585
Views
18
CrossRef citations to date
0
Altmetric
ONLINE ARTICLES

In Vivo Brain Imaging: Fluorescence or Bioluminescence, Which to Choose?

Pages 285-307 | Received 09 Jun 2008, Published online: 11 Jul 2009

References

  • Agulhon C., Platel J. C., Kolomiets B., Forster V., Picaud S., Brocard J., Faure P., Brulet P. Bioluminescent imaging of Ca2 +  activity reveals spatiotemporal dynamics in glial networks of dark-adapted mouse retina. J Physiol 2007; 583: 945–958
  • Ataka K., Pieribone V. A. A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J 2002; 82: 509–516
  • Baird G. S., Zacharias D. A., Tsien R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 1999; 96: 11241–11246
  • Baubet V., Le Mouellic H., Campbell A. K., Lucas-Meunier E., Fossier P., Brulet P. Chimeric green fluorescent protein-aequorin as bioluminescent Ca2 +  reporters at the single-cell level. Proc Natl Acad Sci U S A 2000; 97: 7260–7265
  • Bellen H. J. The fruit fly: a model organism to study the genetics of alcohol abuse and addiction?. Cell 1998; 93: 909–912
  • Bilen J., Bonini N. M. Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 2005; 39: 153–171
  • Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118: 401–415
  • Berke B., Wu C. F. Regional calcium regulation within cultured Drosophila neurons: effects of altered cAMP metabolism by the learning mutations dunce and rutabaga. J Neurosci 2002; 22: 4437–4447
  • Brandes C., Plautz J. D., Stanewsky R., Jamison C. F., Straume M., Wood K. V., Kay S. A., Hall J. C. Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 1996; 16: 687–692
  • Curie T., Rogers K. L., Colasante C., Brûlet P. Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2 +  signaling. Mol Imaging 2007; 6: 30–42
  • Davis R. L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 2005; 28: 275–302
  • Deisig N., Giurfa M., Lachnit H., Sandoz J. C. Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur J Neurosci 2006; 24: 1161–1174
  • Dombeck D. A., Khabbaz A. N., Collman F., Adelman T. L., Tank D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 2007; 56: 43–57
  • Fiala A., Spall T., Diegelmann S., Eisermann B., Sachse S., Devaud J. M., Buchner E., Galizia C. G. Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 2002; 12: 1877–1884
  • Fiala A., Spall T. In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci STKE 2003; 174: PL6
  • Galizia C. G., Sachse S., Rappert A., Menzel R. The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 1999; 2: 473–478
  • Galizia C. G., Joerges J., Küttner A., Faber T., Menzel R. A semi–in vivo preparation for optical recording of the insect brain. J Neurosci Meth 1997; 76: 61–69
  • Garaschuk O., Milos R. I., Grienberger C., Marandi N., Adelsberger H., Konnerth A. Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 2006; 453: 385–396
  • Gilland E., Miller A. L., Karplus E., Baker R., Webb S. E. Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc Natl Acad Sci U S A 1999; 96: 157–161
  • Gorokhovatsky A. Y., Marchenkov V. V., Rudenko N. V., Ivashina T. V., Ksenzenko V. N., Burkhardt N., Semisotnov G. V., Vinokurov L. M., Alakhov Y. B. Fusion of Aequorea victoria GFP and aequorin provides their Ca2 + -induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer. Biochem Biophys Res Commun 2004; 320: 703–711
  • Griesbeck O. Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol 2004; 14: 636–641
  • Guerrero G., Siegel M. S., Roska B., Loots E., Isacoff E. Y. Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. Biophys J 2002; 83: 3607–3618
  • Hara M., Bindokas V., Lopez J. P., Kaihara K., Landa L. R., Jr, Harbeck M., Roe M. W. Imaging endoplasmic reticulum calcium with a fluorescent biosensor in transgenic mice. Am J Physiol Cell Physiol 2004; 287: C932–C938
  • Hasan M. T., Friedrich R. W., Euler T., Larkum M. E., Giese G., Both M., Duebel J., Waters J., Bujard H., Griesbeck O., Tsien R. Y., Nagai T., Miyawaki A., Denk W. Functional fluorescent Ca2 +  indicator proteins in transgenic mice under TET control. PLoS Biol 2004; 2: e163
  • Heisenberg M. Mushroom body memoir: from maps to models. Nat Rev Neurosci 2003; 4: 266–275
  • Higashijima S., Masino M. A., Mandel G., Fetcho J. R. Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. J Neurophysiol 2003; 90: 3986–3997
