption of DNA methylation via S-adenosylhomocysteine is a key process in high incidence liver carcinogenesis in fish. J Proteome Res 12, 2895–2904, 2013.
  • Fullerton FR, Hoover K, Mikol YB, Creasia DA, and Poirier LA: The inhibition by methionine and choline of liver carcinoma formation in male C3H mice dosed with diethynitrosamine and fed phenobarbital. Carcinogenesis 11, 1301–1305, 1990.
  • Pascale RM, Marras V, Daino L, Pinna G, et al.: Chemoprevention of rat liver carcinogenesis by S-adenosyl-L-methionine: a long-term study. Cancer Res 52, 4979–4986, 1992.
  • Pascale RM, Simile MM, De Miglio MR, Nufris A, Daino L, et al.: Chemoprevention by S-adenosyl-L-methionine of rat liver carcinogenesis initiated by 1,2-dimethylhydrazine and promoted by orotic acid. Carcinogenesis 16, 427–430, 1995.
  • Simile MM, Saviozzi M, De Miglio MR, Muroni MR, Nufris A, et al.: Persistent chemopreventive effect of S-adenosyl-L-methionine on the development of liver putative preneoplastic lesions induced by thiobenzamide in diethylnitrosamine-initiated rats. Carcinogenesis 17, 1533–1537, 1996.
  • Pascale RM, Simile MM, De Miglio MR, and Feo F: Chemoprevention of hepatocarcinogenesis: S-adenosyl-L-methionine. Alcohol 27, 193–198, 2002.
  • Pogribny IP, Ross SA, Wise C, Pogribna M, Jones EA, et al.: Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593, 80–87, 2006.
  • Chagas CE, Bassoli BK, de Souza CA, Deminice R, Jordao Junior AA, et al.: Folic acid supplementation during early hepatocarcinogenesis: cellular and molecular effects. Int J Cancer 129, 2073–2082, 2011.
  • Cordero P, Campion J, Milagro FI, and Martinez JA: Dietary supplementation with methyl donor groups could prevent nonalcoholic fatty liver. Hepatology 53, 2151–2152, 2011.
  • Kawakami S, Han KH, Nakamura Y, Shimada K, Kitano T, et al.: Effects of dietary supplementation with betaine on a nonalcoholic steatohepatitis (NASH) mouse model. J Nutr Sci Vitaminol (Tokyo) 58, 371–375, 2012.
  • Al Rajabi A, Castro GS, da Silva RP, Nelson RC, Thiesen A, et al.: Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. J Nutr 144, 252–257, 2014.
  • Cordero P, Gomez-Uriz AM, Campion J, Milagro FI, and Martinez JA: Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr 8, 105–113, 2013.
  • Wang LJ, Zhang HW, Zhou JY, Liu Y, Yang Y, et al.: Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. J Nutr Biochem 25, 329–336, 2014.
  • Tan AC, Konczak I, Sze DM, and Ramzan I: Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer 63, 495–505, 2011.
  • Darvesh AS and Bishayee A: Chemopreventive and therapeutic potential of tea polyphenols in hepatocellular cancer. Nutr Cancer 65, 329–344, 2013.
  • Gerhauser C: Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem 329, 73–132, 2013.
  • Matsumoto N, Kohri T, Okushio K, and Hara Y: Inhibitory effects of tea catechins, black tea extract and oolong tea extract on hepatocarcinogenesis in rat. Jpn J Cancer Res 87, 1034–1038, 1996.
  • Sumi T, Shirakami Y, Shimizu M, Kochi T, Ohno T, et al.: (−)-Epigallocatechin-3-gallate suppresses hepatic preneoplastic lesions developed in a novel rat model of non-alcoholic steatohepatitis. Springerplus 2, 690, 2013.
  • Kochi T, Shimizu M, Terakura D, Baba A, Ohno T, et al.: Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: suppressing effects of EGCG on the development of liver lesions. Cancer Lett 342, 60–69, 2014.
