45
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A NEUROGENETICIST'S MANIFESTO

Pages 1-90 | Published online: 11 Jul 2009

  • Abdelilah-Seyfried, S., Chan, Y.M., Zeng, C., Justice, N.J., Younger-Shepherd, S., Sharp, L.E., Barbel, S., Meadows, S.A., Jan, L.Y., & Jan, Y.N. (2000). A gain-of-function screen for genes that affect the development of the Drosophila adult external sensory organ. Genetics 155, 733-752
  • Ahn, A.H., Dziennis, S., Hawkes, R., & Herrup, K. (1994). The cloning of zebrin II reveals its identity with aldolase C. Development 120, 2081-2090
  • Aigaki, T., Ohsako, T., Toba, G., Seong, K.-H., & Matsuo, T. (2002). The gene search system: Its application to functional genomics in Drosophila. J. Neurogenet. 15, 169-178
  • Alavizadeh, A., Kiernan, A.E., Nolan, P., Lo, C., Steel, K.P., & Bucan, M. (2001). The Wheels mutation in the mouse causes vascular, hindbrain, and inner ear defects. Devel. Biol. 234, 244-260
  • Albrecht, U. (2002). Regulation of mammalian circadian clock genes. J. Appl. Physiol. 92, 1348-1350
  • Allada, R., White, N.E., So, W.V., Hall, J.C., & Rosbash, M. (1998). A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791-804
  • Allikian, M.J., Deckert-Cruz, D., Rose, M.R., Landis, G.N., & Tower, J. (2002). Dox ycycline-induced expression of sense and inverted-repeat constructs modulates phos phogluconate mutase (Pgm) gene expression in adult Drosophila melanogaster. Genome Biol 3, research 0021.1-0021.10 [citation format for online periodical].
  • Alt, S., Ringo, J., Talyn, B., Bray, W., & Dowse, H. (1998). The period gene controls courtship song cycles in Drosophila melanogaster. Anim. Behav. 56, 87-97
  • Ambros, V. (2000). Control of developmental timing in Caenorhabditis elegans. Curr. Opin. Genet. Devel. 10, 428-433
  • Anand, A., Villella, A., Ryner, L.C., Carlo, T., Goodwin, S.F., Song, H.-J., Gailey, D.A., Morales, A., Hall, J.C., Baker, B.S., & Taylor, B.J. (2001). Molecular genetic dissection of the sex-specific and vital functions of the Drosophila melanogaster sex determination gene fruitless. Genetics 158, 1569-1595
  • Andretic, R., Chaney, S., & Hirsh, J. (1999). Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285, 1066-1068
  • Andretic, R., & Hirsh, J. (2000). Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 1873-1878
  • Antoch, M.P., Song, E.-J., Chang, A.M., Vitaterna, M.H., Zhao, Y., Wilsbacher, L.D., Sangoram, A.M., King, D.P., Pinto, L.H., & Takahashi, J.S. (1997). Functional iden tification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89, 655-667
  • Akten, B., Jauch, E., Geneva, G.K., Kim, E.Y., Edery, I., Raabe, T., & Jackson, F.R. (2003). A role for CK2 in the Drosophila circadian oscillator. Nat. Neurosci. 6,251-257
  • Atkinson, N.S., Robertson, G.A., & Ganetzky, B. (1991). A component of calcium-acti vated potassium channels encoded by the Drosophila slo locus. Science 253, 551-555
  • Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B.S., Davis, R., Krasnow, M., Scott, M., & White, K.P. (2002). A genomic analysis of gene expression during the Drosophila life cycle. Science 297, 2270-2275
  • Baker, B.S., Taylor, B.J., & Hall, J.C. (2001). Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell 105, 13-24
  • Baier, H. (2000). Zebrafish on the move: Towards a behavior-genetic analysis vertebrate vision. Curr. Opin. Neurobiol. 10, 451-455
  • Balakrishnan, B., & Rodrigues, V. (1991). The Shaker and shaking-B genes specify elements in the processing of gustatory information in Drosophila melanogaster. J. Exp. Biol. 157, 161-181
  • Ballinger, D.G., & Benzer, S. (1988). Photophobe (Ppb), a Drosophila mutant with a reverse sign of phototaxis; the mutation shows an allele-specific interaction with sevenless. Proc. Natl. Acad. Sci. USA 85, 3960-3964
  • Ballinger, D.G., & Benzer, S. (1989). Targeted gene mutations in Drosophila. Proc. Natl. Acad. Sci. USA 86, 9402-9406
  • Banerjee, U., Renfranz, P.J., Pollock, J.A., & Benzer, S. (1987). Molecular characterization of sevenless, a gene involved in neuronal pattern formation in the Drosophila eye. Cell 49, 281-291
  • Banerjee, U., & Zipursky, S.L. (1990). The role of cell-cell interaction in the development of the Drosophila visual system. Neuron 4, 177-187
  • Barak, S., Tobin, E.M., Adronis, C., Sugano, S., & Green, R.M. (2000). All in good time: The Arabidopsis circadian clock. Trends Plant Sei. 5, 517-522
  • Bargmann, C.I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028-2033
  • Barolo, S., Carver, L.A., & Posakony, J.W. (2000). GFP and beta-galactosidase transfor mation vectors for promoter/enhancer analysis in Drosophila. Biotechniques 29, 726-732
  • Barr, M.M., & Sternberg, P.W. (1999). A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386-389
  • Basler, K., & Hafen, E. (1991). Specification of cell fate in the developing eye of Drosophila. BioEssays 13, 621-631
  • Bastock, M. (1956). A gene mutation which changes a behavior pattern. Evolution 10, 421-439
  • Baylies, M.K., Bargiello, T.A., & Young, M.W. (1987). Changes in abundance and structure of the per gene product can alter periodicity of the Drosophila clock. Nature 326, 390-392
  • Baylies, M.K., Vosshall, L.B., Sehgal, A., & Young, M.W. (1992). New short period mutations of the Drosophila clock gene per. Neuron 9, 575-581
  • Becker, M.N., Brenner, R., & Atkinson, N.S. (1995). Tissue-specific activation of a Drosophila calcium-activated potassium channel. J. Neurosci. 15, 6250-6259
  • Bell, A.C., & Felsenfeld, G. (1999). Stopped at the border: Boundaries and insulators. Curr. Opin. Genet. Devel. 9, 191-198
  • Bellen, H.J., Gregory, B.K., Olsson, C.L., & Kiger, J.A. Jr. (1987). Two Drosophila learning mutants, dunce and rutabaga, provide evidence of a maternal role for cAMP in embryogenesis. Devel. Biol. 121, 432-444
  • Bellen, H.J., & Kiger, J.A. Jr. (1987). Sexual hyperactivity and reduced longevity of dunce females of Drosophila melanogaster. Genetics 115, 153-160
  • Bello, B., Resendez-Perez, D., & Gehring, W.J. (1998). Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator sys tem. Development 125, 2193-2202
  • Belvin, M.P., Zhou, H., & Yin, J.C.P. (1999). The Drosophila dCREB2 gene affects the circadian clock. Neuron 22, 777-787
  • Ben-Shahar, Y., Robichon, A., Sokolowski, M.B., & Robinson, G.E. (2002). Influence of gene action across different time scales on behavior. Science 296, 741-744
  • Bentley, A., MacLennan, B., Calvo, J., & Dearolf, C.R. (2000). Targeted recovery of mutations in Drosophila. Genetics 156, 1169-1173
  • Benzer, S. (1967). Behavioral mutants of Drosophila isolated by countercuuent distribution. Proc. Natl. Acad. Sci. USA 58, 1112-1119
  • Bessereau, J.-L., Wright, A., Williams, D.C., Schuske, K., Davis, M.W., Jorgensen, E.M. (2001). Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413, 70-74
  • Besser, H.v., Schnabel, P., Wieland, C., Fritz, E., Stanewsky, R., & Saumweber, H. (1990). The puff-specific Drosophila protein Bj6, encoded by the gene no-on-transient A, shows homology to RNA binding proteins. Chromosoma 100, 37-47
  • Bieschke, E.T., Wheeler, J.C., & Tower, J. (1998). Doxycycline-induced transgene expres sion in Drosophila development and aging. Molec. Gen. Genet. 258, 571-579
  • Blanchardon, E., & Grima, B., Klarsfeld, A., Chelot, E., Hardin, P.E., Preat, T., & Rouyer, F. (2001). Defining the role of Drosophila lateral neurons in the control of activity and eclosion rhythms by targeted genetic ablation and PERIOD overexpression. Eur. J. Neurosci. 13, 871-888
  • Blau, J., & Young, M.W. (1999). Cycling vrille expression is required for a functional Drosophila clock. Cell 99, 661-671
  • Bolwig, G.M., Del Vecchio, M., Hannon, G., & Tully, T. (1995). Molecular cloning of linotte in Drosophila: A novel gene that functions in adults during associative learning. Neuron 15, 829-842
  • Boll, W., & Noll, M. (2002). The Drosophila Pox neuro gene: Control of male courtship behavior and fertility as revealed by a complete dissection of all enhancers. Development 129, 5667-5681
  • Brand, A.H., & Dormand, E.L. (1995). The GAL4 system as a tool for unravelling the mysteries of the nervous system. Curr. Opin. Neurobiol. 5, 572-578
  • Branicky, R., Shibata, Y., Feng, J., & Hekimi, S. (2001). Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans. Genetics 159, 997-1006
  • Brenner, R., & Atkinson, N. (1996). Developmental-and eye-specific transcriptional control elements in an intronic region of a Ca2+-activated K+ channel gene. Devel. Biol. 177, 536-543
  • Brenner, R., Thomas, T.O., Becker, M.N., & Atkinson, N.S. (1996). Tissue-specific expression of a Ca2+-activated K channel is controlled by multiple upstream regulatory elements. J. Neurosci. 13, 167-180
  • Brookfield, J. (1992). Can genes be truly redundant? Curr. Biol. 2, 553-554
  • Brooks, I.M., Felling, R., Kawasaki, F., & Ordway, R.W. (2003). Genetic analysis of a synaptic calcium channel in Drosophila: Intregenic modifiers of a temperature-sensitive paralytic mutant of cacophony. Genetics 164, 163-171
  • Budnik, V., Zhong, Y., & Wu, C.-F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. J. Neurosci. 10, 3754-3768
  • Budnik, V., Wu, C.-F., & White, K. (1989). Altered branching of serotonin-containing neurons in Drosophila mutants unable to synthesize serotonin and dopamine. J. Neu rosci. 9, 2866-2877
  • Burnet, B., & Wilson, R. (1980). Pattern mosaicism for behaviour controlled by the yellow locus in Drosophila melanogaster. Genet. Res. 36, 235-247
  • Byers, D. (1980). A review of the behavior and biochemistry of dunce, a mutation of learning in Drosophila. In O. Siddiqi, P. Babu, L.M. Hall, & J.C. Hall (Eds.), Development and Neurobiology of Drosophila, pp. 467-474, New York: Plenum Press.