  • Ikeda M., Sugiyama T., Wallace C. S., Gompf H. S., Yoshioka T., Miyawaki A., Allen C. N. Circadian dynamics of cytosolic and nuclear Ca2 +  in single suprachiasmatic nucleus neurons. Neuron 2003; 38: 253–263
  • Joerges J., Küttner A., Galizia C. G., Menzel R. Representations of odours and odour mixtures visualized in the honeybee brain. Nature 1997; 387: 285–288
  • Kandel E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001; 294: 1030–1038
  • Kerr R., Lev-Ram V., Baird G., Vincent P., Tsien R. Y., Schafer W. R. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 2000; 26: 583–594
  • Kerr M., Davies S. A., Dow J. A. Cell-specific manipulation of second messengers: a toolbox for integrative physiology in Drosophila. Curr Biol 2004; 14: 1468–1474
  • Leclerc C., Webb S. E., Daguzan C., Moreau M., Miller A. L. Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 2000; 113: 3519–3529
  • MacPherson M. R., Pollock V. P., Kean L., Southall T. D., Giannakou M. E., Broderick K. E., Dow J. A., Hardie R. C., Davies S. A. Transient receptor potential-like channels are essential for calcium signaling and fluid transport in a Drosophila epithelium. Genetics 2005; 169: 1541–1552
  • Manjarrés I. M., Chamero P., Domingo B., Molina F., Llopis J., Alonso M. T., García-Sancho J. Red and green aequorins for simultaneous monitoring of Ca2 +  signals from two different organelles. Pflugers Arch 2008; 455: 961–970
  • Marella S., Fischler W., Kong P., Asgarian S., Rueckert E., Scott K. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 2006; 49: 285–295
  • Martin J. R., Ollo R. A new Drosophila Ca2 + /calmodulin-dependent protein kinase (caki) is localized in the central nervous system and implicated in walking speed. EMBO J 1996; 15: 1865–1876
  • Martin J.-R., Raabe T., Heisenberg M. Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol, A 1999; 185: 277–288
  • Martin J.-R., Faure F., Ernst R. The power law distribution for walking-time intervals correlates with the ellipsoid-body in Drosophila. J Neurogenet 2002; 15: 1–15
  • Martin J. R., Rogers K. L., Chagneau C., Brûlet P. In vivo bioluminescence imaging of Ca2 +  signalling in the brain of Drosophila. PLoS ONE 2007; 2: e275
  • Miller A. L., Karplus E., Jaffe L. F. Imaging [Ca2 + ]i with aequorin using a photon imaging detector. Meth Cell Biol 1994; 40: 305–338
  • Miesenböck G., De Angelis D. A., Rothman J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 1998; 394: 192–195
  • Miyawaki A. Innovations in the imaging of brain functions using fluorescent proteins. Neuron 2005; 48: 189–199
  • Miyawaki A., Griesbeck O., Heim R., Tsien R. Y. Dynamic and quantitative Ca2 +  measurements using improved cameleons. Proc Natl Acad Sci U S A 1999; 96: 2135–2140
  • Miyawaki A., Llopis J., Heim R., McCaffery J. M., Adams J. A., Ikura M., Tsien R. Y. Fluorescent indicators for Ca2 +  based on green fluorescent proteins and calmodulin. Nature 1997; 388: 882–887
  • Muqit M. M., Feany M. B. Modelling neurodegenerative diseases in Drosophila: a fruitful approach?. Nat Rev Neurosci 2002; 3: 237–243
  • Nagai T., Ibata K., Park E.S., Kubota M., Mikoshiba K., Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 2002; 20: 87–90
  • Nagai T., Yamada S., Tominaga T., Ichikawa M., Miyawaki A. Expanded dynamic range of fluorescent indicators for Ca2 +  by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 2004; 101: 10554–10559
  • Nagai T., Sawano A., Park E. S., Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense Ca2 + . Proc Natl Acad Sci U S A 2001; 98: 3197–3202
  • Nakai J., Ohkura M., Imoto K. A high signal-to-noise Ca2 +  probe composed of a single green fluorescent protein. Nat Biotechnol 2001; 19: 137–141
  • Ng M., Roorda R. D., Lima S. Q., Zemelman B. V., Morcillo P., Miesenböck G. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 2002; 36: 463–474
  • Parri H. R., Gould T. M., Crunelli V. Spontaneous astrocytic Ca2 +  oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 2001; 4: 803–812
  • Reiff D. F., Thiel P. R., Schuster C. M. Differential regulation of active zone density during long-term strengthening of Drosophila neuromuscular junctions. J Neurosci 2002; 22: 9399–9409
  • Reiff D. F., Ihring A., Guerrero G., Isacoff E. Y., Joesch M., Nakai J., Borst A. In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 2005; 25: 4766–4778