  • Ding Y, Sun X, Chen Y, Deng Y, and Qian K: Epigallocatechin gallate attenuated non-alcoholic steatohepatitis induced by methionine- and choline-deficient diet. Eur J Pharmacol 761, 405–412, 2015.
  • Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G, et al.: (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55, 720–729, 2012.
  • Chen C, Qiu H, Gong J, Liu Q, Xiao H, et al.: (−)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch Virol 157, 1301–1312, 2012.
  • Huang HC, Tao MH, Hung TM, Chen JC, Lin ZJ, et al.: (−)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes. Antiviral Res 111, 100–111, 2014.
  • Singh BN, Shankar S, and Srivastava RK: Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82, 1807–1821, 2011.
  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, et al.: Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63, 7563–7570, 2003.
  • Lee WJ, Shim JY, and Zhu BT: Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68, 1018–1030, 2005.
  • Achour M, Mousli M, Alhosin M, Ibrahim A, Peluso J, et al.: Epigallocatechin-3-gallate up-regulates tumor suppressor gene expression via a reactive oxygen species-dependent down-regulation of UHRF1. Biochem Biophys Res Commun 430, 208–212, 2013.
  • Moseley VR, Morris J, Knackstedt RW, and Wargovich MJ: Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells. Anticancer Res 33, 5325–5333, 2013.
  • Medina-Franco JL, López-Vallejo F, Kuck D, and Lyko F: Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15, 293–304, 2011.
  • Fang M, Chen D, and Yang CS: Dietary polyphenols may affect DNA methylation. J Nutr 137, 223S–228S, 2007.
  • Darvesh AS, Aggarwal BB, and Bishayee A: Curcumin and liver cancer: a review. Curr Pharm Biotechnol 13, 218–228, 2012.
  • Teiten MH, Dicato M, and Diederich M: Curcumin as a regulator of epigenetic events. Mol Nutr Food Res 57, 1619–1629, 2013.
  • Lee WJ and Zhu BT: Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27, 269–277, 2006.
  • Furtado KS, Polletini J, Dias MC, Rodrigues MA, and Barbisan LF: Prevention of rat liver fibrosis and carcinogenesis by coffee and caffeine. Food Chem Toxicol 64, 20–26, 2014.
  • Wang W, Xu L, Kong J, Fan H, and Yang P: Quantitative research of histone H3 acetylation levels of human hepatocellular carcinoma cells. Bioanalysis 5, 327–339, 2013.
  • Rikimaru T, Taketomi A, Yamashita Y, Shirabe K, Hamatsu T, et al.: Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology 72, 69–74, 2007.
  • Quint K, Agaimy A, Di Fazio P, Montalbano R, Steindorf C, et al.: Clinical significance of histone deacetylases 1, 2, 3, and 7: HDAC2 is an independent predictor of survival in HCC. Virchows Arch 459, 129–139, 2011.
  • Feng GW, Dong LD, Shang WJ, Pang XL, Li JF, et al.: HDAC5 promotes cell proliferation in human hepatocellular carcinoma by up-regulating Six1 expression. Eur Rev Med Pharmacol Sci 18, 811–816, 2014.
  • Park BL, Kim YJ, Cheong HS, Lee SO, Han CS, et al.: HDAC10 promoter polymorphism associated with development of HCC among chronic HBV patients. Biochem Biophys Res Commun 363, 776–781, 2007.
  • Yang Z, Zhou L, Wu LM, Xie HY, Zhang F, et al.: Combination of polymorphisms within the HDAC1 and HDAC3 gene predict tumor recurrence in hepatocellular carcinoma patients that have undergone transplant therapy. Clin Chem Lab Med 48, 1785–1791, 2010.
  • Wang HG, Huang XD, Shen P, Li LR, Xue HT, et al.: Anticancer effects of sodium butyrate on hepatocellular carcinoma cells in vitro. Int J Mol Med 31, 967–974, 2013.
