655
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Motivated state control in larval zebrafish: behavioral paradigms and anatomical substrates

, &
Pages 122-132 | Received 02 Feb 2016, Accepted 06 Apr 2016, Published online: 13 Jun 2016

References

  • Aimé, P., Duchamp-Viret, P., Chaput, M.A., Savigner, A., Mahfouz, M., & Julliard, A.K. (2007). Fasting increases and satiation decreases olfactory detection for a neutral odor in rats. Behavioural Brain Research, 179, 258–264.
  • Alekseyenko, O.V., Chan, Y.-B., Li, R., & Kravitz, E.A. (2013). Single dopaminergic neurons that modulate aggression in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 110, 6151–6156.
  • Alekseyenko, O.V., Chan, Y.-B., Fernandez de la Paz, M., Bülow, T., Pankratz, M.J., & Kravitz, E.A. (2014). Single serotonergic neurons that modulate aggression in Drosophila. Current Biology, 24, 2700–2707.
  • Alsop, D., & Vijayan, M.M. (2008). Development of the corticosteroid stress axis and receptor expression in zebrafish. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 294, R711–R719.
  • Andersen, E., & Dafny, N. (1982). Dorsal raphe nucleus modulates sensory evoked responses in caudate and septum. International Journal of Neuroscience, 17, 151–155.
  • Anderson, D.C., Crowell, C.R., & Brown, J.S. (1985). Startle potentiation and heart rate as affected by fear and hunger. Psychological Reports, 56, 95–106.
  • Baerends, G.P. (1971). The ethological analysis of fish behaviour. In: W.S. Hoar and D.J. Randall, eds. Fish Physiology. New York: Academic Press, 279–370.
  • Bailey, M.R., Jensen, G., Taylor, K., Mezias, C., Williamson, C., Silver, R., … Balsam, P.D. (2015). A novel strategy for dissecting goal-directed action and arousal components of motivated behavior with a progressive hold-down task. Behavioral Neuroscience, 129, 269–280.
  • Baldwin, D.A., & Baird, J.A. (2001). Discerning intentions in dynamic human action. Trends in Cognitive Sciences, 5, 171–178.
  • Bastock, M., & Manning, A. (1955). The courtship of Drosophila melanogaster. Behaviour, 8, 85–111.
  • Bell, W.J. (1990). Searching behavior patterns in insects. Annual Review of Entomology, 35, 447–467.
  • Bell, W.J., Cathy, T., Roggero, R.J., Kipp, L.R., & Tobin, T.R. (1985). Sucrose-stimulated searching behaviour of Drosophila melanogaster in a uniform habitat: modulation by period of deprivation. Animal Behaviour, 33, 436–448.
  • Bianco, I.H., & Engert, F. (2015). Visuomotor transformations underlying hunting behavior in zebrafish. Current Biology, 25, 831–846.
  • Blanchard, D.C., Blanchard, R.J., & Griebel, G. (2005). Defensive responses to predator threat in the rat and mouse. Current Protocols in Neuroscience, 30, 8.19.1–8.19.20.
  • Blanchard, R.J., & Blanchard, D.C. (1969). Crouching as an index of fear. Journal of Comparative and Physiological Psychology, 67, 370–375.
  • Bonini, L., Ferrari, P.F., & Fogassi, L. (2013). Neurophysiological bases underlying the organization of intentional actions and the understanding of others’ intention. Consciousness and Cognition, 22, 1095–1104.
  • Budick, S., & O’Malley, D. (2000). Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. Journal of Experimental Biology, 203, 2565–2579.
  • Burgess, H.A., & Granato, M. (2007). Modulation of locomotor activity in larval zebrafish during light adaptation. Journal of Experimental Biology, 210, 2526–2539.
  • Burgess, H.A., Schoch, H., & Granato, M. (2010). Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Current Biology, 20, 381–386.