  • Byers, D., Davis, R.L., & Kiger, J.A. Jr. (1981). Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289, 79-81
  • C. elegans Genome Consortium. (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282, 2012-2018
  • Callahan, C.A., Muralidhar, M.G., Lundgren, S.E., Scully, A.L., & Thomas, J.B. (1995). Control of neuronal pathway selection by a Drosophila receptor protein-tyrosine kinase family member. Nature 376, 171-174
  • Campesan, S., Dubrova, Y., Hall, J.C., & Kyriacou, C.P. (2001). The nonA gene in Dro sophila conveys species-specific behavioral characteristics. Genetics 158, 1535-1543
  • Celniker, S.E. (2000). The Drosophila genome. Curr. Opin. Genet. Devel. 10, 612-616
  • Ceriani, M.F., Hogenesch, J.B., Yanovsky, M., Panda, S., Straume, M., & Kay, S.A. (2002). Genome-wide expression analysis in Drosophila reveals genes controlling arcadian behavior. J. Neurosci. 22, 9305-9319
  • Certal, S.J., Clyne, P.J., Carlson, J.R., & Johnson, W.A. (2000). Regulation of central neuron synaptic targeting by the Drosophila POU protein, Acj Development 127, 2395-2405
  • Chan, B., Villella, A., Funes, P., & Hall, J.C. (2002). Courtship and other behavioral defects caused by a heat-sensitive, molecularly novel mutation in the cacophony calcium-channel gene of Drosophila. Genetics 162, 135-153
  • Claridge-Chang, A., Wijnen, H., Naef, F., Boothroyd, C., Rajewsky, N., & Young, M.W. (2001). Orcadian regulation of gene expression systems in the Drosophila head. Neuron 32, 657-671
  • Clark, A.G., Silveria, S., Meyers, W., & Langley, C.H. (1994). Nature screen: An efficient method for screening natural populations of Drosophila for targeted P-element inser tions. Proc. Natl. Acad. Sci. USA 91, 719-722
  • Clouseau, J. (1964). To the Prison Superintendent. In B. Edwards B (producer & director), A Shot in the Dark. Hollywood, CA: United Artists.
  • Clouseau, J. (1975). To Chief Inspector Dreyfus. In B. Edwards B (producer & director), The Return of the Pink Panther. Hollywood, CA: United Artists.
  • Clyne, P.J., Warr, C.G., & Carlson, J.R. (2000). Candidate taste receptors in Drosophila. Science 287:1830-1834
  • Coates, J.C., & de Bono, M. (2002). Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature 419, 925-929
  • Comer, C.M., & Robertson, R.M. (2001). Identified nerve cells and insect behavior. Prog. Neurobiol. 639, 409-439
  • Connolly, J.B., Roberts, I.J., Armstrong, J.D., Kaiser, K., Forte, M., Tully, T., & O'Kane, C.J. (1996). Associative learning disrupted by impaired G, signaling in Drosophila mushroom bodies. Science 274, 2104-2107
  • Costa, R., & Kyriacou, C.P. (1998). Functional and evolutionary implications of natural variation in clock genes. Curr. Opin. Neurobiol. 8, 659-664
  • Coté, G.G., & Brody, S. (1986). Circadian rhythms in Drosophila melanogaster: Analysis of period as a function of gene dosage at the per (period) locus. J. Theoret. Biol. 121, 487-503
  • Cowan, T.M., & Siegel, R.W. (1984). Mutational and pharmacological alterations of neuronal membrane function disrupt conditioning in Drosophila. J. Neurogenet. 1, 333-344
  • Cowan, T.M., & Siegel, R.W. (1986). Drosophila mutations that alter ionic conduction disrupt acquisition and retention of a conditioned odor avoidance response. J. Neuro genet. 3, 187-201
  • Cyran, S.A., Buchsbaum, A.M., Reddy, K.L., Lin, M.C., Olossop, N.R., Hardin, P.E, Young, M.W., Storti, R.V., & Blau, J. (2003). vrille, Pdpl, and dClock form a second feedback loop in the Drosophila arcadian clock. Cell 112, 329-341
  • Daga, A., & Banerjee, U. (1994). Resolving the sevenless pathway using sensitized genetic backgrounds. Cell. Molec. Biol. Res. 46, 245-251
  • Dal Santo, P., Logan, M. A., Chisholm, A.D., & Jorgensen, E.M. (1999). The inositol trisphos phate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98, 757-766
  • Dalby, B., Pereira, A.J., & Goldstein, L.S.B. (1995). An inverse PCR screen for the detection of P element insertions in cloned genomic intervals in Drosophila melanogaster. Genetics 139, 757-766
  • Daniels, S.A., Ailion, M., Thomas, J.H., & Sengupta, P. (2000). egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. Genetics 156, 123-141
  • Dauwalder, B., & Davis, R.L. (1995). Conditional rescue of the dunce learning/memory and female fertility defects with Drosophila or rat transgenes. J. Neurosci. 15, 3490-3499
  • Davis, R.L., & Dauwalder, B. (1987). The Drosophila dunce locus: Learning and memory genes in the fly. Trends Genet. 7, 224-229
  • de Belle, J.S., & Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692-695
  • de Bono, M., & Bargmann, C.I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94, 679-689
  • de Bono, M., Tobin, D.M., Davis, M.W., Avery, L., & Bargmann, C.I. (2002). Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature 419, 899-903
  • Demetriades, M.C., Thackeray, J.R., & Kyriacou, C.P. (1999). Courtship song rhythms in Drosophila yakuba. Anim. Behav. 57, 379-386
  • De Stasio, E., Lephoto, C., Azuma, L., Hoist, C., Stanislaus, D., & Uttam, J. (1997). Characterization of revertants of uno93(e1500) in Caenorhabditis elegans induced by N-ethyl-N-nitrosourea. Genetics 147, 597-608
  • DeZazzo, J., Xia, S., Christensen, J., Velinzon, K., & Tully, T. (1999). Developmental expression of an amn+ transgene rescues the mutant memory defect of amnesiac adults. J. Neurosci. 19, 8740-8746
  • DiBartolomeis, S.M., Akten, B., Genova, G., Roberts, M.A., & Jackson, F.R. (2002). Molecular analysis of the Drosophila miniature-dusky (m-dy) gene complex: m-dy mRNAs encode transmembrane proteins with similarity to C. elegans cuticulin. Molec. Genet. Genomics 267, 564-576
  • Dolph, P.J., Ranganathan, R., Colley, N.J., Hardy, R.W., Socolich, M., & Zuker, C.S. (1993). Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science 260, 1910-1916
  • Dong, M.Q., Chase, D., Patikoglou, G.A., & Koelle, M.R. (2000). Multiple RGS proteins alter neural G protein signaling to allow C. elegans to rapidly change behavior when fed. Genes Devel. 14, 2003-2014
  • Dowse, H.B., Dushay, M.S., Hall, J.C., & Ringo, J.M. (1989). High-resolution analysis of locomotor activity rhythms in disconnected, a visual-system mutant of Drosophila mel anogaster. Behav. Genet. 19, 529-542
  • Drapeau, M.D., Radovic, A., Wittkopp, P.J., & Long, A.D. (2003). A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the Drosophila melano gaster larval brain. J. Neurobiol. 55, 53-72
  • Driscoll, M., & Kaplan, J. (1997). Mechanoreception. In D.L. Riddle, T. Blumenthal, B.J. Meyer, & J.R. Priess (Eds.), pp. 645-677, C. elegans II. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Dubin, A.E., Liles, M.M., Seligman, F., Le, T., Tolli, J., & Harris, O.L. (1998). Involvement of genes encoding a K+ channel (ether a go-go) and a Na+ channel (smellblind) in Drosophila olfaction. Ann. NY Acad. Sci. 855, 212-222
  • Dubnau, J., Chiang, A.S., Grady, L., Barditch, J., Gossweiler, S., McNeil, J., Smith, P., Buldoc, F., Scott, R., Certa, U., Broger, C., & Tully, T. (2003). The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 13, 286-296
  • Dubnau, J., Grady, L., Kitamoto, T., & Tully, T. (2001). Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411, 476-480
  • Dubnau, J., & Tully, T. (1998). Gene discovery in Drosophila: New insights for learning and memory. Ann. Rev. Neurosci. 21, 407-444
  • Dudai, Y. (1977). Properties of learning and memory in Drosophila melanogaster. J. Comp. Physiol. A 114, 69-80
  • Dunipace, L., Meister, S., McNealy, C., & Amrein, H. (2001). Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr. Biol. 11, 822-83
  • Dunlap, J.C. (1999). Molecular bases for circadian clocks. Cell 96, 271-290
  • Dura, J.-M., Préat, T., & Tully, T. (1993). Identification of linotte, a new gene affecting learning and memory in Drosophila melanogaster. J. Neurogenet. 9, 1-14
  • Dura, J.-M., Taillebourg, E., & Preat T. (1995). The Drosophila learning and memory gene linotte encodes a putative receptor tyrosine kinase homologous to the human RYK gene product. FEBS Lett 370, 250-254
  • Dushay, M.S., Rosbash, M., & Hall, J.C. (1989). The disconnected visual system mutations in Drosophila drastically disrupt circadian rhythms. J. Biol. Rhythms 4, 1-27
  • Eberl, D.F., Hardy, R.W., & Kernan, M.J. (2000). Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981-5988
  • Eggert, H., Bergemann, K., & Saumweber, H. (1998). Molecular screening for P-element insertions in a large genomic region of Drosophila melanogaster using polymerase chain reaction mediated by the vectorette. Genetics 149, 1427-1434
  • Emery, P., Stanewsky, R., Helfrich-Förster, C., Emery-Le, M., Hall, J.C., & Rosbash M. (2000). Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 493-504
  • Engel, J.E., & Wu, C.-F. (1998). Genetic dissection of functional contributions of specific postassium channel subunits in habituation of an escape circuit in Drosophila. J. Neu rosci. 18, 2254-2267
  • Ewer, J., Frisch, B., Hamblen-Coyle, M.J., Rosbash, M., & Hall, J.C. (1992). Expression of the period clock gene within different cells types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms. J. Neurosci. 12, 3321-3349
  • Ewer, J., Hamblen-Coyle, M.J., Rosbash, M., & Hall, J.C. (1990). Requirement for period gene expression in the adult and not during development for locomotor activity rhythms of imaginai Drosophila melanogaster. J. Neurogenet. 7, 31-73
  • Ewer, J., Rosbash, M., & Hall, J.C. (1988). An inducible promoter fused to the period gene in Drosophila conditionally rescues adult per-mutant arrhythmicity. Nature 333, 82-84
  • Ewing, A.W. (1978). The antenna of Drosophila as a 'love song' receptor. Physiol. Entomol. 3, 33-36
  • Feany, M.B. (1990). Rescue of the leaning defect in dunce, a Drosophila learning mutant, by an allele of rutabaga, a second learning mutant. Proc. Natl. Acad. Sei. USA 87, 2795-2799
  • Feany, M.B., & Quinn, W.G. (1995). A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268, 869-873
  • Ferveur, J.-F., & Greenspan, R.J. (1998). Courtship behavior of brain mosaics in Droso phila. J. Neurogenet. 12, 205-226
  • Finbow, M.E., Goodwin, S.F., Meagher, L., Lane, N.J., Keen, J.N., Findlay, J.B.C., & Kaiser, K. (1994). Functional and genetic analysis of Ductin in insects-a putative component of the vacuolar H+-ATPase and gap junctions. J. Cell Sei. 107, 1817-1824
  • Fortier, E., & Belote, J.M. (2000). Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26, 240-244
  • Fortini, M.E., & Rubin, G.M. (1990). Analysis of eis-acting requirements of the Rh3 and Rh4 genes reveals a bipartite organization to rhodopsin promoters in Drosophila mela nogaster. Genes Devel. 4, 444-463
  • Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., & Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by sys tematic RNA interference. Nature 408, 325-330
  • Freeman, M. (1991). First, trap your enhancer. Curr. Biol. 1, 378-381
  • Frisch, B., Hardin, P.E., Hamblen-Coyle, M.J., Rosbash, M., & Hall, J.C. (1994). A pro moterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Neuron 12, 555-570
  • Fujiwara, M., Sengupta, P., & Mclntire, S.L. (2002). Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron 36, 1091-1102
  • Gailey, D.A., Bordne, D.L., Vallès, A.M., Hall, J.C., & White, K. (1987). Construction of an unstable ring-X chromosome bearing the autosomal gene Dopa decarboxylase in Drosophila melanogaster and analysis of Dde mosaics. Genetics 115, 305-311
  • Gailey, D.A., & Hall, J.C. (1989). Behavior and cytogenetics of fruitless in Drosophila melanogaster: Different courtship defects caused by separate, closely linked lesions. Genetics 121, 773-785
  • Gailey, D.A., Taylor, B.J., & Hall, J.C. (1991). Elements of the fruitless locus regulate development of the muscle of Lawrence, a male-specific structure in the abdomen of Drosophila melanogaster adults. Development 113, 879-890
  • Garen, A. (1980). Discussion following Byers (1980, see above). In O. Siddiqi, P. Babu, L.M. Hall, & J.C. Hall (Eds.), Development and Neurobiology of Drosophila. p. 474, New York: Plenum Press.