  • Kuroiwa-Trzmielina J, de Conti A, Scolastici C, Pereira D, Horst MA, et al.: Chemoprevention of rat hepatocarcinogenesis with histone deacetylase inhibitors: efficacy of tributyrin, a butyric acid prodrug. Int J Cancer 124, 2520–2527, 2009.
  • de Conti A, Tryndyak V, Koturbash I, Heidor R, Kuroiwa-Trzmielina J, et al.: The chemopreventive activity of the butyric acid prodrug tributyrin in experimental rat hepatocarcinogenesis is associated with p53 acetylation and activation of the p53 apoptotic signaling pathway. Carcinogenesis 34, 1900–1906, 2013.
  • Coradini D, Zorzet S, Rossin R, Scarlata I, Pellizzro C, et al.: Inhibition of hepatocellular carcinomas in vitro and hepatic metastases in vivo in mice by the histone deacetylase inhibitor HA-But. Clin Cancer Res 10, 4822–4830, 2004.
  • Coradini D and Speranza A: Histone deacetylase inhibitors for treatment of hepatocellular carcinoma. Acta Pharmacol Sin 26, 1025–1033, 2005.
  • Bishayee A and Dhir N: Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: inhibition of cell proliferation and induction of apoptosis. Chem Biol Interact 179, 131–144, 2009.
  • Bishayee A, Politis T, and Darvesh AS: Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev 36, 43–53, 2010.
  • Bishayee A, Waghray A, Barnes KF, Mbimba T, Bhatia D, et al.: Suppression of the inflammatory cascade is implicated in resveratrol chemoprevention of experimental hepatocarcinogenesis. Pharm Res 27, 1080–1091, 2010.
  • Venturelli S, Berger A, Böcker A, Busch C, Weiland T, et al.: Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone [corrected] proteins in human-derived hepatoblastoma cells. PLoS One 8, e73097, 2013.
  • Knutson MD and Leeuwenburgh C: Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. Nutr Rev 66, 591–596, 2008.
  • Binda O, Nassif C, and Branton PE: SIRT1 negatively regulates HDAC1-dependent transcriptional repression by the RBP1 family of proteins. Oncogene 27, 3384–3392, 2008.
  • Scuto A, Kirschbaum M, Buettner R, Kujawski M, Cermak JM, et al.: SIRT1 activation enhances HDAC inhibition-mediated upregulation of GADD45G by repressing the binding of NF-κB/STAT3 complex to its promoter in malignant lymphoid cells. Cell Death Dis 4, e635, 2013.
  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, et al.: Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563, 2004.
  • van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, et al.: FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279, 28873–28879, 2004.
  • Yun JM, Chien A, Jialal I, and Devaraj S: Resveratrol up-regulates SIRT1 and inhibits cellular oxidative stress in the diabetic milieu: mechanistic insights. J Nutr Biochem 23, 699–705, 2012.
  • Halliwell B: Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 21, 261–272, 1999.
  • Lee H, Zhang P, Herrmann A, Yang C, Xin H, et al.: Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc Natl Acad Sci USA 109, 7765–7769, 2012.
  • Stefanska B, Salamé P, Bednarek A, and Fabianowska-Majewska K: Comparative effects of retinoic acid, vitamin D and resveratrol and in combination with adenosine analogues on methylation and expression of phosphatase and tensin tumour suppressor gene in breast cancer cells. Br J Nutr 107, 781–790, 2012.
  • Papoutsis AJ, Borg JL, Selmin OI, and Romagnolo DF: BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells. J Nutr Biochem 23, 1324–1332, 2012.
  • Kala R, Shah HN, Martin SL, and Tollefsbol TO: Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer 15, 672, 2015.
  • Clarke JD, Dashwood RH, and Ho E: Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269, 291–304, 2008.
  • Yoxall V, Kentish P, Coldham N, Kuhnert N, Sauer MJ, et al.: Modulation of hepatic cytochromes P450 and phase II enzymes by dietary doses of sulforaphane in rats: implications for its chemopreventive activity. Int J Cancer 117, 356–362, 2005.
