196
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Potential Therapeutic Targets of Quercetin in the Cutaneous Melanoma Model and Its Cellular Regulation Pathways: A Systematic Review

, , , , &
Pages 1687-1709 | Received 20 Mar 2023, Accepted 13 Jul 2023, Published online: 08 Aug 2023

References

  • Saginala K, Barsouk A, Aluru JS, Rawla P, Barsouk A. Epidemiology of melanoma. Med Sci. 2021;9(4):63. doi:10.3390/MEDSCI9040063.
  • Strashilov S, Yordanov A. Aetiology and pathogenesis of cutaneous melanoma: current concepts and advances. Int J Mol Sci. 2021;22(12):6395. doi:10.3390/IJMS22126395.
  • Schadendorf D, Fisher DE, Garbe C, Gershenwald JE, Grob JJ, Halpern A, Herlyn M, Marchetti MA, McArthur G, Ribas A, et al. Melanoma. Nat Rev Dis Primers. 2015;1(1):15003. doi:10.1038/nrdp.2015.3.
  • Cancer Today. n.d. [accessed 2023 Feb 12]. https://gco.iarc.fr/today/data-sources-methods
  • Nunes da Silva CF, Pasqual Melo G, Santos Bernardes S, Cecchini AA. Modelos experimentais de melanoma murino in vivo. Biosaúde. 2016;15(2):73–80.
  • Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, Bosenberg M, Ceol CJ, Burd CE, Chi P, et al. Melanoma models for the next generation of therapies. Cancer Cell. 2021;39(5):610–31. doi:10.1016/J.CCELL.2021.01.011.
  • Guo W, Wang H, Li C. Signal pathways of melanoma and targeted therapy. Signal Transduct Target Ther. 2021;6(1):424. doi:10.1038/s41392-021-00827-6.
  • Dora CL, Silva LF, Mazzarino L, Siqueira JM, Fernandes D, Pacheco LK, Maioral MF, Santos-Silva MC, Baischl AL, Assreuy J, et al. Oral delivery of a high quercetin payload nanosized emulsion: in vitro and in vivo activity against B16-F10 melanoma. J Nanosci Nanotechnol. 2016;16(2):1275–81. doi:10.1166/jnn.2016.11675.
  • Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumour Biol. 2016;37(10):12927–39. doi:10.1007/s13277-016-5184-x.
  • Sanchez-Gonzalez PD, Lopez-Hernandez FJ, Duenas M, Prieto M, Sanchez-Lopez E, Thomale J, Ruiz-Ortega M, López-Novoa JM, Morales AI. Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food Chem Toxicol. 2017;107(Pt A):226–36. doi:10.1016/J.FCT.2017.06.047.
  • Almatroodi SA, Alsahli MA, Almatroudi A, Verma AK, Aloliqi A, Allemailem KS, Khan AA, Rahmani AH. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules. 2021;26(5):1315. doi:10.3390/molecules26051315.
  • Rather RA, Bhagat M. Quercetin as an innovative therapeutic tool for cancer chemoprevention: molecular mechanisms and implications in human health. Cancer Med. 2020;9(24):9181–92. doi:10.1002/CAM4.1411.
  • Touil YS, Fellous A, Scherman D, Chabot GG. Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization. Nutr Cancer. 2009;61(3):310–21. doi:10.1080/01635580802521346.
  • Kim YJ. Hyperin and quercetin modulate oxidative stress-induced melanogenesis. Biol Pharm Bull. 2012;35(11):2023–7. doi:10.1248/bpb.b12-00592.
  • Peng D, Chen L, Sun Y, Sun L, Yin Q, Deng S, Niu L, Lou F, Wang Z, Xu Z, et al. Melanoma suppression by quercein is correlated with RIG-I and type I interferon signaling. Biomed Pharmacother. 2020;125:109984. doi:10.1016/J.BIOPHA.2020.109984.
  • Soll F, Ternent C, Berry IM, Kumari D, Moore TC. Quercetin inhibits proliferation and induces apoptosis of B16 melanoma cells in vitro. Assay Drug Dev Technol. 2020;18(6):261–8. doi:10.1089/adt.2020.993.