  • Gekakis, N., Saez, L., Delahaye-Brown, A.-M., Myers, M.P., Sehgal, A., Young, M.W., & Weitz, CJ. (1995). Isolation of timeless by PER protein interaction: Defective interaction between timeless protein and long-period mutant PERL. Science 270, 811-815
  • George, H., & Terracol, R. (1997). The vrille gene of Drosophila is a maternal enhancer of decapentaplegic and encodes a new member of the bZIP familty of transcription factors. Genetics 146, 1345-1363
  • Gopal, S., Schroeder, M., Pieper, U., Sczyrba, A., Aytekin-Kurban, G., Bekiranov, S., Fajardo, J.E., Eswar, N., Sanchez, R., SaIi, A., & Gaasterland, T. (2001). Homology based annotation yields 1,042 new candidate genes in the Drosophila melanogaster genome. Nat. Genet. 27, 337-340
  • Gönczy, P., Echeverri, C., Oegema. K., Coulson, A., Jones, S.J.M., Copley, R.C., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohis, K., Goessen, A., Leidel, S., Alleaume, A.-M., Martin, C., Özlu, N., Bork, P., & Hyman, A.A. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331-336
  • Goodman, M.B., Hall, D.H., A very, L., & Lockery, S.R. (1998). Active currents regulate densitivity and dynamic range in C. elegans neurons. Neuron 20, 763-772
  • Goodwin, S.F., DelVecchio, M., Velinzon, K., Hogel, C., Russell, S.R.H., Tully, T., & Kaiser K. (1997). Defective learning in mutants of the Drosophila gene for a regulatory subunit of cAMP-dependent protein kinase. J. Neurosci. 17, 8817-8827
  • Goodwin, S.F., Taylor, B.J., Villella, A., Foss, M., Ryner, L.C., Baker, B.S., & Hall, J.C. (2000). Mutations in the fruitless gene of Drosophila melanogaster causing aberrant splicing or altered spatial distributions of/ru's sex-specific expression patterns. Genetics 154, 725-745
  • Gorczyca, M., & Hall, J.C. (1984). Identification of a cholinergic synapse in the giant fiber pathway of Drosophila using conditional mutations of acetylcholine synthesis. J. Neu rogenet. 1, 289-313
  • Greenspan, R.J. (1980). Mutations of choline acetyltransferase and associated neural defects in Drosophila melanogaster. J. Comp. Physiol. A 137, 83-92
  • Greenspan, R.J., Finn, J.A. Jr., & Hall, J.C. (1980). Acetylcholinesterase mutants in Dro sophila and their effects on the structure and function of the central nervous system. J. Comp. Neurol. 189, 741-774
  • Greenspan, RJ. (1997). A kindler, gentler genetic analysis of behavior: Dissection gives way to modulation. Curr. Opin. Neurobiol. 7, 805-811
  • Greenspan, R.J., & Ferveur, J.-F. (2000). Courtship in Drosophila. Ann. Rev. Genet. 34, 205-232
  • Greenspan, R.J., Tononi, G., Cirelli, C., & Shaw, P.J. (2001). Sleep and the fruit fly. Trends Neurosci. 24, 142-145
  • Greenwald, I.S., & Horvitz, H.R. (1980). unc-itf(e!500): A behavioral mutant of C. elegans that defines a gene with a wild-type null phenotype. Genetics 96, 147-164
  • Greenwald, I.S., & Horvitz, H.R. (1982). Dominant suppressors of a muscle mutant define an essential gene of C. elegans. Genetics 101, 211-225
  • Greenwald, I., & Rubin, G.M. (1992). Making a difference: The role of cell-cell interations in establishing separate indentities for equivalent cells. Cell 68, 271-281
  • Griffith, L.C. (1997). Drosophila melanogaster as a model system for the study of the function of calcium/calmodulin-dependent protein kinase II in synaptic plasticity. Invert. Neurosci. 3, 93-102
  • Griffith, L.C., Verselis, L.M., Aitken, K.M., Kyriacou, C.P., Danho, W., & Greenspan, R.J. (1993). Inhibition of calcium-calmodulin-dependent protein kinase in Drosophila dis rupts behavioral plasticity. Neuron 10, 501-509
  • Griffith L.C., Wang, J., Zhong, Y., Wu, C-F., & Greenspan, RJ. (1994). Calcium/ calmodulin-dependent protein kinase II and potassium channel subunit Eag similarly affect plasticity in Drosophila. Proc. Natl. Acad. Sei. USA 91, 10044-10048
  • Grishok, A., Tabara, H., & Mello, C.C. (2000). Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494-2497
  • Gu, G.Q., Caldwell, G.A., & Chalfie, M. (1996). Genetic interactions affecting touch sen sitivity in Caenorhabditis elegans. PTOC. Natl. Acad. Sci. USA 93, 6577-6582
  • Gu, Y.Z., Hogenesch, J.B., & Bradfield, C.A. (2000). The PAS superfamily: Sensors of environmental and developmental signals. Ann. Rev. Pharmacol. Toxicol. 40,519-561
  • Guo, Y., Gillan, A., Torok, T., Kiss, L., Dow, J.A., & Kaiser, K. (1996). Site-selected mutagenesis of the Drosophila second chromosome via plasmid rescue of lethal P element insertions. Genome Res. 6, 972-979
  • Hafen, E., Basler, K., Edström, J.E., & Rubin, G.M. (1987). sevenless, a Cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236, 55-63
  • Hall, J.C. (1978). Courtship among males due to a male-sterile mutation in Drosophila melanogaster. Behav. Genet. 8, 125-141
  • Hall, J.C. (1982). Genetics of the nervous system in Drosophila. Quart. Rev. Biophys. 15, 223-479
  • Hall, J.C. (1994). The mating of a fly. Science 264, 1702-1714 [see note 6 on p. 1714].
  • Hall, J.C. (1995). Tripping along the trail to the molecular mechanisms of biological clocks. Trends Neurosci. 18, 230-240
  • Hall, J.C. (1997). Ciicadian pacemakers blowing hot & cold-but they're clocks, not ther mometers. Cell 90, 9-12
  • Hall, J.C. (1998a). Genetics of biological rhythms in Drosophila. Adv. Genet. 38, 135-184
  • Hall, J.C. (1998b). Molecular neurogenetics of biological rhythms. J. Neurogenet. 12, 115-181
  • Hall, J.C. (2003). Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48, 1-286
  • Hall, J.C., Alahiotis, S.N., Strumpf, D.A., & White, K. (1980). Behavioral and biochemical defects in temperature-sensitive acetylcholinesterase mutants of Drosophila melanoga ster. Genetics 96, 939-965
  • Hall, J.C., Greenspan, R.J., & Kankel, D.R. (1979). Neural defects induced by genetic manipulation of acetylcholine metabolism in Drosophila. Soc. Neurosci. Symp. 4, 1-4
  • Hall, J.C., & Kankel, D.R. (1976). Genetics of acetylcholinesterase in Drosophila melano gaster. Genetics 83, 517-535
  • Hall, J.C., Kulkarni, S.J., Kyriacou, C.P., Yu, Q., & Rosbash, M. (1990). Genetic and molecular analysis of neural development and behavior in Drosophila. In M.E. Hahn, J.K. Hewitt, N.D. Henderson, & R. Benno (Eds.), Developmental Behavior Genetics. pp. 100-112, New York: Oxford University Press.
  • Hall, J.C., & Kyriacou, C.P. (1990). Genetics of biological rhythms in Drosophila. Adv. Insect Physiol. 22, 221-298
  • Hamblen-Coyle, M.J., Wheeler, D.A., Rutila, J.E., Rosbash, M., & Hall, J.C. (1992). Behavior of period-altered circadian rhythm mutants of Drosophila in light:dark cycles. J. Insect Behav. S, 417-446
  • Hardie, R., & Raghu, P. (2001). Visual transaction in Drosophila. Nature 413, 186-193
  • Hardin, P.E., Hall, J.C., & Rosbash, M. (1990). Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536-540
  • Hardin, P.E., Hall, J.C., & Rosbash, M. (1992). Behavioral and molecular analyses suggest that circadian output is disrupted by disconnected mutants in D. melanogaster. EMBO J. 11, 16-
  • Harris, W.A., & Stark, W.S. (1977). Hereditary retinal degeneration in Drosophila mela nogaster. A mutant defect associated with the phototransduction process. J. Gen. Phy siol. 69, 261-292
  • Harris, W.A., Stark, W.S., & Walker, J.A. (1976). Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. 69, 261-292
  • Hart, A.C., Krämer, H., Van Vactor, D.L., Paidhungat, M., & Zipursky, S.L. (1990). Induction of cell fate in the Drosophila retina: bride-of-sevenless is predicted to contain a large extra-cellular domain and seven transmembrane segments. Genes Devel. 4, 1835-1847
  • Heimbeck, G., Bugnon, V., Gendre, N., Keller, A., & Stocker, R.F. (2001). A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila mel anogaster. Proc. Natl. Acad. Sci. USA 98, 15336-15341
  • Heisenberg, M. (1972). Comparative behavioral studies on two visual mutants of Droso phila. J. Comp. Physiol. A 80, 119-136
  • Heisenberg, M. (1980). Mutants of brain structure and function: What is the significance of the mushroom bodies for behavior? In O. Siddiqi, P. Babu, L.M. Hall, & J.C. Hall (Eds.), pp. 373-390, Development and Neurobiology of Drosophila. New York: Plenum Press.
  • Heisenberg, M. (1989). Genetic approach to learning and memory (mnemogenetics) in Dro sophila melanogaster. In H. Rahmann (Ed.), Fundamentals of Memory Formation: Neu ronal Plasticity and Brain Function, pp. 3-45, Stuttgart, Germany: Gustav Fischer Verlag.
