243
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Luteolin Impacts on the DNA Damage Pathway in Oral Squamous Cell Carcinoma

, &
Pages 838-847 | Received 29 Jul 2015, Accepted 08 Feb 2016, Published online: 08 Jun 2016

References

  • Scully C and Bagan J: Oral squamous cell carcinoma overview. Oral Oncol 45, 301–308, 2009. doi: 10.1016/j.oraloncology.2009.01.004
  • Amornphimoltham P, Patel V, Sodhi A, Nikitakis NG, and Sauk JJ, et al.: Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck. Cancer Res 65, 9953–9961, 2005. doi: 10.1158/0008-5472.CAN-05-0921
  • Warnakulasuriya S: Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45, 309–316, 2009. doi: 10.1016/j.oraloncology.2008.06.002
  • Shah JP and Gil Z: Current concepts in management of oral cancer-surgery. Oral Oncol 45, 394–401, 2009. doi: 10.1016/j.oraloncology.2008.05.017
  • Beech N, Robinson S, Porceddu S, and Batstone M: Dental management of patients irradiated for head and neck cancer. Aust Dent J 59, 20–28, 2014. doi: 10.1111/adj.12134
  • Chaveli-Lopez B: Oral toxicity produced by chemotherapy: A systematic review. J Clin Exp Dent 6, e81–90, 2014. doi: 10.4317/jced.51337
  • Watters AL, Epstein JB, and Agulnik M: Oral complications of targeted cancer therapies: a narrative literature review. Oral Oncol 47, 441–448, 2011. doi: 10.1016/j.oraloncology.2011.03.028
  • Strom TJ, Trotti AM, Kish J, Russell JS, and Rao NG, et al.: Comparison of every 3 week cisplatin or weekly cetuximab with concurrent radiotherapy for locally advanced head and neck cancer. Oral Oncol, 51, 704–708, 2015. doi: 10.1016/j.oraloncology.2015.04.012
  • Saba NF, Hurwitz SJ, Magliocca K, Kim S, and Owonikoko TK, et al.: Phase 1 and pharmacokinetic study of everolimus in combination with cetuximab and carboplatin for recurrent/metastatic squamous cell carcinoma of the head and neck. Cancer 120, 3940–3951, 2014. doi: 10.1002/cncr.28965
  • Molinolo AA, Amornphimoltham P, Squarize CH, Castilho RM, and Patel V, et al.: Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol 45, 324–234, 2009. doi: 10.1016/j.oraloncology.2008.07.011
  • Aktipis CA, Kwan VS, Johnson KA, Neuberg SL, and Maley CC: Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research. PLoS One 6, e26100, 2011. doi: 10.1371/journal.pone.0026100
  • Shim JS and Liu JO: Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci 10, 654–663, 2014. doi: 10.7150/ijbs.9224
  • Ashburn TT and Thor KB: Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3, 673–683, 2004. doi: 10.1038/nrd1468
  • Tuorkey MJ: Molecular targets of luteolin in cancer. Eur J Cancer Prev, 2015. doi: 10.1097/CEJ.0000000000000128
  • Liu X, Ye F, Wu J, How B, and Li W, et al.: Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr Cancer 67, 238–249, 2015. doi: 10.1080/01635581.2015.989372
  • Tu SH, Ho CT, Liu MF, Huang CS, and Chang HW, et al.: Luteolin sensitises drug- resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem 141, 1553–1561, 2013. doi: 10.1016/j.foodchem.2013.04.077
  • Kandaswami C, Lee LT, Lee PP, Hwang JJ, and Ke FC, et al.: The antitumor activities of flavonoids. In Vivo 19, 895–909, 2005.
  • Lin Y, Shi R, Wang X, and Shen HM: Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets 8, 634–646, 2008.
  • Seelinger G, Merfort I, Wolfle U, and Schempp CM: Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13, 2628–2651, 2008.19.