  • Rafiq RA, Quadri A, Nazir LA, Peerzada K, Ganai BA, Tasduq SA. A potent inhibitor of phosphoinositide 3-kinase (PI3K) and mitogen activated protein (MAP) kinase signalling, quercetin (3, 3’, 4’, 5, 7-pentahydroxyflavone) promotes cell death in ultraviolet (UV)-B-irradiated B16F10 melanoma cells. PLoS One. 2015;10(7):e0131253. doi:10.1371/JOURNAL.PONE.0131253.
  • Bashyal P, Jung HY, Pandey RP, Sohng JK. Comparative study on melanin production and collagen expression profile of polyphenols and their glycosides. Indian J Biochem Biophys. 2019;56(2):137–43. doi:10.56042/ijbb.v56i2.27663.
  • Yáñez J, Vicente V, Alcaraz M, Castillo J, Benavente-García O, Canteras M, Teruel JAL. Cytotoxicity and antiproliferative activities of several phenolic compounds against three melanocytes cell lines: relationship between structure and activity. Nutr Cancer. 2004;49(2):191–9. doi:10.1207/S15327914NC4902_11.
  • Nitoda T, Isobe T, Kubo I. Effects of phenolic compounds isolated from Rabdosia japonica on B16‐F10 melanoma cells. Phytother Res. 2008;22(7):867–72. doi:10.1002/PTR.2373.
  • Kubo I, Nitoda T, Nihei K-i Effects of quercetin on mushroom tyrosinase and B16-F10 melanoma cells. Molecules. 2007;12(5):1045–56. doi:10.3390/12051045.
  • Rodriguez J, Yáñez J, Vicente V, Alcaraz M, Benavente-García O, Castillo J, Lorente J, Lozano JA. Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity. Melanoma Res. 2002;12(2):99–107. doi:10.1097/00008390-200204000-00001.
  • Martínez C, Yàñez J, Vicente V, Alcaraz M, Benavente-García O, Castillo J, Lorente J, Lozano JA. Effects of several polyhydroxylated flavonoids on the growth of B16F10 melanoma and Melan-a melanocyte cell lines: influence of the sequential oxidation state of the flavonoid skeleton. Melanoma Res. 2003;13(1):3–9. doi:10.1097/00008390-200302000-00002.
  • Pradhan SJ, Mishra R, Sharma P, Kundu GC. Quercetin and sulforaphane in combination suppress the progression of melanoma through the down regulation of matrix metalloproteinase-9. Exp Ther Med. 2010;1(6):915–20. doi:10.3892/ETM.2010.144.
  • Yang YM, Son YO, Lee SA, Jeon YM, Lee JC. Quercetin inhibits α-MSH-stimulated melanogenesis in B16F10 melanoma cells. Phytother Res. 2011;25(8):1166–73. doi:10.1002/ptr.3417.
  • Forni C, Braglia R, Lentini A, Nuccetelli M, Provenzano B, Tabolacci C, Beninati S. Role of transglutaminase 2 in quercetin-induced differentiation of B16-F10 murine melanoma cells. Amino Acids. 2009;36(4):731–8. doi:10.1007/s00726-008-0158-y.
  • Nie JH, Huang JX, Wu QR, Qin XM, Li ZY. Uncovering the anti-proliferation mechanism and bioactive compounds in red kidney bean coat against B16-F10 melanoma cells by metabolomics and network pharmacology analysis. Food Funct. 2019;10(2):912–24. doi:10.1039/c8fo01738g.
  • Iwashita K, Kobori m, Yamaki K, Tsushida T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem. 2000;64(9):1813–20. doi:10.1271/bbb.64.1813.
  • Nakashima S, Matsuda H, Oda Y, Nakamura S, Xu F, Yoshikawa M. Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorg Med Chem. 2010;18(6):2337–45. doi:10.1016/j.bmc.2010.01.046.
  • Zhang X, Xu Q, Saiki I. Quercetin inhibits the invasion and mobility of murine melanoma B16-BL6 cells through inducing apoptosis via decreasing Bcl-2 expression. Clin Exp Metastasis. 2000;18(5):415–21. doi:10.1023/a:1010960615370.
  • Loizzo MR, Said A, Tundis R, Hawas UW, Rashed K, Menichini F, Frega NG, Menichini F. Antioxidant and antiproliferative activity of Diospyros lotus L. extract and isolated compounds. Plant Foods Hum Nutr. 2009;64(4):264–70. doi:10.1007/s11130-009-0133-0.