  • Cahill, G., Hurd, M., & Batchelor, M. (1998). Circadian rhythmicity in the locomotor activity of larval zebrafish. Neuroreport, 9, 3445–3449.
  • Caldwell, H.K., & Albers, H.E. (2015). Oxytocin, vasopressin, and the motivational forces that drive social behaviors. Current Topics in Behavioral Neurosciences, 27, 51–103.
  • Carter, M.C., & Dixon, F.G. (1982). Habitat quality and the foraging behaviour of coccinellid larvae. Journal of Animal Ecology, 51, 865–878.
  • Cheung, C.C., Kurrasch, D.M., Liang, J.K., & Ingraham, H.A. (2013). Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH. The Journal of Comparative Neurology, 521, 1268–1288.
  • Chiu, C.N., & Prober, D.A. (2013). Regulation of zebrafish sleep and arousal states: current and prospective approaches. Frontiers in Neural Circuits, 7, 58.
  • Clift, D., Richendrfer, H., Thorn, R.J., Colwill, R.M., & Creton, R. (2014). High-throughput analysis of behavior in zebrafish larvae: effects of feeding. Zebrafish, 11, 455–461.
  • Colgan, P. (1993). The motivational basis of fish behaviour. In: T.J. Pitcher, ed. Behaviour of Teleost Fishes. London: Chapman & Hall, 31–50.
  • Crawley, J.N. (2007). What’s Wrong with My Mouse: Behavioral Phenotyping of Transgenic and Knockout Mice. Hoboken, NJ: John Wiley & Sons.
  • Creed Jr, R.P., & Miller, J.R. (1990). Interpreting animal wall-following behavior. Experientia, 46, 758–761.
  • Croy, M.I., & Hughes, R.N. (1991). The influence of hunger on feeding behaviour and on the acquisition of learned foraging skills by the fifteen-spined stickleback, Spinachia Spinachia L. Animal Behaviour, 41, 161–170.
  • Curtright, A., Rosser, M., Goh, S., Keown, B., Wagner, E., Sharifi, J., … Dhaka, A. (2015). Modeling nociception in zebrafish: a way forward for unbiased analgesic discovery. PLoS One, 10, e0116766.
  • Day, J.E.L., Kyriazakis, I., & Lawrence, A.B. (1995). The effect of food deprivation on the expression of foraging and exploratory behaviour in the growing pig. Applied Animal Behaviour Science, 42, 193–206.
  • De Marco, R.J., Groneberg, A.H., Yeh, C.-M., TreviÞo, M., & Ryu, S. (2014). The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development. Frontiers in Behavioral Neuroscience, 8, 367.
  • Diehl, F., White, R.S., Stein, W., & Nusbaum, M.P. (2013). Motor circuit-specific burst patterns drive different muscle and behavior patterns. The Journal of Neuroscience, 33, 12013–12029.
  • Dreosti, E., Lopes, G., Kampff, A.R., & Wilson, S.W. (2015). Development of social behavior in young zebrafish. Frontiers in Neural Circuits, 9, 39.
  • Dugué, G.P., Lörincz, M.L., Lottem, E., Audero, E., Matias, S., Correia, P.A., … Léna, C. (2014). Optogenetic recruitment of dorsal raphe serotonergic neurons acutely decreases mechanosensory responsivity in behaving mice. PLoS One, 9, e105941.
  • Ebert, U., & Ostwald, J. (1992). Serotonin modulates auditory information processing in the cochlear nucleus of the rat. Neuroscience Letters, 145, 51–54.
  • Emran, F., Rihel, J., Adolph, A.R., Wong, K.Y., Kraves, S., & Dowling, J.E. (2007). OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proceedings of National Academic Sciences of United States of America, 104, 19126–19131.
  • Engeszer, R.E., Da Barbiano, L.A., Ryan, M.J., & Parichy, D.M. (2007). Timing and plasticity of shoaling behaviour in the zebrafish, Danio Rerio. Animal Behaviour, 74, 1269–1275.