  • Heisenberg, M., & Bohl, K. (1979). Isolation of anatomical brain mutants of Drosophila by histological means. Z. Naturforsch. 34, 143-146
  • Heisenberg, M., Borst, A., Wagner, S., & Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogenet. 2, 1-30
  • Heisenberg, M., & Buchner, E. (1977). The role or retunula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol. A 117, 127-162
  • Heisenberg, M., & Wolf, R. (1984). Vision in Drosophila: Genetics of Microbehavior. Berlin: Springer-Verlag.
  • Heisenberg, M., Wonneberger, R., & Wolf, R. (1978). optomotor-blindH31-a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. A 124, 287-296
  • Helfrich-Förster, C. (1995). The period clock gene is expressed in CNS neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sei. USA 92, 612-616
  • Helfrich-Förster, C. (1998). Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: A brain-behavioral study of disconnected mutants. J. Comp. Physiol. A 182, 435-453
  • Helfrich-Förster, C. (2003). The neuroarchitecture of the circadian clock in the Drosophila brain. Microsc. Res. Tech. In press.
  • Helfrich-Förster, C., Täuber, M., Park, J.H., Mühlig-Versen, M., Schneuwly, S., & Hofbauer, A. (2000). Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 20, 3339-3353
  • Hirsh, J. (2001). Time flies like an arrow. Fruit flies like crack? Pharmacogenomics J. 1, 97-100
  • Hobert, O,. Mori, I., Yamashita, Y., Honda, H., Ohshima, Y., Liu, Y., & Ruvkun, G. (1997). Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19, 345-357
  • Hodgetts, R.B. (1975). The response of dopa decarboxylase activity to variation in gene dosage: A possible location of the structural gene. Genetics 79, 45-54
  • Homyk, T. Jr., & Pye, Q. (1989). Some mutations affecting neural or muscular tissues alter the physiological components of the electroretinogram in Drosophila. J. Neurogenet. 5, 37-48
  • Homyk, T. Jr., Szidonya, J., & Suzuki, D.T. (1980). Behavioral mutants of Drosophila melanogaster. III. Isolation and mapping of mutations by direct visual observations of behavioral phenotypes. Molec. Gen. Genet. 177, 553-565
  • Hoppe, P.E., & Waterston, R.H. (2000). A region of the myosin rod important for inter action with paramyosin in Caenorhabditis elegans striated muscle. Genetics 156, 631-643
  • Hunter, C.P. (1999). Genetics: A touch of elegance with RNAi. Curr. Biol. 9, R440-R442
  • Ishimoto, H., Matsumoto, A., & Tanimura, T. (2000). Molecular identification of a taste receptor gene for trehalose in Drosophila. Science 289, 116-119
  • Ito, H., Fujitani, K., Usui, K., Shimizu-Nishikawa, K., Tanaka, S., & Yamamoto, D. (1996). Sexual orientation in Drosophila is altered by the satori mutation in the sex determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc. Natl. Acad. Sci. USA 93, 9687-9692
  • Iwasaki, K., Liu, W.C., & Thomas, J.H. (1995). Genes that control a temperature compensated ultradian clock in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92, 10317-10321
  • Iwasaki, K., & Thomas, J.H. (1997). Genetics in rhythm. Trends Genet. 13, 111-115
  • Jackson, F.R., & Newby, L.M. (1993). Products of the Drosophila miniature-dusky gene complex function in arcadian rhythmicity and wing development. Comp. Biochem. Physiol. 104A, 749-756
  • Jackson, F.R., Schroeder, A.J., Roberts, M.A., McNeil, G.P., Kume, K., & Akten, B. (2001). Cellular and molecular mechanisms of aircadian control in insects. J. Insect Physiol. 47, 833-842
  • Jacob, F. (1997). The operon after 25 years [title translated into a known language]. Comptes Rendus Acad. Sci. III. 320, 199-206
  • James, A.A., Ewer, J., Reddy, P., Hall, J.C., & Rosbash, M. (1986). Embryonic expression of the period clock gene in the central nervous system of Drosophila melanogaster. EMBO J. 5, 2313-2320
  • Jansen, G., Thijssen, K.L., Werner, P., van der Horst, M., Hazendonk, E., & Plasterk, R.H. (1999). The complete family of genes encoding G proteins of Caenorhabditis elegans. Nat. Genet. 21, 414-419
  • Jauch, E., Melzig, J., Brkulj. M., & Raabe, T. (2002). In vivo functional analysis of Dro sophila protein kinase CK2 ß subunit Gene 18, 29-39
  • Jeon, M., Gardner, H.F., Miller, E.A., Deshler, J., & Rougvie, A.E. (1999). Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286, 1141-1146
  • Johnson, C.H. (2001). Endogenous timekeepers in photosynthetic organisms. Ann. Rev. Physiol. 63, 695-728
  • Johnson, C.H., & Golden, S.S. (1999). Orcadian programs in cyanobacteria: Adaptiveness and mechanism. Ann. Rev. Microbiol. 53, 389-409
  • Johnson, E., Ringo, J., & Dowse, H. (1997). Modulation of Drosophila heartbeat by neurotransmitters. J. Comp. Physiol. B 167, 89-97
  • Johnson, E., Ringo, J., & Dowse, H. (2000). Native and heterologous neuropeptides are cardioactive in Drosophila melanogaster. J. Insect Physiol. 46, 1229-1236
  • Joiner, M.-l. A., & Griffith, L.C. (1997). CaM kinase II and visual input modulate memory formation in the neuronal circuit controlling courtship conditioning. J. Neurosci. 17, 9384-9391
  • Joiner M.-l. A., & Griffith L.C. (1999). Mapping of the anatomical circuit of CaM kinase dependent courtship conditioning in Drosophila. Learn. Mem. 6, 177-192
  • Joiner, M.-l. A., & Griffith, L.C. (2000). Visual input regulates circuit configuration in courtship conditioning of Drosophila melanogaster. Learn. Mem. 7, -42
  • Judd, B.H., & Young, M.W. (1973). An examination of the one cistron: One chromomere concept. Cold Spring Harbor Symp. Quant. Biol. 38, 573-579
  • Kaiser, K. (1990). From gene to phenotype in Drosophila and other organisms. BioEssays 12, 297-301
  • Kaiser, K., & Goodwin, S.F. (1990) "Site-selected" transposon mutagenesis of Drosophila. Proc. Natl. Acad. Sci. USA 87, 1686-1690
  • Kalidas, S., & Smith, D.P. (2002). Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33, 177-184
  • Kandel, E.R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science 294, 1030-1038
  • Kandel, E., & Abel, T. (1995). Neuropeptides, adenylyl cyclase, and memory storage. Sci ence 268, 825-826
  • Kaneko, M. (1998). Neural substrates of Drosophila rhythms revealed by mutants and molecular manipulations. Curr. Opin. Neurobiol. 8, 652-658
  • Kaneko, M., & Hall, J.C. (2000). Neuroanatomy of cells expressing clock genes in Droso phila: Transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol. 422, 66-94
  • Kaneko, M., Helfrich-Forster, C., & Hall, J.C. (1997). Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: Newly identified pacemaker candidates and novel features of clock gene product cycling. J. Neurosci. 17, 6745-6760
  • Kaneko, M., Park, J.H., Cheng, Y., Hardin, P.E., & Hall, J.C. (2000). Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms. J. Neurobiol. 43, 207-233
  • Kane, N.S., Robichon, A., Dickinson, J.A., & Greenspan, R.J. (1997). Learning without performance in PKC-deficient Drosophila. Neuron 18, 307-314
  • Kawasaki, F., Collins, S.C., & Ordway, R.W. (2002). Synaptic calcium channel function in Drosophila: Analysis and transformation rescue of temperature-sensitive and lethal mutations of cacophony. J. Neurosci. 22, 5856-5864
  • Kennerdell, J.R., & Carthew, R.W. (2000). Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 18, 896-898
  • Kerr, R., Lev-Ram, V., Baird, G., Vincent, P., Tsien, R.Y., & Schafer, W.R. (2000). Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583-594
  • Kida, S., Josselyn, S.A., de Ortiz, S.P., Kogan, J.H., Chevere, I., Masushige, S., & Silva, A.J. (2002). CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348-355
  • Kiger, J.A. Jr. (1977). The consequences of nullosomy for a chromosomal region affecting cyclic AMP phosphodiesterase activity in Drosophila. Genetics 85, 623-628
  • Kiger, J.A. Jr., & Golanty, E. (1977). A cytogenetic analysis of cyclic nucleotide phos phodiesterase activities in Drosophila. Genetics 85, 609-622
  • Kiger J.A. Jr., & Golanty, E. (1979). A genetically distinct form of cyclic AMP phosphodiesterase associated with chromomere 3D4 in Drosophila melanogaster. Genetics 91, 521-535
  • Kim, S.K. (1999). Developmental biology in the post-genome era: Worms and chips. Nat. Genet. 23, 13
  • King, D.P., Zhao, Y., Sangoram, A.M., Wilsbacher, L.D., Taaka, M., Antoch, M.P., Steeves, T.D.L., Vitaterna, M.H., Kornhauser, J.M., Lowrey, P.L., Turek, F.W., & Takahashi, J.S. (1997). Positional cloning of the mouse circadian Clock gene. Cell 89, 641-653
  • Kingsley, D.M., Rinchik, E.M., Russell, L.B., Ottiger, H.P., Sutcliffe, J.G., Copeland, N.G., & Jenkins, N.A. (1990). Genetic ablation of a mouse gene expressed specifically in brain. EMBO J. 9, 395-399
  • Kippert, F., Saunders, D.S., & Blaxter, M.L. (2002). Caenorhabditis elegans has a circadian clock. Curr Biol 12, R47-R49
  • Kiselev, A., Socolich, M., Vinos, J., Hardy, R.W., Zuker, C.S., & Ranganathan, R. (2000). A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neu ron 28, 139-152
  • Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81-92
  • Kitamoto, T., & Salvaterra, P.M. (1993). Developmental regulatory elements in the 5' flanking DNA of the Drosophila cholineacetyltransferase gene. Roux's Arch. Devel. Biol. 202, 159-169
  • Kitamoto, T., Ikeda, K., & Salvaterra, P.M. (1995). Regulation of Choline acetyl transferase/lacZ fusion gene expression in putative cholinergic neurons of Drosophila melanogaster. J. Neurobiol. 28, 70-81
  • Kloss, B., Price, J.L., Saez, L., Blau, J., Rothenflluh, A., & Young, M.W. (1998). The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Ie. Cell 94, 97-107
  • Kondo, T., & Ishiura, M. (1999). The circadian clocks of plants and cyanobacteria. Trends Plant Sei. 4, 171-176
  • Konopka, R.J., & Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112-2116
  • Konopka, R.J., Smith, R.F., & Orr, D. (1991). Characterization of Andante, a new Dro sophila clock mutant, and its interactions with other clock mutants. J. Neurogenet. 7, 103-114
  • Kraut, R., Menon, K., & Zinn, K. (2001). A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Curr. Biol. 11, 417-430
  • Krishnan, B., Dryer, S.E., & Hardin, P.E. (1999). Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375-378
  • Krishnan, B., Levine, J.D., Lynch, K.S., Dowse, H.B., Funes, P., Hall, J.C., Hardin, P.E., & Dryer, S.E. (2001). A novel role for cryptochrome in a Drosophila circadian oscillator. Nature 411, 313-317
  • Kuhara, A., Inada, H., Katsura, I., & Mori, I. (2002). Negative regulation and gain control of sensory neurons by the C. elegans Calcineurin TAX-Neuron 33, 751-763
  • Kulkarni, S.J., & Hall, J.C. (1987). Behavioral and cytogenetic analysis of the cacophony courtship song mutant and interacting genetic variants in Drosophila melanogaster. Genetics 115, 461-475
  • Kulkarni, S.J., Steinlauf, A.F., & Hall, J.C. 1988) The dissonance mutant of courtship song in Drosophila melanogaster. Isolation, behavior and cytogenetics. Genetics 118, 267-285