  • Said A, Tundis R, Hawas UW, El-Kousy SM, Rashed K, Menichini F, Bonesi M, Huefner A, Loizzo MR, Menichinib F. In vitro antioxidant and antiproliferative activities of flavonoids from Ailanthus excelsa (Roxb.) (Simaroubaceae) leaves. Z Naturforsch C J Biosci. 2010;65(3–4):180–6. doi:10.1515/znc-2010-3-403.
  • Cao H-H, Tse AK-W, Kwan H-Y, Yu H, Cheng C-Y, Su T, Fong W-F, Yu Z-L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem Pharmacol. 2014;87(3):424–34. doi:10.1016/j.bcp.2013.11.008.
  • Nagata H, Takekoshi S, Takeyama R, Homma T, Yoshiyuki Osamura R. Quercetin enhances melanogenesis by increasing the activity and synthesis of tyrosinase in human melanoma cells and in normal human melanocytes. Pigment Cell Res. 2004;17(1):66–73. doi:10.1046/j.1600-0749.2003.00113.x.
  • Rosner K, Röpke C, PlesS V, Skovgaard GL. Late type apoptosis and apoptosis free lethal effect of quercetin in human melanoma. Biosci Biotechnol Biochem. 2006;70(9):2169–77. doi:10.1271/bbb.60129.
  • Kim S-H, Yoo E-S, Woo J-S, Han S-H, Lee J-H, Jung S-H, Kim H-J, Jung J-Y. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. Eur J Pharmacol. 2019;860:172568. doi:10.1016/j.ejphar.2019.172568.
  • Smit NP, Latter AJ, Naish-Byfield S, Westerhof W, Pavel S, Riley PA. Catechol-O-methyltransferase as a target for melanoma destruction? Biochem Pharmacol. 1994;48(4):743–52. doi:10.1016/0006-2952(94)90052-3.
  • Lama G, Angelucci C, Bruzzese N, Iacopino F, Nori SL, D’Atri S, Turriziani M, Bonmassar E, Sica G. Sensitivity of human melanoma cells to oestrogens, tamoxifen and quercetin: is there any relationship with type I and II oestrogen binding site expression? Melanoma Res. 1998;8(4):313–22. doi:10.1097/00008390-199808000-00004.
  • Patel D, Sharma N. Inhibitory effect of quercetin on epithelial to mesenchymal transition in SK-MEL-28 human melanoma cells defined by in vitro analysis on 3D collagen gels. Onco Targets Ther. 2016;9:6445–59. doi:10.2147/ott.s109253.
  • Piantelli M, Maggiano N, Ricci R, Larocca LM, Capelli A, Scambia G, Isola G, Natali PG, Ranelletti FO. Tamoxifen and quercetin interact with type II estrogen binding sites and inhibit the growth of human melanoma cells. J Invest Dermatol. 1995;105(2):248–53. doi:10.1111/1523-1747.ep12317599.
  • Vilkickyte G, Raudone L, Petrikaite V. Phenolic fractions from Vaccinium vitis-idaea L. and their antioxidant and anticancer activities assessment. Antioxidants. 2020;9(12):1261. doi:10.3390/antiox9121261.
  • Horváthová K, Chalupa I, Šebová L, Tóthová D, Vachálková A. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells. Mutat Res. 2005;565(2):105–12. doi:10.1016/j.mrgentox.2004.08.013.
  • Miyagawa T, Saito H, Minamiya Y, Mitobe K, Takashima S, Takahashi N, Ito A, Imai K, Motoyama S, Ogawa J. Inhibition of Hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low Curie temperature. Int J Clin Oncol. 2014;19(4):722–30. doi:10.1007/s10147-013-0606-x.
  • Tabor CW, Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45(1):285–306. doi:10.1146/annurev.bi.45.070176.001441.
  • Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med. 2004;37(3):287–303. doi:10.1016/j.freeradbiomed.2004.04.034.
  • Beninati S, Piacentini M. The transglutaminase family: an overview: minireview article. Amino Acids. 2004;26(4):367–72. doi:10.1007/s00726-004-0091-7.
  • Canini A, Pichichero R, Cicconi R, Mattei MA. Chrysin-induced apoptosis is mediated through p38 and Bax activation in B16-F1 and A375 melanoma cells. Int J Oncol. 2011;38(2):473–83. doi:10.3892/ijo.2010.876.