  • Farrell, T.C., Cario, C.L., Milanese, C., Vogt, A., Jeong, J.-H., & Burton, E.A. (2011). Evaluation of spontaneous propulsive movement as a screening tool to detect rescue of Parkinsonism phenotypes in zebrafish models. Neurobiology of Disease, 44, 9–18.
  • Fernandes, A.M., Fero, K., Arrenberg, A.B., Bergeron, S.A., Driever, W., & Burgess, H.A. (2012). Deep brain photoreceptors control light-seeking behavior in zebrafish larvae. Current Biology, 22, 2042–2047.
  • Fero, K., Yokogawa, T., & Burgess, H.A. (2011). The behavioral repertoire of larval zebrafish. In: A. Kalueff and J. Cachat, eds. Zebrafish models in Neurobehavioral Research. New York: Springer, 249–291.
  • Flavell, S.W., Pokala, N., Macosko, E.Z., Albrecht, D.R., Larsch, J., & Bargmann, C.I. (2013). Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell, 154, 1023–1035.
  • Forlano, P.M., & Cone, R.D. (2007). Conserved neurochemical pathways involved in hypothalamic control of energy homeostasis. The Journal of Comparative Neurology, 505, 235–248.
  • Gahtan, E., Sankrithi, N., Campos, J.B., & O'Malley, D.M. (2002). Evidence for a widespread brain stem escape network in larval zebrafish. Journal of Neurophysiology, 87, 608–614.
  • Ganz, J., Kaslin, J., Freudenreich, D., Machate, A., Geffarth, M., & Brand, M. (2012). Subdivisions of the adult zebrafish subpallium by molecular marker analysis. The Journal of Comparative Neurology, 520, 633–655.
  • Garey, J., Goodwillie, A., Frohlich, J., Morgan, M., Gustafsson, J.A., Smithies, O., … Pfaff, D.W. (2003). Genetic contributions to generalized arousal of brain and behavior. Proceedings of National Academic Sciences of United States of America, 100, 11019–11022.
  • Gerlach, G., Hodgins-Davis, A., Avolio, C., & Schunter, C. (2008). Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proceedings of Biological Sciences, 275, 2165–2170.
  • Graham, C.H. (1967). Robert Sessions Woodworth 1869–1962: a Biographical Memoir by Clarence H. Graham. Washington, DC: National Academy of Sciences.
  • Greenspan, R.J., & Ferveur, J.F. (2000). Courtship in Drosophila. Annual Review of Genetics, 34, 205–232.
  • Gutierrez-Triana, J.A., Herget, U., Lichtner, P., Castillo-Ramírez, L.A., & Ryu, S. (2014). A vertebrate-conserved cis-regulatory module for targeted expression in the main hypothalamic regulatory region for the stress response. BMC Developmental Biology, 14, 41.
  • Herget, U., Wolf, A., Wullimann, M.F., & Ryu, S. (2014). Molecular neuroanatomy and chemoarchitecture of the neurosecretory preoptic-hypothalamic area in zebrafish larvae. The Journal of Comparative Neurology, 522, 1542–1564.
  • Hinz, C., Gebhardt, K., Hartmann, A.K., Sigman, L., & Gerlach, G. (2012). Influence of kinship and MHC class II genotype on visual traits in zebrafish larvae (Danio rerio). PLoS One, 7, e51182.
  • Hurd, M., & Cahill, G. (2002). Entraining signals initiate behavioral circadian rhythmicity in larval zebrafish. Journal of Biological Rhythms, 17, 307–314.
  • Hurley, L.M., & Pollak, G.D. (1999). Serotonin differentially modulates responses to tones and frequency-modulated sweeps in the inferior colliculus. Journal of Neuroscience, 19, 8071–8082.
  • Irons, T.D., et al., (2013). Acute administration of dopaminergic drugs has differential effects on locomotion in larval zebrafish. Pharmacology, Biochemistry, and Behavior, 103, 792–813.