  • Hu R, Xu C, Shen G, Jain MR, Khor TO, et al.: Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Cancer Lett 243, 170–192, 2006.
  • Yates MS and Kensler TW: Keap1 eye on the target: chemoprevention of liver cancer. Acta Pharmacol Sin 28, 1331–1342, 2007.
  • Techapiesancharoenkij N, Fiala JL, Navasumrit P, Croy RG, Wogan GN, et al.: Sulforaphane, a cancer chemopreventive agent, induces pathways associated with membrane biosynthesis in response to tissue damage by aflatoxin B1. Toxicol Appl Pharmacol 282, 52–60, 2015.
  • Landis-Piwowar KR and Iyer NR: Cancer chemoprevention: current state of the art. Cancer Growth Metastasis 7, 19–25, 2014.
  • Hong F, Freeman ML, and Liebler DC: Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 18, 1917–1926, 2005.
  • Myzak MC, Karplus PA, Chung FL, and Dashwood RH: A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64, 5767–5774, 2004.
  • Ho E, Clarke JD, and Dashwood RH: Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 139, 2393–2396, 2009.
  • Gao Y and Tollefsbol TO: Impact of epigenetic dietary components on cancer through histone modifications. Curr Med Chem 22, 2051–2064, 2015.
  • Tortorella SM, Royce SG, Licciardi PV, and Karagiannis TC: Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal 22, 1382–1424, 2015.
  • Thakur VS, Gupta K, and Gupta S: Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases. Int J Oncol 41, 353–361, 2012.
  • Lee SJ, Krauthauser C, Maduskuie V, Fawcett PT, Olson JM, et al.: Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo. BMC Cancer 11, 144, 2011.
  • Lea MA, Randolph VM, Lee JE, and desBordes C: Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate. Int J Cancer 92, 784–789, 2001.
  • Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, Pinna F, Lee YH, et al.: Curcumin effectively inhibits oncogenic NF-kB signaling and restrains stemness features in liver cancer. J Hepatol 63, 661–669, 2015.
  • Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, et al.: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005–1017, 2009.
  • Hsu SH, Wang B, Kota J, Yu J, Costinean S, et al.: Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122, 2871–2883, 2012.
  • Palmer JD, Soule BP, Simone BA, Zaorsky NG, Jin L, et al.: MicroRNA expression altered by diet: can food be medicinal? Ageing Res Rev 17, 16–24, 2014.
  • Ross SA and Davis CD: The emerging role of microRNAs and nutrition in modulating health and disease. Annu Rev Nutr 34, 305–336, 2014.
  • Tsang WP and Kwok TT: Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21, 140–146, 2010.
  • Wagner AE, Boesch-Saadatmandi C, Dose J, Schultheiss G, and Rimbach G: Anti-inflammatory potential of allyl-isothiocyanate—role of Nrf2, NF-(κ) B and microRNA-155. J Cell Mol Med 16, 836–843, 2012.
  • Zhang Y: Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol Nutr Food Res 54, 127–135, 2010.
  • Umar A, Dunn BK, and Greenwald P: Future directions in cancer prevention. Nat Rev Cancer 12, 835–848, 2012.
  • Church RJ, Gatti DM, Urban TJ, Long N, Yang X, et al.: Sensitivity to hepatotoxicity due to epigallotechin gallate is affected by genetic background in diversity outbred mice. Food Chem Toxicol 76, 19–26, 2015.
  • Steward WP and Brown K: Cancer chemoprevention: a rapidly evolving field. Br J Cancer 109, 1–7, 2013.
  • Guariento AH, Furtado KS, de Conti A, Campos A, Purgatto E, et al.: Transcriptomic responses provide a new mechanistic basis for the chemopreventive effects of folic acid and tributyrin in rat liver carcinogenesis. Int J Cancer 135, 7–18, 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.