  • Mhaidat NM, Zhang XD, Jiang CC, Hersey P. Docetaxel-induced apoptosis of human melanoma is mediated by activation of c-Jun NH2-terminal kinase and inhibited by the mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway. Clin Cancer Res. 2007;13(4):1308–14. doi:10.1158/1078-0432.ccr-06-2216.
  • Zhang XM, Huang SP, Xu Q. Quercetin inhibits the invasion of murine melanoma B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway. Cancer Chemother Pharmacol. 2004;53(1):82–8. doi:10.1007/s00280-003-0702-0.
  • Thangasamy T, Sittadjody S, Mitchell GC, Mendoza EE, Radhakrishnan VM, Limesand KH, Burd R. Quercetin abrogates chemoresistance in melanoma cells by modulating ΔNp73. BMC Cancer. 2010;10(1):282. doi:10.1186/1471-2407-10-282.
  • Cardile V, Avola R, Graziano AC, Russo A. Moscatilin, a bibenzyl derivative from the orchid Dendrobium loddigesii, induces apoptosis in melanoma cells. Chem Biol Interact. 2020;323:109075. doi:10.1016/j.cbi.2020.109075.
  • Jose J, Rao PG, Jimmy B. Adverse drug reactions to fluoroquinolone antibiotics – analysis of reports received in a tertiary care hospital. Int J Risk Saf Med. 2008;20(3):169–80. doi:10.3233/jrs-2008-0441.
  • Tanaka T, Huang X, Halicka HD, Zhao H, Traganos F, Albino AP, Dai W, Darzynkiewicz Z. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A. 2007;71(9):648–61. doi:10.1002/cyto.a.20426.
  • Ye R, Goodarzi AA, Kurz EU, Saito S, Higashimoto Y, Lavin MF, Appella E, Anderson CW, Lees-Miller SP. The isoflavonoids genistein and quercetin activate different stress signaling pathways as shown by analysis of site-specific phosphorylation of ATM, p53 and histone H2AX. DNA Repair (Amst). 2004;3(3):235–44. doi:10.1016/j.dnarep.2003.10.014.
  • Pan J, She M, Xu ZX, Sun L, Yeung SC. Farnesyltransferase inhibitors induce DNA damage via reactive oxygen species in human cancer cells. Cancer Res. 2005;65(9):3671–81. doi:10.1158/0008-5472.can-04-2744.
  • Stommel JM, Wahl GM. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. Embo J. 2004;23(7):1547–56. doi:10.1038/sj.emboj.7600145.
  • Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91(3):325–34. doi:10.1016/s0092-8674(00)80416-x.
  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999;13(2):152–7. doi:10.1101/gad.13.2.152.
  • Johnston PA, Grandis JR. Stat3 signaling: anticancer strategies and challenges. Mol Interv. 2011;11(1):18–26. doi:10.1124/mi.11.1.4.
  • Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18(2):254–67. doi:10.1038/cr.2008.18.
  • Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A, Chang A, Kraker A, Jove R, Yu H. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene. 2002;21(46):7001–10. doi:10.1038/sj.onc.1205859.
  • Niu G, Heller R, Catlett-Falcone R, Coppola D, Jaroszeski M, Dalton W, Jove R, Yu H. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res. 1999;15:59(20):5059–63.
  • Borden EC. Interferons α and β in cancer: therapeutic opportunities from new insights. Nat Rev Drug Discov. 2019;18(3):219–34. doi:10.1038/s41573-018-0011-2.
  • Adler NR, Haydon A, McLean CA, Kelly JW, Mar VJ. Metastatic pathways in patients with cutaneous melanoma. Pigment Cell Melanoma Res. 2017;30(1):13–27. doi:10.1111/pcmr.12544.
  • Tanzer ML. Current concepts of extracellular matrix. J Orthop Sci. 2006;11(3):326–31. doi:10.1007/s00776-006-1012-2.
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. doi:10.1016/j.cell.2009.11.007.
  • Cao H-H, Cheng C-Y, Su T, Fu X-Q, Guo H, Li T, Tse AK-W, Kwan H-Y, Yu H, Yu Z-L. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion. Mol Cancer. 2015;14(1):103. doi:10.1186/s12943-015-0367-4.