  • Kapsimali, M., et al., (2000). Distribution of the mRNA encoding the four dopamine D(1) receptor subtypes in the brain of the European eel (Anguilla anguilla): comparative approach to the function of D(1) receptors in vertebrates. The Journal of Comparative Neurology, 419, 320–343.
  • Kaslin, J., & Panula, P. (2001). Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). The Journal of Comparative Neurology, 440, 342–377.
  • Kastenhuber, E., Kratochwil, C.F., Ryu, S., Schweitzer, J., & Driever, W. (2010). Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. The Journal of Comparative Neurology, 518, 439–458.
  • Kohn, M. (1951). Satiation of hunger from food injected directly into the stomach versus food ingested by mouth. Journal of Comparative and Physiological Psychology, 44, 412–422.
  • Kõks, S. (2015). Experimental models on effects of psychostimulants. International Review of Neurobiology, 120, 107–129.
  • Koubi, H.E., Robin, J.P., Dewasmes, G., Le Maho, Y., Frutoso, J., & Minaire, Y. (1991). Fasting-induced rise in locomotor activity in rats coincides with increased protein utilization. Physiology & Behavior, 50, 337–343.
  • Kurrasch, D.M., Cheung, C.C., Lee, F.Y., Tran, P.V., Hata, K., & Ingraham, H.A. (2007). The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 13624–13634.
  • Kurrasch, D.M., Nevin, L.M., Wong, J.S., Baier, H., & Ingraham, H.A. (2009). Neuroendocrine transcriptional programs adapt dynamically to the supply and demand for neuropeptides as revealed in NSF mutant zebrafish. Neural Development, 4, 22.
  • Landis, C., & Hunt, W.A. (1939). The Startle Pattern. New York: Farrar & Rinehart.
  • Lange, M., Norton, W., Coolen, M., Chaminade, M., Merker, S., Proft, F., … Bally-Cuif, L. (2012). The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Molecular Psychiatry, 17, 946–954.
  • Lebestky, T., Chang, J.S., Dankert, H., Zelnik, L., Kim, Y.C., Han, K.A., … Anderson, D.J. (2009). Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron, 64, 522–536.
  • Leitner, D.S., Powers, A.S., & Hoffman, H.S. (1980). The neural substrate of the startle response. Physiology & Behavior, 25, 291–7.
  • Lyon, E.P. (1904). On rheotropism. I. Rheotropism in fishes. American Journal of Physiology, 12, 149–161.
  • Machluf, Y., Gutnick, A., & Levkowitz, G. (2011). Development of the zebrafish hypothalamus. Annals of the New York Academy of Sciences, 1220, 93–105.
  • Mahler, S.V., Moorman, D.E., Smith, R.J., James, M.H., & Aston-Jones, G. (2014). Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nature Neuroscience, 17, 1298–1303.
  • Manoli, M., & Driever, W. (2014). nkx2.1 and nkx2.4 genes function partially redundant during development of the zebrafish hypothalamus, preoptic region, and pallidum. Frontiers in Neuroanatomy, 8, 145.
  • Marder, E. (2012). Neuromodulation of neuronal circuits: back to the future. Neuron, 76, 1–11.
  • Marder, E., & Calabrese, R.L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.
  • Marder, E., O’Leary, T., & Shruti, S. (2014). Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annual Review of Neuroscience, 37, 329–346.
  • Marquart, G.D., Tabor, K.M., Brown, M., Strykowski, J.L., Varshney, G.K., LaFave, M.C., … Burgess, H.A. (2015). A 3D searchable database of transgenic zebrafish Gal4 and Cre lines for functional neuroanatomy studies. Frontiers in Neural Circuits, 9, 78.
  • McElligott, M., & O’Malley, D. (2005). Prey tracking by larval zebrafish: axial kinematics and visual control. Brain, Behavior and Evolution, 66, 177–196.
  • McGinty, V.B., Lardeux, S., Taha, S.A., Kim, J.J., & Nicola, S.M. (2013). Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron, 78, 910–922.
