806
Views
73
CrossRef citations to date
0
Altmetric
Original

The Alarm Response in Zebrafish: Innate Fear in a Vertebrate Genetic Model

&
Pages 211-228 | Received 20 May 2008, Published online: 11 Jul 2009

References

  • Adolphs R., Tranel D., Damasio H., Damasio A. R. Fear and the human amygdala. J Neurosci 1995; 15(9)5879–5891
  • Airan R. D., Hu E. S., Vijaykumar R., Roy M., Meltzer L. A., Deisseroth K. Integration of light-controlled neuronal firing and fast circuit imaging. Curr Opin Neurobiol 2007; 17(5)587–592
  • Asakawa K., Suster M. L., Mizusawa K., Nagayoshi S., Kotani T., Urasaki A., et al. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A 2008; 105(4)1255–1260
  • Bourin M., Petit-Demoulière B., Dhonnchadha B. N., Hascöet M. Animal models of anxiety in mice. Fund Clin Pharmacol 2007; 21(6)567–574
  • Boyden E. S., Zhang F., Bamberg E., Nagel G., Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005; 8(9)1263–1268
  • Breiter H. C., Etcoff N. L., Whalen P. J., Kennedy W. A., Rauch S. L., Buckner R. L., et al. Response and habituation of the human amygdala during visual processing of facial expression. Neuron 1996; 17(5)875–887
  • Brown G., Adrain J. C. J., Smyth E., Leet H., Brennan S. Ostariophysan alarm pheromones: laboratory and field tests of the functional significance of nitrogen oxides. J Chem Ecol 2000; 26: 139–154
  • Brown G. E., Smith R. J. F. Foraging trade-offs in fathead minnows (Pimephales promelas, Osteichthyes, Cyprinidae): acquired predator recognition in the absence of an alarm response. Ethology 1996; 102: 776–785
  • Buhusi C. V., Meck W. H. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 2005; 6(10)755–765
  • Burgess H. A., Granato M. Sensorimotor gating in larval zebrafish. J Neurosci 2007; 27(18)4984–4994
  • Chamero P., Marton T. F., Logan D. W., Flanagan K., Cruz J. R., Saghatelian A., et al. Identification of protein pheromones that promote aggressive behaviour. Nature 2007; 450(7171)899–902
  • Chivers D. P., Wisenden B. D., Hindman C. J., Michalak T. A., Kusch R. C., Kaminskyj S. G., et al. Epidermal “alarm substance” cells of fishes maintained by nonalarm functions: possible defence against pathogens, parasites, and UVB radiation. Proc Biol Sci 2007; 274(1625)2611–2619
  • Crawley J. N. Behavioral phenotyping strategies for mutant mice. Neuron 2008; 57(6)809–818
  • Curado S., Anderson R. M., Jungblut B., Mumm J., Schroeter E., Stainier D. Y. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 2007; 236(4)1025–1035
  • Davison J. M., Akitake C. M., Goll M. G., Rhee J. M., Gosse N., Baier H., et al. Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 2007; 304(2)811–824
  • Drew M., Zupan B., Cooke A., Couvillon P., Balsam P. Temporal Control of Conditioned Responding in Goldfish. J Exp Psychol Animal Behav Proc 2005; 31(1)31–39
  • Emelyanov, A., & Parinov, S. (2008). Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish. Dev. Biol., in press. DOI: 10.1016/j.ydbio.2008.04.042.
  • Feng B., Bulchand S., Yaksi E., Friedrich R. W., Jesuthasan S. The recombination activation gene 1 (Rag1) is expressed in a subset of zebrafish olfactory neurons but is not essential for axon targeting or amino acid detection. BMC Neurosci 2005; 6: 46
  • Fink S. V., Fink W. L. Interrelationships of Ostariophysan fishes (teleostei). Interrelationships of Fishes, M. L. J. Stiassny, L. R. Parenti, G. D. Johnson. Elsevier. 1996; 202–249
  • Fleisch V. C., Neuhauss S. C. Visual behavior in zebrafish. Zebrafish 2006; 3(2)191–201
  • Friedrich R. W., Korsching S. I. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 1997; 18(5)737–752
  • Friedrich R. W., Korsching S. I. Chemotopic, combinatorial, and noncombinatorial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer. J Neurosci 1998; 18(23)9977–9988
  • Fuller C. L., Yettaw H. K., Byrd C. A. Mitral cells in the olfactory bulb of adult zebrafish (Danio rerio): morphology and distribution. J Comp Neurol 2006; 499(2)218–230
  • Gandolfi G. Selection for high and low reactivity to alarm substance in the zebra fish, Brachydanio rerio. Atti Soc Ital Sci Nat Mus Civ Stor Nat Milano 1972; 113: 28–36
  • Hamdani E. H., Døving K. B. The alarm reaction in crucian carp is mediated by olfactory neurons with long dendrites. Chem Senses 2002; 27(4)395–398
