390
Views
7
CrossRef citations to date
0
Altmetric
ONLINE ARTICLES

Behavioral Plasticity in the C. elegans Mechanosensory Circuit

&
Pages 239-255 | Received 04 Jun 2008, Published online: 11 Jul 2009

References

  • Beck C. D., Rankin C. H. Heat shock disrupts long term memory in Caenorhabditis elegans. Learn Memory 1995; 2: 161–177
  • Bellocchio E. E., Reimer R. J., Fremeau R. T., Edwards R. H. Uptake of glutamate into synaptic vesicles by an inorganic phosphatetransporter. Science 2000; 289: 957–960
  • Chalfie M., Sulston J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 1981; 82: 358–370
  • Chalfie M., Sulston J. E., White J. G., Southgate E., Thomson J. N., Brenner S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 1985; 5: 956–964
  • Chelur D. S., Ernstrom G. G., Goodman M. B., Yao C. A., Chen L. R. O. H., Chalfie M. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 2002; 420: 669–673
  • Chiba C. M., Rankin C. H. A developmental analysis of spontaneous and reflexive reversals in the nematode Caenorhabditis elegans. J Neurobiol 1990; 21(4)543–554
  • Ebrahimi C. M., Rankin C. H. Early patterned stimulation produces changes in adult behavior and gene expression in C. elegans. Genes Brain Behav 2007; 6(6)517–528
  • Giles A. C., Rose J. K., Rankin C. H. Investigations of learning and memory in Caenorahabditis elegans. Int Rev Neurobiol 2006; 69: 37–71
  • Kindt K. S., Quast K. B., Giles A. C., Hendrey D., Nicastro I., Rankin C. H., Schafer W. R. Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans. Neuron 2007; 55(4)662–676
  • Kitamura K. I., Amano S., Hosono R. Contribution of neurons to habituation to mechanical stimulation in Caenorhabditis elegans. J Neurobiol 2001; 46(1)29–40
  • Lackner M. R., Nurrish S. J., Kaplan J. M. Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 1999; 24(2)335–346
  • Lee R. Y., Sawin E. R, Avery L., Horvitz H. R. The expression pattern of eat-4 and its requirement for AVM-mediated touch sensitivity support its role in glutamatergic neural transmission. Worm Breeder's Gazette 1995; 14: 46
  • Lüscher C., Frerking M. Restless AMPA receptors: implications for synaptic transmission and plasticity. Trends Neurosci 2001; 24(11)665–670
  • Malinow R., Malenka R. C. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25: 103–126
  • Miller K. G., Emerson M. D., Rand J. B. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron 1999; 24(2)323–333
  • Nonet M. L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. J Neurosci Meth 1999; 89: 33–40
  • Nurrish S., Ségalat L., Kaplan J. M. Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 1999; 24(1)231–242
  • O'Hagan R., Chalfie M., Goodman M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 2005; 8: 43–50
  • Rai S., Rankin C. H. Reversing the effects of early isolation on behavior, size, and gene expression. Dev Neurobiol 2007; 67(11)1443–1456
  • Rankin C. H. Context conditioning in habituation in the nematode Caenorhabditis elegans. Behav Neurosci 2000; 114: 496–505
  • Rankin C. H., Wicks S. R. Mutations of the Caenorhabditis elegans brain specfic inorganic phosphate transporter, eat-4, affecting habituation of the tap-withdrawal response without affecting the response itself. J Neurosci 2000; 20: 4337–4344
  • Rankin C. H., Broster B. Factors affecting habituation and rate of recovery from habituation in C. elegans. Behav Neurosci 1992; 106: 239–249
  • Rankin C. H., Chiba C., Beck C. Caenorhabditis elegans: A new model system for the study of learning and memory. Behav Brain Res 1990; 37: 89–92
  • Rongo C., Kaplan J.M. CaMKII regulates the density of central glutamatergic synapses in vivo. Nature 1999; 402: 195–199
  • Rose J. K., Sangha S., Rai S., Norman K., Rankin C. H. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans. J Neurosci 2005; 25(31)7159–7168
  • Rose J. K., Kaun K. R., Chen S. H., Rankin C. H. Glutamate receptor trafficking underlies long-term memory in C. elegans. J Neurosci 2003; 23(29)9595–9600
  • Rose J. K., Kaun K. R., Rankin C. H. A new group training procedure for habituation demonstrates that presynaptic glutamate release contributes to long-term memory in C. elegans. Learn Memory 2002; 9: 130–137
  • Sanyal S., Wintle R. F., Kindt K. S., Nuttley W. M., Arvan R., Fitzmaurice P., Bigras E., Merz D. C., Hébert T. E., van der Kooy D., Schafer W. R., Culotti J. G., Van Tol H. H. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J 2004; 23(2)473–482
  • Sawin E. R., Ranganathan R., Horvitz H. R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000; 26: 619–631
  • Suzuki H., Kerr R., Bianchi L., Frokjaer-Jensen C., Slone D., Xue J., Gerstbrein B., Driscoll M., Schafer W. R. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 2003; 39: 1005–1017
  • Sulston J. E., Albertson D. G., Thomson J. N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol 1980; 78: 542–576
  • Walker R. J., Franks C. J., Pemberton D., Rogers C., Holden-Dye L. Physiological and pharmacological studies on nematodes. Acta Biol Hung 2000; 51(2–4)379–394
  • White J. G., Southgate E., Thomson J. N., Brenner S. The structure of the nervous system of Caenorhabditis elegans. Philosoph Transact Royal Soc Lond Series B Biol Sci 1986; 314(1165)1–340
  • Wicks S. R., Rankin C. H. Integration of mechanosensory stimuli in Caenorhabditis elegans. J Neurosci 1995; 15: 2434–2344
  • Wicks S. R., Rankin C. H. The integration of antagonistic reflexes revealed by laser ablation of identified neurons habituation kinetics of the Caenorhabditis elegans tap withdrawal response. J Comp Phys 1996; 179: 675–685
  • Wicks S. R., Rankin C. H. The effects of tap withdrawal response habituation on other withdrawal behaviors: the localization of habituation in the nematode Caenorhabditis elegans. Behav Neurosci 1997; 111: 342–353
  • Xu X., Sassa T., Kunoh K., Hosono R. A mutant exhibiting abnormal habituation behavior in Caenorhabditis elegans. J Neurogen 2002; 16(1)29–44
  • Yang C., Kazanietz M. G. Divergence and complexities in DAG signaling: looking beyond PKC. Trends Pharmacol Sci 2003; 24(11)602–608
  • Zhang S., Arnadottir J., Keller C., Caldwell G. A., Yao C. A., Chalfie M. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 2004; 14: 1888–1896

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.