  • McPherson, A.D., Barrios, J.P., Luks-Morgan, S.J., Manfredi, J.P., Bonkowsky, J.L., Douglass, A.D., & Dorsky, R.I. (2016). Motor behavior mediated by continuously generated dopaminergic neurons in the zebrafish hypothalamus recovers after cell ablation. Current Biology, 26, 263–269.
  • Mogenson, G.J., Jones, D.L., & Yim, C.Y. (1980). From motivation to action: functional interface between the limbic system and the motor system. Progress in Neurobiology, 14, 69–97.
  • Morton, G.J., Meek, T.H., & Schwartz, M.W. (2014). Neurobiology of food intake in health and disease. Nature Reviews Neuroscience, 15, 367–378.
  • Moses, J., Loucks, J.A., Watson, H.L., Matuszewich, L., & Hull, E.M. (1995). Dopaminergic drugs in the medial preoptic area and nucleus accumbens: effects on motor activity, sexual motivation, and sexual performance. Pharmacology Biochemistry and Behavior, 51, 681–686.
  • Mueller, T., & Guo, S. (2009). The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. The Journal of Comparative Neurology, 516, 553–568.
  • Mueller, T., & Wullimann, M.F. (2002). BrdU-, neuroD (nrd)- and Hu-studies reveal unusual non-ventricular neurogenesis in the postembryonic zebrafish forebrain. Mechanisms of Development, 117, 123–135.
  • Mueller, T., & Wullimann, M.F. (2009). An evolutionary interpretation of teleostean forebrain anatomy. Brain, Behavior and Evolution, 74, 30–42.
  • Mueller, T., Wullimann, M.F., & Guo, S. (2008). Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. The Journal of Comparative Neurology, 507, 1245–1257.
  • Munk, P. (1995). Foraging behaviour of larval cod (Gadus morhua) influenced by prey density and hunger. Marine biology, 122, 205–212.
  • Murray, E.J. (1964). Motivation and Emotion. Englewood Cliffs, NJ: Prentice-Hall.
  • Nusbaum, M.P., Blitz, D.M., Swensen, A.M., Wood, D., & Marder, E. (2001). The roles of co-transmission in neural network modulation. Trends in Neurosciences, 24, 146–154.
  • de Oliveira Crisanto, K., de Andrade, W.M.G., de Azevedo Silva, K.D., Lima, R.H., de Oliveira Costa, M.S.M., de Souza Cavalcante, J., … Cavalcante, J.C. (2015). The differential mice response to cat and snake odor. Physiology & Behavior, 152, 272–279.
  • Paredes, R., & Agmo, A. (1989). Stereospecific actions of baclofen on sociosexual behavior, locomotor activity and motor execution. Psychopharmacology, 97, 358–364.
  • Paredes, R.G., & Agmo, A. (2004). Has dopamine a physiological role in the control of sexual behavior? A critical review of the evidence. Progress in Neurobiology, 73, 179–226.
  • Perrot-Sinal, T.S., Ossenkopp, K.P., & Kavaliers, M. (1999). Brief predator odour exposure activates the HPA axis independent of locomotor changes. Neuroreport, 10, 775–780.
  • Petzold, G.C., Hagiwara, A., & Murthy, V.N. (2009). Serotonergic modulation of odor input to the mammalian olfactory bulb. Nature Neuroscience, 12, 784–791.
  • Pfaff, D., Ribeiro, A., Matthews, J., & Kow, L.M. (2008). Concepts and mechanisms of generalized central nervous system arousal. Annals of the New York Academy of Sciences, 1129, 11–25.
  • Pfaff, D.W., Martin, E.M., & Faber, D. (2012). Origins of arousal: roles for medullary reticular neurons. Trends in Neurosciences, 35, 468–476.
  • Phelps, E.A., & LeDoux, J.E. (2005). Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48, 175–187.