  • Kurada, P., & O'Tousa, J.E. (1995). Retinal degeneration caused by dominant rhodopsin mutations in Drosophila. Neuron 14, 571-579
  • Kutsukake, M., Kmatsu, A., Yamamoto, D., & Ishiwa-Chigusa, S. (2000). A tyramine receptor gene mutation causes a defective olfactory behavior in Drosophila melanogaster. Gene 245, 31-42
  • Kyriacou, C.P. (1994). Working round the clock with mouse 2. Trends Neurosci. 17, 313-314
  • Kyriacou, C.P., & Hall, J.C. (1980). Orcadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male's courtship song. Proc. Natl. Acad. Sci. USA 77, 6929-6933
  • Kyriacou, C.P., & Hall, J.C. (1986). Interspecific genetic control of courtship song pro duction and reception in Drosophila. Science 232, 494-497
  • Kyriacou, C.P., Oldroyd, M., Wood, J., Sharp, M., & Hill, M. (1990). Clock mutations alter developmental timing in Drosophila. Heredity 64, 395-401
  • Lakin-Thomas, P.L., & Brody, S. (1985). Orcadian rhythms in Neurospora crassa: Inter actions between clock mutations. Genetics 109, 49-66
  • Lam, G., & Thummel, C.S. (2000). Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 10, 957-963
  • Lee, G., Foss, M., Goodwin, S.F., Carlo, T., Taylor, B.J., & Hall, J.C. (2000). Spatial, temporal, and sexually dimorphic expression patterns of the fruitless gene in the Dro sophila CNS. J. Neurobiol. 43, 404-426
  • Lee, G., & Hall, J.C. (2001). Abnormalities of male-specific FRU protein and serotonin expression in the central nervous system of fruitless mutants in Drosophila. J. Neurosci. 21, 513-526
  • Lee, G., Villella, A., Taylor, B.J., & Hall, J.C. (2001). New reproductive anomalies in fruitless-mutant Drosophila males: Extreme lengthening of mating durations and infer tility correlated with defective serotonergic innervation of reproductive organs. J. Neurobiol. 47, 121-149
  • Lee, T., & Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461
  • Lessing, D., & Carlson, J.R. (1999). Chemosensory behavior: The path from stimulus to response. Curr. Opin. Neurobiol. 9, 766-771
  • L'Étoile, N.D., & Bargmann, C.I. (2000). Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-Neuron 25, 575-586
  • L'Étoile, N.D., Coburn, C.M., Eastham, J., Kistler, A., Gallegos, G., & Bargmann, C.I. (2002). The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron 36, 1079-1089
  • Levine, J.D., Casey, C.I., Kalderon, D.D., & Jackson, F.R. (1994). Altered circadian pacemaker functions and cyclic AMP rhythms in the Drosophila learning mtuant dunce. Neuron 13, 967-974
  • Lewis, E.B. (1995). The Bithorax Complex: The first fifty years. Les Prix Nobel 232-260
  • Lewis, J.A., Wu, C.H., Levine, J.H., & Berg, H. (1980). Levamisole-resistant mutants of the nematode C. elegans appear to lack pharmacological acetylcholine receptors. Neu roscience 5, 967-989
  • Li, H., Chaney, S., Roberts, I.J.H., Forte, M., & Hirsh, J. (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10, 211-214
  • Li, L. (2001). Zebrafish mutants: Behavioral genetic studies of visual system defects. Devel. Dynam. 221, 365-372
  • Lin, J.-M., Kilman, V., Keegan, K., Paddock, B., Emery-Le, M., Rosbash, M., & Allada, R. (2002a). A role for casein kinase 2a in the Drosophila circadian clock. Nature 420, 816-820
  • Lin, Y., Han, M., Shimada, B., Wang, L., Gibier, T.M., Amarone, A., Awad, T.A., Stormo, G.D., Van Gelder, R.N., & Taghert, P.H. (2002b). Influence of the period-dependent clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99, 9562-9567
  • Lineruth, K., Duncanson A., Kaiser K., & Davis, T. (1992). The isolation and char acterisation of P-element insertions into G protein genes. Biochem. Soc Trans 20, 261s.
  • Lints, R., & Emmons, S.W. (2002). Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM transcription factor family. Genes Devel. 16, 2390-2402
  • Littleton, J. T., Stern, M., Schulze, K., Perin, M., & Bellen, H.J. (1993). Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neuro transmitter release. Cell 74, 1125-1134
  • Liu, X., Lorenz, L., Yu, Q., Hall, J.C., & Rosbash, M. (1988). Spatial and temporal expression of the period gene in Drosophila melanogaster. Genes Devel. 2, 228-238
  • Liu, X., Yu, Q., Huang, Z., Zwiebel, L.J., Hall, J.C., & Rosbash, M. (1991). The strength and periodicity of D. melanogaster circadian rhythms are differentially affected by alterations in period gene expression. Neuron 6, 766
  • Lowrey, P.L., Shimomura, K., Antoch M.P., Yamazaki, S., Zemenides, P.D., Ralph, M.R., Menaker, M., & Takahashi, J.S. (2000). Positional syntenic cloning and function characterization of the mammalian circadian mutation tau. Science 288, 483-491
  • Lucacsovitch, T., & Yamamoto, D. (2002). Trap a gene and find its function: Toward functional genomics in Drosophila. J. Neurogenet. 15, 147-168
  • Lundquist, E.A., & Herman, R.K. (1994). The mec-8 gene of Caenorhabditis elegans affects muscle and sensory neuron function and interacts with three other genes: unc-52, smu-1 and smu-Genetics 138, 83-101
  • Luo, L., Tully, T., & White, K. (1992). Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for Appl gene. Neuron 9, 595-605
  • Majercak, J., Kalderon, D., & Edery, I. (1997). Drosophila melanogaster deficient in protein kinase a manifests behavior-specific arrhythmia but normal clock function. Molec. Cell. Biol. 17, 5915-5922
  • Mansuy, I.M., Winder, D.G., Moallem, T.M., Osman, M., Mayford, M., Hawkins, R.D., & Kandel, E.R. (1998). Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21, 257-265
  • Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., & Luo, L. (2002). Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243-255
  • Martin, J.-R., Keller, A., & Sweeney, S.T. (2002). Targeted expression of tetanus toxin: A new tool to stud the neurobiology of behavior. Adv. Genet. 47, 1-47
  • Martinek, S., Inonog, S., Manoukian, A., & Young, M.W. (2001). A role for the segment polarity gene shaggyGSK-3 in the Drosophila circadian clock. Cell 105, 769-779
  • Martinek, S., & Young, M.W. (2000). Specific genetic interference with behavioral rhythms in Drosophila by expression of inverted-repeats. Genetics 156, 1717-1725
  • Masai, I., & Hotta, Y. (1991). Genomic organization of a Drosophila phospholipase C, norpA, and molecular lesions in two temperature-sensitive mutants. J. Biochem. (Tokyo) 109, 867-871
  • Monastirioti, M. (1999). Biogenic amine systems in the fruit fly Drosophila melanogaster. Microsc. Res. Tech. 45, 106-121
  • Mayford, M., Mansuy, I.M., Muller, R.U., & Kandel, E.R. (1999) Memory and behavior: A second generation of genetically modified mice. Curr. Biol. 7, R580-R589
  • McBride, S.M.J., Giuliani, G., Choi, C., Krause, P., Correale, D., Watson, K., Baker, G., & Siwicki, K.K. (1999). Mushroom body ablation impairs short term memory and long term memory of courtship conditioning in Drosophila melanigaster. Neuron 24, 967-977
  • McClung, C., & Hirsh, J. (1999). The trace amine tyramine is essential for sensitization to cocaine in Drosophila. Curr. Biol. 9, 853-860
  • McDonald, M.J., & Rosbash, M. (2001). Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567-578
  • McGuire, S.E., Le, P.T., & Davis, R.L. (2001). The role of Drosophila mushroom body signaling in olfactory memory. Science 293, 1330-1333
  • Megighian, A., Zordan, M., & Costa, R. (2001). Giant neuron pathway neurophysiological activity in per0 mutants of Drosophila melanogaster. J. Neurogenet. 15, 221-231
  • Miklos, G.L.G., & Rubin, G.M. (1996). The role of the genome project in determining gene function: Insights from model organisms. Cell 86, 521-529
  • Miller, D.M., Niemeyer, C.J., & Chitkara, P. (1993). Dominant unc-37 mutations suppress the movement defect of a homeodomain mutation in unc-4, a neural specificity gene in Caenorhabditis elegans. Genetics 135, 741-753
  • Milligan, C.D., & Kaiser, K. (1993). 'Site-selected' mutagenesis of a Drosophila gene using the I factor retrotransposon. Nucleic Acids Res. 21, 1323-1324
  • Mismer, D., & Rubin, G.M. (1989). Definition of cis-acting elements regulating expression of the Drosophila melanogaster ninaE opsin gene by oligonucleotide-directed mutagen esis. Genetics 121, 77-87
  • Mismer, D., Mathew, W.M., Laverty, T.R., & Rubin, G.M. (1988). Analysis of the pro moter of the Rh2 opsin gene in Drosophila melanogaster. Genetics 120, 173-180
  • Moerman, D.G., Plurad, S., Waterston, R.H., & Baillie, D.L. (1982). Mutations in the unc 54 myosin heavy chain gene of C. elegans that alter contractility but not muscle struc ture. Cell 29, 773-781
  • Montell, C. (1999). Visual transduction in Drosophila. Ann. Rev. Cell Devel. Biol. 15, 231-268
  • Moore, M.S., DeZazzo, J., Luk, A.Y., Tully, T., Singh, C.M., & Heberlein, U. (1998). Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93, 997-1007
  • Moreau-Fauvarque, C., Taillebourg, E., Boissoneau, E., Mesnard, J., & Dura, J.-M. (1998). The receptor tyrosine kinase gene linotte is required for neuronal pathway selection in the Drosophila mushroom bodies. Mech. Devel. 78, 47-61
  • Moreau-Fauvarque, C., Taillebourg, E., Préat, T., & Dura, J.-M. (2003). Mutation of linotte causes behavioral defects independently of pigeon in Drosophila. Neuroreport 13, 2309-2312
  • Mon, I. (1999). Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Ann. Rev. Genet. 33, 399-422
  • Mutero, A., Bride, J.M., Pralavorio, M., & Fournier, D. (1994). Drosophila melanogaster acetylcholinesterase: Identification and expression of two mutations responsible for cold and heat-sensitive phenotypes. Molec. Gen. Genet. 243, 699-705
  • Nelson, L.S., Kim, K., Memmott, J.E., & Li, C. (1998). FMRFamide-related gene family in the nematode, Caenorhabditis elegans. Molec. Brain Res. 58, 103-111
  • Nelson, L.S., Rosoff, M.L., & Li, C. (1998). Disruption of a neuropeptide gene,fl;a-1, causes multiple behavioral defects in Caenorhabditis elegans. Science 281, 1686-1690
  • Newby, L.M., White, L., DiBartolomeis, S.M., Walker, B.J., Dowse, H.B., Ringo, J.M., Khuda, N., & Jackson, F.R. (1991). Mutational analysis of the Drosophila miniature dusky (m-dy) locus: Effects on cell size and circadian rhythms. Genetics 128, 571-582
  • Newby, L.M., & Jackson, F.R. (1993). A new biological rhythm mutant of Drosophila melanogaster that identifies a gene with an essential embryonic function. Genetics 135, 1077-1090
  • Newby, L.M., & Jackson, F.R. (1995). Developmental and genetic mosaic analysis of Drosophila m-dy mutants: Tissue foci for behavioral and morphogenetic defects. Devel. Genet. 16, 85-93
  • Nitabach, M.N., Blau, J., & Holmes, T.C. (2002). Electrical silencing of Drosophila pace maker neurons stops the free-running circadian clock. Cell 109, 485-495
  • Ogura, K.-i., Shirakawa, M., Barnes, T.M., Hekimi, S., & Ohshima, Y. (1997). The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-5 Genes Devel. 11, 1801-1811
  • Orr, D.P.-Y. (1982). Genetic analysis of the circadian clock system of Drosophila melano gaster. PhD thesis. California Institute of Technology, Pasadena, CA, US.