  • Weng CJ and Yen GC: Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev 31, 323–351, 2012. doi: 10.1007/s10555-012-9347-y
  • Krifa M, Leloup L, Ghedira K, Mousli M: and Chekir-Ghedira L: Luteolin induces apoptosis in BE colorectal cancer cells by downregulating calpain, UHRF1, and DNMT1 expressions. Nutr Cancer 66, 1220–1227, 2014. doi: 10.1080/01635581.2014.951729
  • Luo H, Jiang BH, King SM, and Chen YC: Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr Cancer 60, 800–809, 2008. doi: 10.1080/01635580802100851
  • Dwyer J, Hebda JK, Le Guelte A, Galan-Moya EM, and Smith SS, et al.: Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2. PLoS One 7, e45562, 2012. doi: 10.1371/journal.pone.0045562
  • Le Guelte A, Galan-Moya EM, Dwyer J, Treps L, and Kettler G, et al.: Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. J Cell Sci 125, 4137–4146, 2012. doi: 10.1242/jcs.108282
  • Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, and Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73, 39–85, 2004.
  • Amin AR, Wang D, Zhang H, Peng S, and Shin HJ, et al.: Enhanced anti-tumor activity by the combination of the natural compounds (−)-epigallocatechin-3-gallate and luteolin: potential role of p53. J Biol Chem 285, 34557–34565, 2010. doi: 10.1074/jbc.M110.141135
  • Majumdar D, Jung KH, Zhang H, Nannapaneni S, and Wang X, et al.: Luteolin nanoparticle in chemoprevention: in vitro and in vivo anticancer activity. Cancer Prev Res (Phila) 7, 65–73, 2014. doi: 10.1158/1940-6207.CAPR-13-0230
  • O'Prey J, Brown J, Fleming J, and Harrison PR: Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol 66, 2075–2088, 2003.
  • Verschooten L, Barrette K, Van Kelst S, Rubio Romero N, and Proby C, et al.: Autophagy inhibitor chloroquine enhanced the cell death inducing effect of the flavonoid luteolin in metastatic squamous cell carcinoma cells. PLoS One 7, e48264, 2012. doi: 10.1371/journal.pone.0048264
  • Yang SF, Yang WE, Chang HR, Chu SC, and Hsieh YS: Luteolin induces apoptosis in oral squamous cancer cells. J Dent Res 87, 401–406, 2008.
  • Brockmann A, Strittmatter T, May S, Stemmer K, and Marx A, et al.: Structure-function relationship of thiazolide-induced apoptosis in colorectal tumor cells. ACS Chem Biol 9, 1520–1527, 2014. doi: 10.1021/cb500209a
  • Muller J, Sidler D, Nachbur U, Wastling J, and Brunner T, et al.: Thiazolides inhibit growth and induce glutathione-S-transferase Pi (GSTP1)-dependent cell death in human colon cancer cells. Int J Cancer 123, 1797–1806, 2008. doi: 10.1002/ijc.23755
  • Senkowski W, Zhang X, Hagg Olofsson M, Isacson R, and Hoglund U, et al.: Three- dimensional cell culture-based screening identifies the anthelminthic drug nitazoxanide as a candidate for treatment of colorectal cancer. Mol Cancer Ther, 14, 1504–1516, 2015. doi: 10.1158/1535-7163.MCT-14-0792
  • Sidler D, Brockmann A, Mueller J, Nachbur U, and Corazza N, et al.: Thiazolide-induced apoptosis in colorectal cancer cells is mediated via the Jun kinase-Bim axis and reveals glutathione-S-transferase P1 as Achilles' heel. Oncogene 31, 4095–4106, 2012. doi: 10.1038/onc.2011.575
  • Fan-Minogue H, Bodapati S, Solow-Cordero D, Fan A, and Paulmurugan R, et al.: A c- Myc activation sensor-based high-throughput drug screening identifies an antineoplastic35. effect of nitazoxanide. Mol Cancer Ther 12, 1896–1905, 2013. doi: 10.1158/1535-7163.MCT-12-1243
  • Kang KP, Park SK, Kim DH, Sung MJ, and Jung YJ, et al.: Luteolin ameliorates cisplatin- induced acute kidney injury in mice by regulation of p53-dependent renal tubular apoptosis. Nephrol Dial Transplant 26, 814–822, 2011. doi: 10.1093/ndt/gfq528
  • Levy A, De Felice F, Bellefqih S, Guigay J, and Deutsch E, et al.: Toxicity of concomitant cetuximab and radiotherapy with or without initial taxane-based induction chemotherapy in locally advanced head and neck cancer. Head Neck, 2015. doi: 10.1002/hed.24125
  • Johnson JL and Gonzalez de Mejia E: Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol 60, 83–91, 2013. doi: 10.1016/j.fct.2013.07.036
  • Shi R, Huang Q, Zhu X, Ong YB, and Zhao B, et al.: Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Mol Cancer Ther 6, 1338–1347, 2007. doi: 10.1158/1535-7163.MCT-06-0638
  • Chian S, Li YY, Wang XJ, and Tang XW: Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prev 15, 2911–2916, 2014.