  • Portugues, R., & Engert, F. (2011). Adaptive locomotor behavior in larval zebrafish. Frontiers in Systems Neuroscience, 5, 72.
  • Prober, D.A., Rihel, J., Onah, A.A., Sung, R.-J., & Schier, A.F. (2006). Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. Journal of Neuroscience, 26, 13400–13410.
  • Prober, D.A., Zimmerman, S., Myers, B.R., McDermott, B.M., Jr., Kim, S.H., Caron, S., … Schier, A.F. (2008). Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. Journal of Neuroscience, 28, 10102–10110.
  • Puelles, L., & Rubenstein, J.L.R. (2015). A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Frontiers in Neuroanatomy, 9, 27.
  • Ramaekers, M.G., Verhoef, A., Gort, G., Luning, P.A., & Boesveldt, S. (2016). Metabolic and sensory influences on odor sensitivity in humans. Chemical Senses, 41, 163–168.
  • Randlett, O., Wee, C.L., Naumann, E.A., Nnaemeka, O., Schoppik, D., Fitzgerald, J.E., … Schier, A.F. (2015). Whole-brain activity mapping onto a zebrafish brain atlas. Nature Methods, 12, 1039–1046.
  • Rink, E., & Wullimann, M. (2001). The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Research, 889, 316–330.
  • Rink, E., & Wullimann, M.F. (2002). Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Research Bulletin, 57, 385–387.
  • Robbins, T.W. (1997). Arousal systems and attentional processes. Biological Psychology, 45, 57–71.
  • Ronneberger, O. Liu, K., Rath, M., Rueβ, D., Mueller, T., Skibbe, H., … Driever, W. (2012). ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains. Nature Methods, 9, 735–742.
  • Rupp, B., Wullimann, M.F., & Reichert, H. (1996). The zebrafish brain: a neuroanatomical comparison with the goldfish. Anatomy and Embryology, 194, 187–203.
  • Ryu, S., Mahler, J., Acampora, D., Holzschuh, J., Erhardt, S., Omodei, D., … Driever, W. (2007). Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Current Biology, 17, 873–880.
  • de Sá, D.S.F., Plein, D.E., Schulz, A., Oitzl, M.S., Blumenthal, T.D., & Schächinger, H. (2014). Acoustic startle reactivity while processing reward-related food cues during food deprivation: evidence from women in different menstrual cycle phases and men. Psychophysiology, 51, 159–167.
  • Salamone, J.D. (1988). Dopaminergic involvement in activational aspects of motivation: Effects of haloperidol on schedule-induced activity, feeding, and foraging in rats. Psychobiology, 16, 196–206.
  • Salamone, J.D. (1992). Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes. Psychopharmacology, 107, 160–174.
  • Salamone, J.D., Correa, M., Farrar, A., & Mingote, S.M. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology, 191, 461–482.
  • Salamone, J.D., Pardo, M., Yohn, S.E., López-Cruz, L., SanMiguel, N. & Correa, M. (2015). Mesolimbic dopamine and the regulation of motivated behavior. Current Topics in Behavioral Neurosciences, 27, 231–257.
  • Schneirla, T. (1959). An evolutionary and developmental theory of biphasic processes underlying approach and withdrawal. Nebraska Symposium on Motivation, 7, 1–42.
  • Sharma, S.C., Berthoud, V.M., & Breckwoldt, R. (1989). Distribution of substance P-like immunoreactivity in the goldfish brain. The Journal of Comparative Neurology, 279, 104–116.
  • Sheibani, V., & Farazifard, R. (2006). Dorsal raphe nucleus stimulation modulates the response of layers IV and V barrel cortical neurons in rat. Brain Research Bulletin, 68, 430–435.
  • Sogard, S.M., & Olla, B.L. (1997). The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environmental Biology of Fishes, 50, 405–413.
  • Souza, B.R., Romano-Silva, M.A., & Tropepe, V. (2011). Dopamine D2 receptor activity modulates Akt signaling and alters GABAergic neuron development and motor behavior in zebrafish larvae. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 5512–5525.