  • Osborne, K.A., Robichon, A., Burgess, E., Butland, S., Shaw, R.A., Coulthard, A., Pereira, H.S., Greenspan, R.J., & Sokolowski, M.B. (1997). Natural behavioral polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277, 834-836
  • Osterwalder, T., Yoon, K.S., White, B.H., & Keshishian, H. (2001). A conditional tissue specific transgene expression system using inducible GAL Proc. Natl. Acad. Sci. USA 98, 12596-12601
  • Paetkau, D.W., Elagin, V.A., Sendi, L.M., & Hyde. D.R. (1999). Isolation and character ization of Drosophila rentinal degeneration ß suppressors. Genetics 151, 713-724
  • Pak, W.L. (1991). Molecular genetic studies of photoreceptor function using Drosophila mutants. In G.L. Chader & D. Farber D (Eds.), The Molecular Biology of the Retina: Basic and Clinically Relevant Studies, (pp. 1-32). New York: Wiley-Liss.
  • Palladino, M.J., Keegan, L.P., O'Connell, M.A., & Reenan, R.A. (2000). A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integ rity. Cell 102, 437-449
  • Palazzolo, M.J., Hyde, D.R., VijayRaghavan, K., Mecklenburg, K., Benzer, S., & Meyerowitz, E. (1989). Use of a new strategy to isolate and characterize 436 Drosophila cDNA clones corresponding to RNAs detected in adult heads but not in early embryos. Neuron 3, 527-539
  • Park, E.-C., & Horvitz, H.R. (1986). C. elegans unc-105 mutations affect muscle and are suppressed by other mutations that affect muscle. Genetics 113, 853-867
  • Park, J.H. (2002). Downloading central clock information in Drosophila. Molec. Neurobiol. 26, 217-233
  • Park, J.H., & Hall, J.C. (1998). Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J. Biol. Rhythms 13, 219-228
  • Park, J.H., Helfrich-Forster, C., Lee, G., Liu, L., Rosbash, M., & Hall, J.C. (2000). Dif ferential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci USA 97, 3608-3613
  • Park, S.K., Shanbhag, S.R., Dubin, A.E., De Bruyne, M., Wang, Q., Yu, P., Shimoni, N., D'Mello, S., Carlson, J.R., Harris, G.L., Steinbrecht, R.A., & Pikielny C.W. (2002). Inactivation of olfactory sensilla of a single morphological type differentially affects the response of Drosophila to odors. J. Neurobiol. 51, 248-260
  • Pascual, A., & Préat, T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science 294, 1115-1117
  • Patil, N., Cox, D.R., Bhat, D., Faham, M., Myers, R.M., & Peterson, A.M. (1995). A potasium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet. 11, 126-130
  • Pearn, M.T., Randall, L.L., Shortridge, R.D., Burg, M.G., & Pak, W.L. (1996). Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants. J. Biol. Chem. 271, 4937-4945
  • Pereira, A., Doshen, J., Tanaka, E., & Goldstein, L.S.B. (1992). Genetic analysis of a Drosophila microtubule-associated protein. J. Cell Biol. 116, 377-383
  • Peixoto, A.A., & Hall, J.C. (1998). Analysis of temperature-sensitive mutants reveals new genes involved in courtship song of Drosophila. Genetics 148, 827-838
  • Pflugfelder, G.O., & Heisenberg, M. (1995). optomotor-blind of Drosophila melanogaster. A neurogenetic approach to optic lobe development and optomotor behavior. Comp. Biochem. Physiol. 110A, 185-202
  • Piccin, A., Salameh, A., Benna, C., Sandrelli, F., Mazzotta, G., Zordan, M., Rosato, E., Kyriacou, C.P., & Costa, R. (2001). Efficient and heritable functional knock-out of an adult phenotype in Drosophila using a GAL4-driven hairpin RNA incorporating a heterologous spacer. Nucleic Acids Res. 29, E55, 1-5
  • Pickard, G.E., Sollars, P.J., Rinchik, E.M., Nolan, P.M., & Bucan, M. (1995). Mutagenesis and behavioral screening for altered circadian activity identifies the mouse mutant, Wheels. Brain Res. 705, 255-266
  • Pierce-Shimomura, J.T., Faumont, S., Gaston, M.R., Pearson, B.J., & Lockery, S.R. (2001). The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694-698 [erratum: Nature 412, 566].
  • Pikielny, C.W., Hasan, G., Rouyer, F., & Rosbash, M. (1994). Members of a family of Drosophila putative odorant-binding-proteins are expressed in different subsets of olfactory hairs. Neuron 12, 39-45
  • Pittenger, C., Huang, Y.Y., Paletzki, R.F., Bourtchouladze, R., Scanlin, H., Vronskaya, S., & Kandel, E.R. (2002). reversible inhibition of CREB/ATF transcription factors in region CAl of the dorsal hippocampus disrupts hippocampus-dependent spatial mem ory. Neuron 34, 447-462
  • Plasterk, R.H.A. (1995). Reverse genetics: From gene sequence to mutant worm. In H.F. Epstein & D.C. Shakes (Eds.), Caenorhabditis elegans: Modern Biological Analysis of an Organism, pp. 59-80, San Diego, CA: Academic Press.
  • Plasterk, R.H.A., & van Luenen, H.G.A.M. (1997). Transposons. In D.L. Riddle DL, T. Blumenthal, B.J. Meyer, & J.R. Priess (Eds.), C. elegans II (pp. 97-116). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Plautz, J.D., Kaneko, M., Hall, J.C., & Kay, S.A. (1997). Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632-1635
  • Price, J.L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss, B., & Young, M.W. (1998). double-time is a new Drosophila clock gene that regulates PERIOD protein accumula tion. Cell 94, 83-95
  • Qiu, Y., & Davis, R.L. (1993). Genetic dissection of the learning/memory gene dunce of Drosophila melanogaster. Genes Devel. 7, 1447-1458
  • Quinn, W.G., Sziber, P.P., & Booker, R. (1979). The Drosophila memory mutant amnesiac. Nature 277, 212-214
  • Radovic, A., Wittkopp, P.J., Long, A.D., & Drapeau, M.D. (2002). Immunohistochemical colocalization of Yellow and male-specific Fruitless in Drosophila melanogaster neuro blasts. Biochem. Biophys. Res. Commun. 293, 1262-1264
  • Ralph, M.R., & Menaker, M. (1988). A mutation of the circadian system in golden ham sters. Science 241, 1225-1227
  • Reiner, D.J., Newton, E.M., Tian, H., & Thomas, J.H. (1999). Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM kinase II. Nature 402, 199-203
  • Reinke, R., Krantz, D., Yen, D., & Zipursky, S.L. (1988). Chaoptin, a cell surface glyco protein required for Drosophila photoreceptor cell morhogenesis, contains a repeat motif found in yeast and human. Cell 52, 291-301
  • Rendahl, K.G., & Hall, J.C. (1996). Temporally manipulated rescue of visual and courtship abnormalities caused by a nonA mutation in Drosophila. J. Neurogenet. 10, 247-256
  • Rendahl, K.G., Jones, K.R., Kulkarni, S.J., Bagully, S.H., & Hall, J.C. (1992). The dis sonance mutation at the no-on-transient-A locus of D. melanogaster. genetic control of courtship song and visual behaviors by a protein with putative RNA-binding motifs. J. Neurosci. 12, 390-407
  • Renger, J.J., Ueda, A., Atwood, H.L., Govind, C.K., & Wu, C.-F. (2000). Role of cAMP cascade in synaptic stability and plasticity: Ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. J. Neurosci. 20, 3980-3992
  • Renn, S.C.P., Park, J.H., Rosbash, M., Hall, J.C., & Taghert, P.H. (1999). A pdf neuro peptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791-802
  • Riddle, D.L., & Brenner, S. (1978). Indirect suppression in C. elegans. Genetics 89, 299-314
  • Ricker, J.P., & Hirsch, J. (1988). Genetic changes occurring over 500 generations in lines of Drosophila melanogaster selected divergently for geotaxis. Behav. Genet. 18, 13-25
  • Riesgo-Escovar, J., Raha, D., & Carlson, J.R. (1995). Requirement for a phospholipase C in odor response: Overlap between olfaction and vision in Drosophila. Proc. Natl. Acad. Sci. USA 92, 2664-2668
  • Robatzek, M., & Thomas, J.H. (2000). Calcium/calmodulin-dependent protein kinase II regulates Caenorhabditis elegans locomotion in concert with G(o)/G(q) signaling network. Genetics 156, 1069-1082
  • Rogge, R.D., & Banerjee, U. (1990). Neural pattern formation in the Drosophila eye. Adv. Neural Regen. Res. (pp. 309-323). New York: Wiley-Liss.