  • Yamauchi K, Mitsunaga T, Afroze SH, Uddin MN. Structure-activity relationships of methylquercetin on anti-migration and anti-proliferation activity in B16 melanoma cells. Anticancer Res. 2017;37(4):1575–9. doi:10.21873/anticanres.11487.
  • Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors. Invest New Drugs. 1997;15(1):61–75. doi:10.1023/a:1005722729132.
  • Organ SL, Tsao MS. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1):S7–S19. doi:10.1177/1758834011422556.
  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25. doi:10.1038/nrm1261.
  • Yang L, Friedland S, Corson N, Xu L. GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res. 2014;74(4):1022–31. doi:10.1158/0008-5472.can-13-1268.
  • Facchiano F, D’Arcangelo D, Lentini A, Rossi S, Senatore C, Pannellini T, Tabolacci C, Facchiano AM, Facchiano A, Beninati S. Tissue transglutaminase activity protects from cutaneous melanoma metastatic dissemination: an in vivo study. Amino Acids. 2013;44(1):53–61. doi:10.1007/s00726-012-1351-6.
  • Di Giacomo G, Lentini A, Beninati S, Piacentini M, Rodolfo C. In vivo evaluation of type 2 transglutaminase contribution to the metastasis formation in melanoma. Amino Acids. 2009;36(4):717–24. doi:10.1007/s00726-008-0119-5.
  • Xu L, Begum S, Hearn JD, Hynes RO. GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A. 2006;103(24):9023–8. doi:10.1073/pnas.0602681103.
  • Pizzimenti S, Ribero S, Cucci MA. Oxidative stress-related mechanisms in melanoma and in the acquired resistance to targeted therapies. Antioxidants. 2021;10(12):1942. doi:10.3390/antiox10121942.
  • Roh HJ, Noh H-J, Na CS, Kim CS, Kim KH, Hong CY, Lee KR. Phenolic compounds from the leaves of Stewartia pseudocamellia maxim. and their whitening activities. Biomol Ther (Seoul). 2015;23(3):283–9. doi:10.4062/biomolther.2014.140.
  • Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun. 2001;282(5):1075–9. doi:10.1006/bbrc.2001.4670.
  • Ferrer P, Asensi M, Priego S, Benlloch M, Mena S, Ortega A, Obrador E, Esteve JM, Estrela JM. Nitric oxide mediates natural polyphenol-induced Bcl-2 down-regulation and activation of cell death in metastatic B16 melanoma. J Biol Chem. 2007;282(5):2880–90. doi:10.1074/jbc.m605934200.
  • Awad HM, Boersma MG, Boeren S, van der Woude H, van Zanden J, van Bladeren PJ, Vervoort J, Rietjens IMCM. Identification ofo-quinone/quinone methide metabolites of quercetin in a cellular in vitro system. FEBS Lett. 2002;520(1–3):30–4. doi:10.1016/s0014-5793(02)02754-0.
  • Thangasamy T, Sittadjody S, Lanza-Jacoby S, Wachsberger PR, Limesand KH, Burd R. Quercetin selectively inhibits bioreduction and enhances apoptosis in melanoma cells that overexpress tyrosinase. Nutr Cancer. 2007;59(2):258–68. doi:10.1080/01635580701499545P.
  • Riley PA. Melanogenesis and melanoma. Pigment Cell Res. 2003;16(5):548–52. doi:10.1034/j.1600-0749.2003.00069.x. E.T.
  • Arung ET, Furuta S, Ishikawa H, Kusuma IW, Shimizu K, Kondo R. Anti-melanogenesis properties of quercetin- and its derivative-rich extract from Allium cepa. Food Chem. 2011;124(3):1024–8. doi:10.1016/j.foodchem.2010.07.067.
  • FujiI T, Saito M. Inhibitory effect of quercetin isolated from rose hip (Rosa caninaL.) against melanogenesis by mouse melanoma cells. Biosci Biotechnol Biochem. 2009;73(9):1989–93. doi:10.1271/bbb.90181.
  • Motoyashiki T, Morita T, Ueki H. Involvement of the rapid increase in cAMP content in the vanadate-stimulated release of lipoprotein lipase activity from rat fat pads. Biol Pharm Bull. 1996;19(11):1412–6. doi:10.1248/bpb.19.1412.
  • Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13(2):60–9. doi:10.1034/j.1600-0749.2000.130203.x.
  • Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H, Takahashi K. Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J Investig Dermatol Symp Proc. 2001;6(1):99–104. doi:10.1046/j.0022-202x.2001.00010.x.
  • Takekoshi S, Nagata H, Kitatani K. Flavonoids enhance melanogenesis in human melanoma cells. Tokai J Exp Clin Med. 2014;39(3):116–21.
  • Turner KA, Manouchehri JM, Kalafatis M. Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin. Melanoma Res. 2018;28(4):277–85. doi:10.1097/cmr.0000000000000447.
  • Kalafatis M, A Turner K, J Lindner D, Kalafatis M. Recombinant human tumor necrosis factor-related apoptosis-inducing ligand selectively induces apoptosis in malignant melanoma. IJCO. 2017;4(1):1–8. doi:10.15436/2377-0902.17.1191.
  • Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435(2):297–312. doi:10.1042/bj20110162.
  • Sturza A, Pavel I, Ancușa S, Danciu C, Dehelean C, Duicu O, Muntean D. Quercetin exerts an inhibitory effect on cellular bioenergetics of the B164A5 murine melanoma cell line. Mol Cell Biochem. 2018;447(1–2):103–9. doi:10.1007/s11010-018-3296-x.
  • Yerlikaya A, Kimball SR, Stanley BA. Phosphorylation of eIF2α in response to 26S proteasome inhibition is mediated by the haem-regulated inhibitor (HRI) kinase. Biochem J. 2008;412(3):579–88. doi:10.1042/bj20080324.
  • Piantelli M, Tatone D, Castrilli G, Savini F, Maggiano N, Larocca LM, Ranelletti FO, Natali PG. Quercetin and tamoxifen sensitize human melanoma cells to hyperthermia. Melanoma Res. 2001;11(5):469–76. doi:10.1097/00008390-200110000-00005.
  • Dornas WCA, Oliveira TTD, Dores RGRD, Santos AFD, Nagem TJ. Flavonoides: potencial terapêutico no estresse oxidativo. Journal of Basic and Applied Pharmaceutical Sciences 2007;28(3):241–9.
  • Hui C, Qi X, Qianyong Z, Xiaoli P, Jundong Z, Mantian M. Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One. 2013;8(1):e54318. doi:10.1371/journal.pone.0054318.
  • Huber LS, Rodriguez-Amaya DB. Flavonóis e flavonas: fontes brasileiras e fatores que influenciam a composição em alimentos. Alimentos e Nutrição Araraquara. 2008;19(1):97–108.
  • Chen Q, Di L, Zhang Y, Li N. Chemical constituents with cytotoxic and anti-inflammatory activity in Hypericum sampsonii and the antitumor potential under the view of cancer-related inflammation. J Ethnopharmacol. 2020;259:112948. doi:10.1016/j.jep.2020.112948.
  • An SM, Kim HJ, Kim JE, Boo YC. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother Res. 2008;22(9):1200–7. doi:10.1002/ptr.2435.
  • Darsandhari S, Dhakal D, Shrestha B, Lee S, Jung N, Jung HJ, Sohng JK. Biosynthesis of bioactive tamarixetin in recombinant Escherichia coli. Biotechnol Appl Biochem. 2021;68(3):531–7. doi:10.1002/bab.1958.
  • Hundsberger H, Stierschneider A, Sarne V. Concentration-dependent pro- and antitumor activities of quercetin in human melanoma spheroids: comparative analysis of 2D and 3D cell culture models. Molecules. 2021;26(3):717. doi:10.3390/molecules26030717.
  • Drewa G, Woźqak A, Pałgan K, Schachtschabel DO, Grzanka A, Sujkowska R. Influence of quercetin on B16 melanotic melanoma growth in C57BL/6 mice and on activity of some acid hydrolases in melanoma tissue. Neoplasma. 2001;48(1):12–8.
  • Caltagirone S, Ranelletti FO, Rinelli A, Maggiano N, Colasante A, Musiani P, Aiello FB, Piantelli M. Interaction with Type II estrogen binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small-cell lung cancer. Am J Respir Cell Mol Biol. 1997;17(1):51–9. doi:10.1165/ajrcmb.17.1.2728.
  • Menon LG, Kuttan R, Kuttan G. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett. 1995;95(1–2):221–5. doi:10.1016/0304-3835(95)03887-3.