  • Renn S. C., Park J. H., Rosbash M., Hall J. C., Taghert P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 1999; 99: 791–802
  • Riemensperger T., Völler T., Stock P., Buchner E., Fiala A. Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol 2005; 15: 1953–1960
  • Robert V., Gurlini P., Tosello V., Nagai T., Miyawaki A., Di Lisa F., Pozzan T. Beat-to-beat oscillations of mitochondrial [Ca2 + ] in cardiac cells. EMBO J 2001; 20: 4998–5007
  • Rogers K. L., Stinnakre J., Agulhon C., Jublot D., Shorte S. L., Kremer E. J., Brulet P. Visualization of local Ca2 +  dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 2005; 3: 597–610
  • Rogers K. L., Picaud S., Roncali E., Boisgard R., Colasante C., Stinnakre J., Tavitian B., Brûlet P. Noninvasive in vivo imaging of calcium signaling in mice. PLoS ONE 2007; 2: e974
  • Rogers, K. L., Martin, J. R., Renaud, O., Karplus, E., Nicola, M. A., Nguyen, M., Picaud, S., Shorte, S. L., & Brûlet, P. 2008. EMCCD-based bioluminescence recording of single-cell Ca2 + . J Biomed Optics (in press).
  • Rosay P., Armstrong J. D., Wang Z., Kaiser K. Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron 2001; 30: 759–770
  • Rosay P., Davies S. A., Yu Y., Sözen A., Kaiser K., Dow J. A. Cell-type specific calcium signalling in a Drosophila epithelium. J Cell Sci 1997; 110: 1683–1692
  • Rose C. R., Blum R., Pichler B., Lepier A., Kafitz K. W., Konnerth A. Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 2003; 426: 74–78
  • Sakai R., Repunte-Canonigo V., Raj C. D., Knöpfel T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 2001; 13: 2314–2318
  • Sachse S., Galizia C. G. Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 2002; 87: 1106–1117
  • Sejnowski T. J., Destexhe A. Why do we sleep?. Brain Res 2000; 886: 208–223
  • Shimomura O., Johnson F. H. Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci U S A 1978; 75: 2611–2615
  • Shimomura O., Inouye S., Musicki B., Kishi Y. Recombinant aequorin and recombinant semisynthetic aequorins. Cellular Ca2 +  ion indicators. Biochem J 1990; 270: 309–312
  • Shimomura O., Musicki B., Kishi Y., Inouye S. Light-emitting properties of recombinant semisynthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium. Cell Calcium 1993; 14: 373–378
  • Siegel M. S., Isacoff E. Y. A genetically encoded optical probe of membrane voltage. Neuron 1997; 19: 735–741
  • Strauss R., Heisenberg M. A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 1993; 13: 1852–1861
  • Torfs H., Poels J., Detheux M., Dupriez V., Van Loy T., Vercammen L., Vassart G., Parmentier M., Vanden Broeck J. Recombinant aequorin as a reporter for receptor-mediated changes of intracellular Ca2 + -levels in Drosophila S2 cells. Invert Neurosci 2002; 4: 119–124
  • Vincent P., Maskos U., Charvet I., Bourgeais L., Stoppini L., Leresche N., Changeux J. P., Lambert R., Meda P., Paupardin-Tritsch D. Live imaging of neural structure and function by fibred fluorescence microscopy. EMBO Rep 2006; 11: 1154–1161
  • Vitzthum H., Muller M., Homberg U. Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 2002; 22: 1114–1125
  • Yu D., Ponomarev A., Davis R. L. Altered representation of the spatial code for odors after olfactory classical conditioning: memory trace formation by synaptic recruitment. Neuron 2004; 42: 437–449
  • Yu D., Baird G. S., Tsien R. Y., Davis R. L. Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J Neurosci 2003; 23: 64–72
  • Yu D., Akalal D. B., Davis R. L. Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron 2006; 52: 845–855
  • Yu D., Keene A. C., Srivatsan A., Waddell S., Davis R. L. Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 2005; 123: 945–957
  • Wang Y., Guo H. F., Pologruto T. A., Hannan F., Hakker I., Svoboda K., Zhong Y. Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2 +  imaging. J Neurosci 2004; 24: 6507–6514
  • Wang Y., Wright N. J., Guo H., Xie Z., Svoboda K., Malinow R., Smith D. P., Zhong Y. Genetic manipulation of the odor-evoked distributed neural activity in the Drosophila mushroom body. Neuron 2001; 29: 267–276
  • Wang J. W., Wong A. M., Flores J., Vosshall L. B., Axel R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 2003; 112: 271–282
  • Wolf F. W, Heberlein U. Invertebrate models of drug abuse. J Neurobiol 2003; 54: 161–178

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.