  • Roman, G., & Davis, R.L. (2001). Molecular biology and anatomy of Drosophila olfactory associative learning. BioEssays 23, 571-581
  • Roman, G., Endo, K., Zong, L., & Davis, R.L. (2001). P{Switch}, a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 12602-12607
  • Rong, Y.S., & Golic, K.G. (2000). Gene targeting by homologous recombination in Dro sophila. Science 28, 2013-2018
  • Rong, Y.S., & Golic, K.G. (2001). A targeted gene knockout in Drosophila. Genetics 157, 1307-1312
  • Rong, Y.S., Titen, S.W., Xie, H.B., Golic, M.M., Bastiani, M., Bandyopadhyay, P., Olivera, B.M., Brodsky, M., Rubin, G.M., & Golic, K.G. (2002). Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Devel. 16, 1568-1581
  • Rørth, P. (1996). A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12418-12422
  • Rosato, E., & Kyriacou, C.P. (2001). Flies, clocks and evolution. Phil. Trans. Roy. Soc. Lond. B 356, 1769-1778
  • Rosay, P., Armstrong, J.D., Wang, Z., & Kaiser, K. (2001). Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron 30, 759-770
  • Rothenfluh, A., Abodeely, M., & Young M.W. (2000). Short-period mutations of per affect a double-time-dependent step in the Drosophila circadian clock. Curr. Biol. 10, 1399-1402
  • Rouyer, F., Rachidi, M., Pikielny, C., & Rosbash, M. (1997). A new gene encoding a putative transcription factor regulated by the Drosophila circadian clock. EMBO J. 16, 3944-3954
  • Rubin, G.M., & Lewis, E.B. (2000). A brief history of Drosophila's contributions to genome research. Science 287, 2216-2218
  • Run, J.Q., Steven, R., Hung, M.S., Vanweeghel, R., Culotti, J.G., & Way, J.C. (1996). Suppressors of the unc-73 gene of Caenorhabditis elegans. Genetics 143, 225-236
  • Rushforth, A.M., Saari, B., & Anderson, P. (1993). Site-selected insertion of the transposon Tcl into Caenorhabditis elegans myosin light chain gene. Molec. Cell. Biol. 13, 902-910
  • Rutila, J.E, Suri, V., Le, M., So, W.V., Rosbash, M., & Hall, J.C. (1998). CYCLE is a second bHLH-PAS clock protein essential for cireadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805-814
  • Rutila, J.E., Zeng, H., Le, M., Curtin, K.D., Hall, J.C., Rosbash, M. (1996). The timSL mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants. Neuron 17, 921-929
  • Ryner, L.C., Goodwin, S.F., Castrillon, D.H., Anand, A., Villella, A., Baker, B.S., Hall, J.C., Taylor, B.J., & Wasserman, S.A. (1996). Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079-1089
  • Sagasti, A., Hisamoto, N., Hyodo, J., Tanaka-Hino, M., Matsumoto, K., & Bargmann, C.I. (2001). The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 105, 221-232
  • Sagasti, A., Hobert, O., Troemel, E.R., Ruvkun, G., & Bargmann, C.I. (1999). Alternative olfactory neuron fates are specified by the LIM homeobox gene lim-Genes Devel. 13, 1794-1806
  • Saigusa, T., Ishizaki, S., Watabiki, S., Ishii, N., Tanakadate, A., Tamai, Y., & Hasegawa, K. (2002). Oreadian behavioural rhythm in Caenorhabditis elegans. Curr. Biol. 12, R46-R47
  • Sarov-Blat, L., So W.V., Liu, L., & Rosbash. M. (2000). The Drosophila takeout gene is a novel link between cireadian rhythms and feeding behavior. Cell 101, 647-656
  • Satterlee, J.S., Sasakura, H., Kuhara, A., Berkeley, M., Mori, I., & Sengupta, P. (2001). Specification of thermosensory neuron fate in C elegans requires ttx-1, a homolog of orthodenticle/Otx. Neuron 31, 943-956
  • Sauman, I., & Reppert, S.M. (1996). Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanism of Period protein regulation. Neuron 17, 889-900
  • Sawin, E.R., Ranganathan, R., & Horvitz, H.R. (2000). C. elegans locomotor rate is modulated by the environment therough a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619-631
  • Schilcher, F.v. (1977). A mutation which changes courtship song in Drosophila melano gaster. Behav. Genet. 7, 251-259
  • Sedensky, M.M., & Meneely, P.M. (1987). Genetic analysis of halothane sensitivity in Caenorhabditis elegans. Science 236, 952-954
  • Segalat, L., Perichon, R., Bouly, J.-P., & Lepesant, J.A. (1992). The Drosophila pourquoi pas?./wings-down zinc finger protein: Oocyte nucleus localization and embryonic requirement. Genes Devel. 6, 1019-1029
  • Sehgal, A., Rothenfluh-Hilfiker, A., Hunter-Ensor, M., Chen, Y., Myers, M.P., & Young, M.W. (1995). Rhythmic expression of timeless: A basis for promoting circadian cycles in period gene autoregulation. Science 270, 808-810
  • Sengupta, P., Chou, J.H, & Bargmann, C.I. (1996). odr-10 encoces a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899-909
  • Sengupta, P., Colbert, H.A., & Bargmann, C.I. (1994). The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 79, 971-980
  • Sentry, J.W., Goodwin, S.F., Milligan, C.D., Duncanson, A., Yang, M., & Kaiser, K. (1994). Reverse genetics of Drosophila brain structure and function. Prog. Neurobiol. 42, 299-308
  • Shafer, W.R. (2002). PKG and the natural basis for behavioral phenotypes. Neuron 36, 991-993
  • Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834-1837
  • Shreffler, W., Margardino, T., Shekdar, K., & Wolinsky, E. (1995). The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons. Genetics 139, 1261-1272
  • Shreffler, W., & Wolinsky, E. (1997). Genes controlling ion permeability in both motor neurons and muscle. Behav. Genet. 27, 211-221
  • Siddiqi, O. (1987). Neurogenetics of olfaction in Drosophila melanogaster. Trends Genet. 3, 137-142
  • Simmer, F., Tijsterman, M., Parrish, S., Koushika, S., Nonet, M., Fire, A., Ahringer, J., & Plasterk, R. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317
  • Siwicki, K.K., Eastman, C., Petersen, G., Rosbash, M., & Hall, J.C. (1988). Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythm changes in the visual system. Neuron 1, 141-150
  • Simon, A.F., Boquet, I., Synguélakis, M., & Préat, T. (1998). The Drosophila putative kinase Linotte (Derailed) prevents central brain axons from converging on a newly described interhemispheric ring. Mech. Devel. 76, 45-55
  • Smith, D.P. (2001). Drosophila gustation: A question of taste. Neuron 29, 551-554
  • Smith, L.A., Peixoto, A.A., Hall, J.C. (1998a). RNA editing in the Drosophila DmcalA calcium-channel al subunit transcript J. Neurogenet 12, 227-240
  • Smith, L.A., Peixoto, A.A., Kramer, E.W., Villella, A., & Hall. J.C. (1998b). Courtship and visual defects of cacophony mutants reveal functional complexity of a calcium-channel a subunit in Drosophila. Genetics 149, 1407-1426
  • Smith, L.A., Wang, X., Peixoto, A.A., Neumann, E.K., Hall, L.M., & Hall, J.C. (1996). A Drosophila calcium-channel al subunit gene maps to a genetic locus associated with beha vioral and neural defects. J. Neurosci. 16, 7868-7879
  • Smith, R.F., & Konopka, R.J. (1981). Circadian clock phenotypes of chromosome aber rations with a breakpoint at the per locus. Molec. Gen. Genet. 183, 243-251
  • Smith, R.F., & Konopka, R.J. (1982). Effects of dosage alterations at the per locus on the circadian clock of Drosophila. Molec. Gen. Genet. 185, 30-36
  • Sokolowski, M.B. (1998). Genes for normal behavioral variation: Recent clues from flies and worms. Neuron 21, 14
  • Sokolowski, M.B. (2001). Drosophila: Genetics meets behaviour. Nat. Rev. Genet. 2, 879-890
  • Sokolowski, M.B. (2002). Neurobiology: Social eating for stress. Nature 419, 893-894
  • Somers, D.E. (1999). The physiology and molecular bases of the plant circadian clock. Plant Physiol. 121, 9-19
  • Spradling, A.C., Stern, D., Beaton, A., Rhem, E.J., Laverty, T., Mozden, N., Misra, S., & Rubin, G.M. (1999). The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135-177
  • Staiger, D. (2002). Circadian rhythms in Arabidopsis: Time for nuclear proteins. Planta 214, 334-344
  • Stanewsky, R. (2003). Genetic analysis of the circadian system in Drosophila melanogaster and mammals. J. Neurobiol. 54, 111-147
  • Stanewsky, R., Frisch, B., Brandes, C., Hamblen-Coyle, M.J., Rosbash, M., & Hall, J.C. (1997). Temporal and spatial expression patterns of transgenes containing increasing amounts of the Drosophila clock gene period and a lacZ reporter: Mapping elements of the PER protein involved in circadian cycling. J. Neurosci. 17, 676-696
  • Stanewsky, R., Kaneko, M., Emery, P., Beretta, B., Wager-Smith, K., Kay, S.A., Rosbash, M., & Hall, J.C. (1998). The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681-692
  • Stebbins, M.J., Urlinger, S., Byrne, G., Bello, B., Hillen, W., & Yin, J.C.P. (2001). Tetra cycline-inducible systems for Drosophila. Proc. Natl. Acad. Sci. USA 98, 10775-10780
  • Stempfl, T., Vogel, M., Szabo, G., Wülbeck, C., Liu, J., Hall, J.C., & Stanewsky, R. (2002). Identification of circadian-clock regulated enhancers and genes of Drosophila melano gaster by transposon mobilization and luciferase reporting of cyclical gene expression. Genetics 160, 571-593
  • Stent, G.S. (1981). Strength and weakness of the genetic approach to the development of the nervous system. Ann. Rev. Neurobiol. 4, 163-194
  • Stent, G.S. (1969). The Coming of the Golden Age: A View of the End of Progress. Garden City, NY: The Natural History Press.