  • Piantelli M, Rossi C, Iezzi M, La Sorda R, Iacobelli S, Alberti S, Natali PG. Flavonoids inhibit melanoma lung metastasis by impairing tumor cells endothelium interactions. J Cell Physiol. 2006;207(1):23–9. doi:10.1002/jcp.20510.
  • Jain AS, Shah SM, Nagarsenker MS, Nikam Y, Gude RP, Steiniger F, Thamm J, Fahr A. Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation, characterization and establishing in vitro–in vivo advantage. J Biomed Nanotechnol. 2013;9(7):1230–40. doi:10.1166/jbn.2013.1636.
  • Kumar N, Kishan N, Biswas S, Gourishetti K, Kamal M, Chamallamudi MR. Anti-metastatic and anticancer potentials of synthesized chalcones in B16-F10 melanoma cells induced metastatic lung cancer in C57BL/6 mice. Indian J Pharm Educ Res. 2021;55(3s):S742–S750. doi:10.5530/ijper.55.3s.181.
  • Mendoza L, Carrascal T, De Luca M, Fuentes AM, Salado C, Blanco J, Vidal-Vanaclocha F. Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from interleukin-18–activated hepatic sinusoidal endothelium: implications for circulating cancer cell arrest in the murine liver. Hepatology. 2001;34(2):298–310. doi:10.1053/jhep.2001.26629.
  • Kale R, Saraf M, Juvekar A, Tayade P. Decreased B16F10 melanoma growth and impaired tumour vascularization in BDF1 mice with quercetin-cyclodextrin binary system. J Pharm Pharmacol. 2006;58(10):1351–8. doi:10.1211/jpp.58.10.0008.
  • Honig A, Rieger L, Kapp M, Krockenberger M, Eck M, Dietl J, Kämmerer U. Increased tartrate-resistant acid phosphatase (TRAP) expression in malignant breast, ovarian and melanoma tissue: an investigational study. BMC Cancer. 2006;6(1):199. doi:10.1186/1471-2407-6-199.
  • Zhu L, Wada M, Usagawa Y, Yasukochi Y, Yokoyama A, Wada N, Sakamoto M, Maekawa T, Miyazaki R, Yonenaga E, et al. Overexpression of cathepsin D in malignant melanoma. Fukuoka Igaku Zasshi. 2013;104(10):370–5. Oct
  • Bhattacharyya S, Feferman L, Terai K, Dudek AZ, Tobacman JK. Decline in arylsulfatase B leads to increased invasiveness of melanoma cells. Oncotarget. 2017;8(3):4169–80. 10.18632/oncotarget.13751
  • Stoyanova N, Spasova M, Manolova N, Rashkov I, Georgieva A, Toshkova R. Antioxidant and antitumor activities of novel quercetin-loaded electrospun cellulose acetate/polyethylene glycol fibrous materials. Antioxidants. 2020;9(3):232. doi:10.3390/antiox9030232.
  • Popp R, Schimmer O. Induction of sister-chromatid exchanges (SCE), polyploidy, and micronuclei by plant flavonoids in human lymphocyte cultures. a comparative study of 19 flavonoids. Mutat Res. 1991;246(1):205–13. doi:10.1016/0027-5107(91)90123-6.
  • Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45(11):2179–205. doi:10.1016/j.fct.2007.05.015.
  • Ruiz MJ, Fernández M, Estela JM, Asensi MÁ, Mañes J, Picó Y. Short-term oral toxicity of quercetin and pterostibene in Swiss mice. Toxicol Lett. 2006;164:S275–S276. doi:10.1016/j.toxlet.2006.07.232.
  • D’Andrea G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia. 2015;106:256–71. doi:10.1016/j.fitote.2015.09.018.
  • Batiha GE, Beshbishy AM, Ikram M. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374. doi:10.3390/foods9030374.
  • Pamukcu AM, Yalçiner S, Hatcher JF, Bryan GT. Quercetin, a rat intestinal and bladder carcinogen present in bracken fern (Pteridium aquilinum). Cancer Res. 1980;40(10):3468–72.
  • National Toxicology Program. Toxicology and carcinogenesis studies of quercetin (CAS no. 117-39-5) in F344 rats (feed studies). National Toxicology Program technical report series. U.S Departamento of Health and Human Services 1992; Vol. 409. p. 1–171.
  • Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Kerr DJ. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Res. 1996;2(4):659–68.
  • Lu NT, Crespi CM, Liu NM, Vu JQ, Ahmadieh Y, Wu S, Lin S, McClune A, Durazo F, Saab S, et al. A phase I dose escalation study demonstrates quercetin safety and explores potential for bioflavonoid antivirals in patients with chronic hepatitis C. Phytother Res. 2016;30(1):160–8. doi:10.1002/ptr.5518.
  • Xu P, Wang H, Hu H, Ye Y, Dong Y, Li S, Mei D, Guo Z, Wang D, Sun Y, et al. cRGDfK-grafted small-size quercetin micelles for enhancing therapy efficacy of active ingredient from the chinese medicinal herb. Int J Nanomedicine. 2019;14:9173–84. doi:10.2147/IJN.S219578.
  • Chen X, Yin OQ, Zuo Z, Chow MS. Pharmacokinetics and modeling of quercetin and metabolites. Pharm Res. 2005;22(6):892–901. doi:10.1007/s11095-005-4584-1.
  • Justino GC, Santos MR, Canário S, Borges C, Florêncio MH, Mira L. Plasma quercetin metabolites: structure–antioxidant activity relationships. Arch Biochem Biophys. 2004;432(1):109–21. doi:10.1016/j.abb.2004.09.007.
  • Kabir MT, Rahman MH, Akter R. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules. 2021;11(3):392. doi:10.3390/biom11030392.
  • Corina D, Bojin F, Ambrus R, Muntean D, Soica C, Paunescu V, Cristea M, Pinzaru I, Dehelean C. Physico-chemical and biological evaluation of flavonols: fisetin, quercetin and kaempferol alone and incorporated in beta cyclodextrins. Anticancer Agents Med Chem. 2017;17(4):615–26. doi:10.2174/1871520616666160621105306.
  • Indap MA, Bhosle SC, Tayade PT, Vavia PR. Evaluation of toxicity and antitumour effects of a hydroxypropyl β-cyclodextrin inclusion complex of quercetin. Indian J Pharm Sci. 2002;64(4):349.
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. doi:10.1021/nn900002m.
  • Shvidchenko AV, Eidelman ED, Vul’ AY, Kuznetsov NM, Stolyarova DY, Belousov SI, Chvalun SN. Colloids of detonation nanodiamond particles for advanced applications. Adv Colloid Interface Sci. 2019;268:64–81. doi:10.1016/j.cis.2019.03.008.
  • Sapino S, Ugazio E, Gastaldi L, Miletto I, Berlier G, Zonari D, Oliaro-Bosso S. Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies. Eur J Pharm Biopharm. 2015;89:116–25. doi:10.1016/j.ejpb.2014.11.022.
  • Gulla, S, Lomada, D, Araveti, PB, Srivastava, A, Murikinati, MK, Reddy, KR, Reddy, MC, Altalhi, T, Inamuddin. Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells. J Nanostruct Chem. 2021;11:721–34. doi:10.1007/s40097-021-00396-8 S.
  • Sree Latha T, Reddy MC, Muthukonda SV, Srikanth VV, Lomada D. In vitro and in vivo evaluation of anti-cancer activity: shape-dependent properties of TiO 2 nanostructures. Mater Sci Eng C Mater Biol Appl. 2017;78:969–77. doi:10.1016/j.msec.2017.04.011.
  • Gulla S, Reddy VC, Araveti PB, Lomada D, Srivastava A, Reddy MC, Reddy KR. Synthesis of titanium nanotubes conjugated with quercetin and its in-vivo anti-tumor activity against skin cancer. J Mol Struct. 2022;1249:131556. doi:10.1016/j.molstruc.2021.131556.
  • Date AA, Nagarsenker MS, Patere S, Dhawan V, Gude RP, Hassan PA, Aswal V, Steiniger F, Thamm J, Fahr A. Lecithin-based novel cationic nanocarriers (leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 2011;8(3):716–26. doi:10.1021/mp100305h.
  • Gismondi A, Reina G, Orlanducci S, Mizzoni F, Gay S, Terranova ML, Canini A. Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy. Biomaterials. 2015;38:22–35. doi:10.1016/j.biomaterials.2014.10.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.