  • Stein, W. (2009). Modulation of stomatogastric rhythms. Journal of Comparative Physiology A, 195, 989–1009.
  • Stoop, R., Hegoburu, C., & van den Burg, E. (2015). New opportunities in vasopressin and oxytocin research: a perspective from the amygdala. Annual Review of Neuroscience, 38, 369–388.
  • Striedter, G.F. (2005). Principles of Brain Evolution. Sunderland, MA: Sinauer Associates.
  • Swanson, L.W., & Petrovich, G.D. (1998). What is the amygdala? Trends in Neurosciences, 21, 323–331.
  • Tay, T.L., Ronneberger, O., Ryu, S., Nitschke, R., & Driever, W. (2011). Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nature Communications, 2, 171.
  • von Trotha, J.W., Vernier, P., & Bally-Cuif, L. (2014). Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. The European Journal of Neuroscience, 40, 3302–3315.
  • Ware, D.M. (1972). Predation by rainbow trout (Salmo gairdneri): the influence of hunger, prey density, and prey size. Journal of the Fisheries Research Board of Canada, 29, 1193–1201.
  • Weed, J.L., Lane, M.A., Roth, G.S., Speer, D.L., & Ingram, D.K. (1997). Activity measures in rhesus monkeys on long-term calorie restriction. Physiology & Behavior, 62, 97–103.
  • Weil, Z.M., Zhang, Q., Hornung, A., Blizard, D., & Pfaff, D.W. (2010). Impact of generalized brain arousal on sexual behavior. Proceedings of National Academic Sciences of United States of America, 107, 2265–2270.
  • Wester, J.C., & McBain, C.J. (2014). Behavioral state-dependent modulation of distinct interneuron subtypes and consequences for circuit function. Current Opinion in Neurobiology, 29, 118–125.
  • Wise, R.A., & Bozarth, M.A. (1987). A psychomotor stimulant theory of addiction. Psychological Review, 94, 469–492.
  • Wolman, M.A., Jain, R.A., Liss, L., & Granato, M. (2011). Chemical modulation of memory formation in larval zebrafish. Proceedings of National Academic Sciences of United States of America, 108, 15468–15473.
  • Woods, I.G., Schoppik, D., Shi, V.J., Zimmerman, S., Coleman, H.A., Greenwood, J., … Schier, A.F. (2014). Neuropeptidergic Signaling Partitions Arousal Behaviors in Zebrafish. The Journal of Neuroscience, 34, 3142–3160.
  • Woodworth, R.S. (1918). Dynamic Psychology. New York: Columbia University Press.
  • Wullimann, M.F., & Mueller, T. (2004). Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. The Journal of Comparative Neurology, 475, 143–162.
  • Wullimann, M.F., & Puelles, L. (1999). Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains. Anatomy and Embryology, 199, 329–348.
  • Yeh, C.-M., Glöck, M., & Ryu, S. (2013). An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish. PLoS One, 8, e79406.
  • Yokogawa, T., Hannan, M.C., & Burgess, H.A. (2012). The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. The Journal of Neuroscience, 32, 15205–15215.
  • Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang, J., … Mignot, E. (2007). Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biology, 5, 2379–2397.
  • Zahm, D.S. (2006). The evolving theory of basal forebrain functional-anatomical “macrosystems”. Neuroscience and Biobehavioral Reviews, 30, 148–172.
  • Zahm, D.S., Parsley, K.P., Schwartz, Z.M., & Cheng, A.Y. (2013). On lateral septum-like characteristics of outputs from the accumbal hedonic “hotspot” of Peciña and Berridge with commentary on the transitional nature of basal forebrain “boundaries”. The Journal of Comparative Neurology, 521, 50–68.
  • Zhdanova, I.V., Wang, S.Y., Leclair, O.U., & Danilova, N.P. (2001). Melatonin promotes sleep-like state in zebrafish. Brain Research, 903, 263–268.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.