  • Störtkuhl, K.F., Hovemann, B.T., & Carlson, J.R. (1999). Olfactory adaptation depends on the Tip Ca2+ channel in Drosophila. J. Neurosci. 19, 4839-4846
  • Suri, V., Hall, J.C, & Rosbash, M. (2000). Two novel doubletime mutants alter circadian properties and eliminate the delay between RNA and protein in Drosophila. J. Neurosci. 20, 7547-7555
  • Taghert, P.H. (2001). How does the circadian clock send timing information to the brain?. Semin. Cell Devel. Biol. 12, 329-341
  • Taghert, P.H., & Veenstra, J.A. (2002). Drosophila neuropeptide signaling. Adv. Genet. 49, 1-65
  • Tajima, Y., & Salvaterra, P.M. (1990). Sequence of choline acetyltransferase temperature sensitive mutants determined by the polymerase chain reaction. Neuroscience 39, 245-250
  • Taillebourg, E., & Dura, J.-M. (1999). A novel mechanism for P element homing in Dro sophila Proc. Natl. Acad. Sci. USA 96, 6856-6861
  • Tam, T., Mathews, E., Snutch, T.P., & Schafer, W.R. (2000). Voltage-gated calcium channels direct neuronal migration in Caenorhabditis elegans. Devel. Biol. 226,104-117
  • Tax, F.E., Thomas, J.H., Ferguson, EX., & Horvitz, H.R. (1997). Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. Genetics 147, 1675-1695
  • Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A., & Driscoll, M. (2000). Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat. Genet. 24, 180-183
  • Tempel, B.L., Livingstone, M.S., & Quinn, W.G. (1984). Mutations in the dopa dec arboxylase gene affect learning in Drosophila. Proc. Natl. Acad. Sci. USA 81, 3577-3581
  • Timmons, L., Court, D.L., & Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103-112
  • Timmons, L., & Fire, A. (1998). Specific interference by ingested dsRNA. Nature 395, 854
  • Toma D.P., White, K.P., Hirsch, J., & Greenspan, R.J. (2002). Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat. Genet. 31, 349-353
  • Tomlinson, A., & Ready, D.F. (1986). sevenless, a cell specific homeotic mutation of the Drosophila eye. Science 231, 400-402
  • Tracey, W.D., Rachel, I., Wilson, R.I., Laurent, G., & Benzer, S. (2003). painless, a Dro sophila gene essential for nociception. Cell 113, 261-273
  • Troemel, E.R. (1999). Chemosensory signaling in C. elegans. BioEssays 21, 1011-1020
  • Troemel, E.R., Chou, J.H., Dwyer, N.D., Colbert, H.A., & Bargmann, C.I. (1995). Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83, 207-218
  • Troemel, E.R., Sagasti, A., & Bargmann, C.I. (1999). Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. ele gans. Cell 99, 387-398
  • Tully, T. (1994). Gene disruption of learning and memory: A structure-function conundrum. Semin. Neurosci. 6, 59-66
  • Tully, T., Préat, T., Boynton, S.C., & DelVecchio, M. (1994). Genetic dissection of con solidated memory in Drosophila melanogaster. Cell 79, 35-47
  • Tunnicliff, Trick, J.T., & Connolly, K. (1969). Locomotor activity in Drosophila--V. A comparative biochemical study of selectively bred populations. Comp. Biochem. Physiol. 29, 1239-1245
  • Ueda, H.R., Matsumoto, A., Kawamura, M., lino, M., Tanimura, T., & Hashimoto, S. (2002). Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J. Biol. Chem. 277, 14048-14052
  • Ueda, R. (2002). RNAi: A new technology in the post-genomic sequencing era. J. Neuro genet. 15, 193-204
  • Umemiya, T., Takasu, E., Takeichi, M., Aigaki, T., & Nose, A. (2002). Forked end: A novel transmembrane protein involved in neuromuscular specificity in Drosophila identified by gain-of-function screening. J. Neurobiol. 51, 205-214
  • Usui-Aoki, K., Ito, H., Ui-Yei, K., Takahashi, J., Lucacsovitch, T., Awano, W., Nakata, H., Piao, X.F., Nillson, E.E., Tomida, J.-j., & Yamamoto, D. (2000). Formation of the male-specific muscle in female Drosophila by ectopic fruitless expression. Nat. Cell Biol. 2, 500-506
  • Van Vactor, D. Jr., Krantz, D.E., Reinker, R., & Zipursky, S.L. (1988). Analysis of mutants in chaoptin, a photoreceptor cell-specific glyocoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell 52, 281-290
  • Vaz Gomes, A., & Wahlestedt, C. (2000). Altered behaviour following RNA interference knockdown of a C. elegans G-protein coupled receptor by ingested double stranded RNA. Eur. J. Pharmacol. 397, R3-R5
  • Villella, A., Gailey, D.A., Berwald, B., Ohshima, S., Barnes, P.T., & Hall, J.C. (1997). Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics 147, 1107-1130
  • Vitaterna, M.H., King, D.P., Chang, A.M., Kornhauser, J.M., Lowrey, P.L., McDonald, J.D., Dove, W.F., Pinto, L.H., Turek, F.W., & Takahashi, J.S. (1994). Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719-725
  • Vosshall, L.B. (2000). Olfaction in Drosophila. Curr. Opin. Neurobiol. 10, 498-503
  • Vosshall, L.B. (2001). The molecular logic of olfaction in Drosophila. Chem. Senses 26, 207-213
  • Vosshall, L.B., & Young, M.W. (1995). Circadian rhythms in Drosophila can be driven by period expression in a restricted group of central brain cells. Neuron 15, 345-360
  • Waddell, S., Armstrong, J.D., Kitamoto, T., Kaiser, K., & Quinn, W.G. (2000). The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103, 805-813
  • Walhout, A.J.M., Sordella, R., Lu, X., Hartley, J.L., Temple, G.F., Brasch, M.A, Thierry Mieg, N., & Vidal, M. (2000). Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116-122
  • Waggoner, L.E., Hardaker, L.A., Golik, S., & Schafer, W.R. (2000). Effect of a neuro peptide gene on behavioral states in Caenorhabditis elegans egg-laying. Genetics 154, 1181-1192
  • Waggoner, L.E., Zhou, G.T., Schafer, R.W., & Schafer, W.R. (1998). Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron 21, 203-214
  • Walker, R.G., Willingham, A.T., & Zuker, C.S. (2000). A Drosophila mechanosensory transduction channel. Science 287, 2229-2234
  • Waterston, R.H., Moerman, D.G., Baillie, D.L., & Lane, T.R. (1982). Mutations affecting myosin heavy chain accumulation and function in the nematode C. elegans. In D.M. Schotland (Ed.), Disorders of the Motor Unit, pp. 747-760, New York: John Wiley & Sons.
  • Watson, D.G., Zhou, P., Midgley, J.M., Milligan, C.D., & Kaiser, K. (1993). The deter mination of biogenic amines in four strains of the fruit fly Drosophila melanogaster. J. Pharm. Biomed. Anal. 11, 1145-1149
  • Weaver, D.R. (1998). The suprchiasmatic nucleus: A 25-year retrospective. J. Biol. Rhythms 13, 100-112
  • Weiner, J. (1999). Konopka' Law, Part Two of Time. Love. Memory. New York: Alfred A. Knopf, pp. 71-141
  • Wen, C., Levitan, D., Li, X., & Greenwald, I. (2000). spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditis elegans, is a member of the SET protein subfamily. Proc. Natl. Acad. Sci. USA 97, 14524-14529
  • Wes, P.D., & Bargmann, C.I. (2001). C.elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410, 698-701
  • Wheeler, D.A., Kulkarni, S.J., Gailey, D.A., & Hall, J.C. (1989). Spectral analysis of courtship songs in behavioral mutants of Drosophila melanogaster. Behav. Genet. 19, 503-528
  • Wheeler, D.A., Kyriacou, C.P., Greenacre, M.L., Yu, Q., Rutila, J.E., Rosbash, M., & Hall, J.C. (1991). Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science 251, 1082-1085
  • Williams, D.W., Tyrer, M., & Shepherd, D. (2000). Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J. Comp. Neurol. 428, 630-640
  • Williams, J.A., & Sehgal, A. (2001). Molecular components of the circadian system in Drosophila. Ann. Rev. Physiol. 63, 729-755
  • Wilson, R.K., (1999). C. elegans Genome Consortium. How the worm was won-the C. elegans genome sequencing project. Trends Genet. 15, 51-58
  • Wong, A.M., Wang, J.W., & Axel, R. (2002). Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229-241
  • Woodard, C., Alcorta, E., & Carlson, J. (1991). The rdgB gene of Drosophila: A link between vision and olfaction. J. Neurogenet. 8, 17-31
  • Wright, T.R.F., Steward, R., Bentley, K.W., & Adler, P.N. (1981). The genetics of dopa decarboxylase in Drosophila melanogaster. Devel. Genet. 2, 223-235
  • Wu, C.-F., Renger, J.J., & Engel, J.E. (1998). Activity-dependent functional and develop mental plasticity of Drosophila neurons. Adv. Insect Physiol. 27, 386-440
  • Xu, A., Park, S.-K., D'Mello, S., Kim, E., Wang, Q., & Pikielny, C.W. (2002). Novel genes expressed in subsets of chemosensory sensilla on the front legs of male Drosophila melanogaster. Cell. Tiss. Res. 307, 381-392
  • Yang, D., Lu, H., & Erickson, J.W. (2000). Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr. Biol. 10, 1191-1200
  • Yin, J.C.P., Del Vecchio, M., Zhou, H., & Tully, T. (1995). CREB as a memory modulator: Induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81, 107-115
  • Yin, J.C.P., & Tully, T. (1996). CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 6, 264-268
  • Yin, J.C.P., Wallach, J.S., Del Vecchio, M., Wilder, E.L., Zhou, H., Quinn, W.G., & Tully, T. (1994). Induction of a dominant-negative CREB transgene specifically blocks long term memory in Drosophila. Cell 79, 49-58
  • Young, M.W. (1998). The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Ann. Rev. Biochem. 67, 135-152
  • Young, M.W. (2000). Life's 24-hour clock: Molecular control of circadian rhythms in animal cells. Trends Biochem. Sci. 25, 601-606
  • Young, M.W., & Judd, B.H. (1978). Nonessential sequences, genes, and the polytene chromosome bands of Drosophila melanogaster. Genetics 88, 723-742
  • Young, M.W., & Kay, S.A. (2001). Time zones: A comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702-715
  • Yoon, J., Ben-Ami, H.C., Hong, Y.S., Park, S., Strong, L.L., Bowman, J., Geng, C., Baek, K., Minke, B., & Pak, W.L. (2000). Novel mechanism of massive photoreceptor degeneration caused by mutations in the trp gene of Drosophila. J. Neurosci. 20, 649-659
  • Yu, Q., Jacquier, A.C., Citri, Y., Hamblen, M., Hall, J.C., & Rosbash, M. (1987). Molecular mapping of point mutations in the period gene that stop or speed up biological clocks in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 84, 784-788
  • Yu, S., Avery, L., Baude, E., & Garbers, D.L. (1997). Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors. Proc. Natl. Acad. Sci. USA 94, 3384-3387
  • Zehring, W.A., Wheeler, D.A., Reddy, P., Konopka, R.J., Kyriacou, C.P., Rosbash, M., & Hall, J.C. (1984). P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 39, 369-376
  • Zeng, H., Qian, Z., Myers, M.P., & Rosbash, M. (1996). A light-entrainment mechanism for the Drosophila circadian clock. Nature 380, 129-135
  • Zerr, D.M., Hall, J.C., Rosbash, M., & Siwicki, K.K. (1990). Circadian fluctuations of period protein immunoreactivity in the CNS and the visual system of Drosophila. J. Neurosci. 10, 2749-2762
  • Zhang, Y., Ma, C., Delohery, T., Nasipak, B., Foat, B.C., Bounoutas, A., Bussemaker, H.J., Kim, S.K., & Chalfie, M. (2002). Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331-335
  • Zheng, Y., Brockie, P.J., Mellem, J.E., Madsen, D.M., & Maricq, A.V. (1999). Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron 24, 347-361
  • Zhong, Y. (1996). Genetic dissection of signal transduction mechanisms underlying OACAP-like neuropeptide tranmission in Drosophila: Synergy of cAMP and RAS/Raf pathways. Ann. NY Acad. Sci. 805, 67-79
  • Zhong, Y., Budnik, V., & Wu, C.-F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade. J. Neurosci. 12, 644-651
  • Zhu, L., McKay, R.R., & Shortridge, R.D. (1993). Tissue-specific expression of phospho lipase C encoded by the norpA gene of Drosophila melanogaster. J. Biol. Chem. 268, 15994-16001
  • Zilian, O., Frei, E., Burke, R., Brentrup, D., Gutjahr, T., Bryant, P.J., & Noll, M. (1999). double-time is identical to discs overgrown, which is required for cell survival, pro liferation and growth arrest in Drosophila imaginal discs. Development 126, 5409-5420
  • Zinsmaier, K.E., Eberle, K.K., Buchner, E., Walter, N., & Benzer, S. (1994). Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263, 977-980
  • Zipursky, S.L., Venkatesh, T.R., Teplow, D.B., & Benzer, S. (1984). Neuronal development in the Drosophila retina: Monoclonal antibodies as molecular probes. Cell 36, 15-26
  • Zwaal, R.R., Broeks, A., van Meurs, J., Groenen, J.T.M., & Plasterk, R.H.A. (1993). Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. Natl. Acad. Sci USA 90, 7431-7435
  • Zwaal, R.R., Van Baelen, K., Groenen, J.T.M., Van Geel, A., Rottiers, V., Kaletta, T., Dode, L., Raeymaekers, L., Wuytack, F., & Bogaert, T. (2001). The sarco-endoplasmic reticulum Ca2+ ATPase is required for development and muscle function in Cae norhabditis elegans. J. Biol. Chem. 276, 43557-43563

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.