  • Markaverich BM, Vijjeswarapu M, Shoulars K, and Rodriguez M: Luteolin and gefitinib regulation of EGF signaling pathway and cell cycle pathway genes in PC-3 human prostate cancer cells. J Steroid Biochem Mol Biol 122, 219–231, 2010. doi: 10.1016/j.jsbmb.2010.06.006
  • Sakurai MA, Ozaki Y, Okuzaki D, Naito Y, and Sasakura T, et al.: Gefitinib and luteolin cause growth arrest of human prostate cancer PC-3 cells via inhibition of cyclin G-associated kinase and induction of miR-630. PLoS One 9, e100124, 2014. doi: 10.1371/journal.pone.0100124
  • Menendez JA, Vazquez-Martin A, Oliveras-Ferraros C, Garcia-Villalba R, and Carrasco- Pancorbo A, et al.: Analyzing effects of extra-virgin olive oil polyphenols on breast cancer- associated fatty acid synthase protein expression using reverse-phase protein microarrays. Int J Mol Med 22, 433–439, 2008.
  • Wu B, Zhang Q, Shen W, and Zhu J: Anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer AGS cell line. Mol Cell Biochem 313, 125–132, 2008. doi: 10.1007/s11010-008-9749-x
  • Chian S, Thapa R, Chi Z, Wang XJ, and Tang X: Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem Biophys Res Commun 447, 602–608, 2014. doi: 10.1016/j.bbrc.2014.04.039
  • Hong Z, Cao X, Li N, Zhang Y, and Lan L, et al.: Luteolin is effective in the non-small cell lung cancer model with L858R/T790M EGF receptor mutation and erlotinib resistance. Br J Pharmacol 171, 2842–2853, 2014. doi: 10.1111/bph.12610
  • Zabludoff SD, Deng C, Grondine MR, Sheehy AM, and Ashwell S, et al.: AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7, 2955–2966, 2008. doi: 10.1158/1535-7163.MCT-08-0492
  • Tang S, Xu D and Zhou B: Analysis of P53 mutation and invasion front grading in oral squamous cell carcinomas. J Huazhong Univ Sci Technolog Med Sci 30, 525–529, 2010. doi: 10.1007/s11596-010-0462-0
  • Ries JC, Schreiner D, Steininger H, and Girod SC: p53 mutation and detection of p53 protein expression in oral leukoplakia and oral squamous cell carcinoma. Anticancer Res 18, 2031–2036, 1998.
  • Lee HJ, Kang YH, Lee JS, Byun JH, and Kim UK, et al.: Positive expression of NANOG, mutant p53, and CD44 is directly associated with clinicopathological features and poor prognosis of oral squamous cell carcinoma. BMC Oral Health 15, 153, 2015. doi: 10.1186/s12903-015-0120-9
  • Yamazaki Y, Chiba I, Hirai A, Sugiura C, and Notani K, et al.: Specific p53 mutations predict poor prognosis in oral squamous cell carcinoma. Oral Oncol 39, 163–169, 2003.
  • Siegelmann-Danieli N, Ben-Izhack O, Hanlon A, Ridge JA, and Stein ME, et al.: P53 alteration in oral tongue cancer is not significantly associated with age at diagnosis or tobacco exposure. Tumori 91, 346–350, 2005.
  • Kozomara R, Jovic N, Magic Z, Brankovic-Magic M, and Minic V: p53 mutations and human papillomavirus infection in oral squamous cell carcinomas: correlation with overall survival. J Craniomaxillofac Surg 33, 342–348, 2005. doi: 10.1016/j.jcms.2005.05.004
  • Ramos AA, Pereira-Wilson C, and Collins AR: Protective effects of ursolic acid and luteolin against oxidative DNA damage include enhancement of DNA repair in Caco-2 cells. Mutat Res 692, 6–11, 2010. doi: 10.1016/j.mrfmmm.2010.07.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.