  • Hamdani E. H., Døving K. B. Sensitivity and selectivity of neurons in the medial region of the olfactory bulb to skin extract from conspecifics in crucian carp, Carassius carassius. Chem Senses 2003; 28(3)181–189
  • Hamdani E. H., Stabell O. B., Alexander G., Doving K. B. Alarm reaction in the crucian carp is mediated by the medial bundle of the medial olfactory tract. Chem Senses 2000; 25: 103–109
  • Hansen A., Anderson K. T., Finger T. E. Differential distribution of olfactory receptor neurons in goldfish: structural and molecular correlates. J Comp Neurol 2004; 477(4)347–359
  • Hua J. Y., Smear M. C., Baier H., Smith S. J. Regulation of axon growth in vivo by activity-based competition. Nature 2005; 434(7036)1022–1026
  • Hüttel R., Sprengling C. On Icthyopterin, a fluorescent blue material in fish skin. Justus Liebigs Ann Chem 1943; 554: 69–82
  • Ide L. M., Urbinati E. C., Hoffmann A. The role of olfaction in the behavioural and physiological responses to conspecific skin extract in Byron cephalus. J Fish Biol 2003; 63: 332–343
  • Kalueff A. V., Wheaton M., Murphy D. L. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 2007; 179(1)1–18
  • Kasumyan A. O., Lebedeva N. Y. New data on the nature of the alarm pheromone in cyprinids. J Ichthyol 1979; 19: 109–114
  • Larson, E. T., O'Malley, D. M. , & Melloni, R.H., Jr 2006. Aggression and vasotocin are associated with dominant-subordinate relationships in zebrafish. Behav Brain Res, 167(1), 94–102.
  • Lawrence B. J., Smith R. J. F. Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J Chem Ecol 1989; 15: 209–219
  • Lebedeva N. Y., Malyukina G. A., Kasumyan A. O. The natural repellent in the skin of cyprinids. J Ichthyol 1975; 15: 472–480
  • LeDoux J. E. Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155–184
  • Magurran A., Irving P., Henderson P. Is there a fish alarm pheromone? A wild study and critique. Proc: Biol Sci 1996; 263: 1551–1556
  • Milinski M., Griffiths S., Wegner K. M., Reusch T. B., Haas-Assenbaum A., Boehm T. Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc Natl Acad Sci U S A 2005; 102(12)4414–4418
  • Mongeau R., Miller G. A., Chiang E., Anderson D. J. Neural correlates of competing fear behaviors evoked by an innately aversive stimulus. J Neurosci 2003; 23(9)3855–3868
  • Morita Y., Finger T. E. Differential projections of ciliated and microvillous olfactory receptor cells in the catfish, Ictalurus punctatus. J Comp Neurol 1998; 398(4)539–550
  • Muto A., Orger M. B., Wehman A. M., Smear M. C., Kay J. N., Page-McCaw P. S., et al. Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 2005; 1(5)66
  • Nelson J. S. Fishes of the World4th ed. Wiley, New York 2006
  • Nikonov A. A., Finger T. E., Caprio J. Beyond the olfactory bulb: an odotopic map in the forebrain. Proc Natl Acad Sci U S A 2005; 102(51)18688–18693
  • Northcutt R. G. Connections of the lateral and medial divisions of the goldfish telencephalic pallium. J Comp Neurol 2006; 494(6)903–943
  • Orger M. B., Kampff A. R., Severi K. E., Bollmann J. H., Engert F. Control of visually guided behavior by distinct populations of spinal projection neurons. Nat Neurosci 2008; 11(3)327–333
  • Pfeiffer W. On the alarm response in fish and the origin of Schreckstoff. Z vergl Physiol 1960; 43: 578–614
  • Pfeiffer W. The distribution of fright reaction and alarm substance cells in fishes. Copeia 1977; 4: 653–665
  • Pfeiffer W. Heterocyclic compounds as releasers of the fright reaction in the giant danio, Danio malabaricus (Jerdon) (Cyprinidae, Ostariophysi, Pisces). J Chem Ecol 1978; 4: 665–673
  • Pfeiffer W., Lamour D. Effect of alarm substance on the heart rate in Phoxinus phoxinus (L.) (Cyprinidae, Ostariophysi, Pisces). Rev Suisse Zool 1976; 83(4)861–873
  • Pfeiffer W., Riegelbauer G., Meier G., Scheibler B. Effect of hypoxanthine-3 (N)-oxide and hypoxanthine-1 (N)-oxide on central nervous excitation of the black tetra Gymnocorymbus ternetzi (Characidae, Ostariophysi, Pisces) indicated by dorsal light response. J Chem Ecol 1985; 11: 507–523
  • Pfeiffer W., Sasse D., Arnold M. The Alarm Substance Cells of Phoxinus phoxinus and Morulius chrysophakedion (Cyprinidae, Ostariophysi, Pisces. Cell Tiss Res 1971; 118: 203–213
  • Pisharath H., Rhee J. M., Swanson M. A., Leach S. D., Parsons M. J. Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 2007; 124(3)218–229
  • Pollock M. S., Pollock R. J., Chivers D. P. Social context influences the antipredator behaviour of fathead minnows to chemical alarm cues. Ethology 2006; 112: 801–806
  • Portavella M., Torres B., Salas C., Papini M. R. Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 2004; 362(2)75–78
  • Rehnberg B. G., Bates E. H., Smith R. J., Sloley B. D., Richardson J. S. Brain benzodiazepine receptors in fathead minnows and the behavioral response to alarm pheromone. Pharmacol Biochem Behav 1989; 33(2)435–442
  • Rehnberg B. G., Schreck C. B. Chemosensory detection of predators by coho salmon (Oncorhynchus kisutch): behavioral reaction and the physiological stress response. Can J Zool 1987; 65: 481–485
  • Rehnberg B. G., Smith R. J. F., Sloley B. D. The reaction of pearl dace (Pieces, Cyprinidae) to alarm substance: time-course of behavior, brain amines, and stress physiology. Can J Zool 1987; 65: 2916–2921
  • Reutter K., Pfeiffer W. Fluorescence Microscopical Demonstration of the Alarm Substance in the Alarm Substance Cells of the European Minnow, Phoxinus phoxinus (L.) (Cyprinidae, Ostariophysi, Pisces). J Comp Physiol A Sensory 1973; 82: 411–418
  • Sato Y., Miyasaka N., Yoshihara Y. Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 2005; 25(20)4889–4897
  • Sato Y., Miyasaka N., Yoshihara Y. Hierarchical regulation of odorant receptor gene choice and subsequent axonal projection of olfactory sensory neurons in zebrafish. J Neurosci 2007; 27(7)1606–1615
  • Schutz F. Vergleichende Untersuchungen über die Schreckreaktion bei Fischen und deren Verbreitung. J Comp Physiol A Sensory 1956; 38: 84–135
  • Smeyne R. J., Schilling K., Robertson L., Luk D. fos-lacZ transgenic mice: mapping sites of gene induction in the central nervous system. Neuron 1992; 8: 13–23
  • Smith R. J. F. Alarm reaction of Iowa and johnny darters (Etheostoma, Percidae, Pisces) to chemicals from injured conspecifics. Can J Zool 1979; 57: 1282–1287
  • Smith R. J. F. Effect of food deprivation on the reaction of Iowa darters (Etheostoma exile) to skin extract. Can J Zool 1981; 59: 558–560
  • Smith R. J. F. Reaction of Percina nigrofasciata, Ammocrypta beani, and Etheostoma swaini (Percidae, Pisces) to conspecific and intergeneric skin extracts. Can J Zool 1982; 60: 1067–1072
  • Speedie N., Gerlai R. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 2008; 188(1)168–177
  • Urnov F. D., Miller J. C., Lee Y. L., Beausejour C. M., Rock J. M., Augustus S., et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435(7042)646–651
  • von Frisch K. On the psychology of schooling fish. Naturwissenschaften 1938; 26: 601–606
  • von Frisch K. On a fear-inducing substance in fish skin and its biological meaning. Zeitschrift für vergleichende Physiologie 1941; 29: 46–145
  • Waldman B. Quantitative and developmental analyses of the alarm reaction in the Zebra Danio, Brachydanio rerio. Copeia 1982; 1982: 1–9
  • Weth F., Nadler W., Korsching S. Nested expression domains for odorant receptors in zebrafish olfactory epithelium. Proc Natl Acad Sci U S A 1996; 93(23)13321–13326
  • Wilson E. O. Pheromones. Sci Am 1963; 208: 100–114
  • Wilson Y., Nag N., Davern P., Oldfield B. J., McKinley M. J., Greferath U., et al. Visualization of functionally activated circuitry in the brain. Proc Natl Acad Sci U S A 2002; 99(5)3252–3257
  • Wisenden B. D. Active space of chemical alarm cue in natural fish populations. Behaviour 2008; 145: 391–407
  • Wisenden B. D., Pollock M. S., Tremaine R. J., Webb J. M. Synergistic interactions between chemical alarm cues and the presence of conspecific and heterospecific fish shoals. Behav Ecol Sociobiol 2003; 54: 485–490
  • Wullimann M. F., Mueller T. Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. J Comp Neurol 2004; 475(2)143–162
  • Wullimann M. F., Rink E. The teleostean forebrain: a comparative and developmental view based on early proliferation, Pax6 activity, and catecholaminergic organization. Brain Res Bull 2002; 57(3–4)363–370
  • Yokogawa T., Marin W., Faraco J., Pezeron G., Appelbaum L., Zhang J., et al. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 2007; 5(10)2379–2397
  • Zou Z., Horowitz L. F., Montmayeur J. P., Snapper S., Buck L. B. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 2008; 452(7183)120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.