6,061
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function

&
Pages 133-148 | Received 03 Feb 2016, Accepted 15 Apr 2016, Published online: 22 Jun 2016

References

  • Agarwal, M., Giannoni Guzman, M., Morales-Matos, C., Del Valle Diaz, R.A., Abramson, C.I., & Giray, T. (2011). Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS One, 6, e25371.
  • Albin, S.D., Kaun, K.R., Knapp, J.M., Chung, P., Heberlein, U., & Simpson, J.H. (2015). A subset of serotonergic neurons evokes hunger in adult Drosophila. Current Biology, 25, 2435–2440.
  • Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A.M., & Kimura, M. (1994). Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. Journal of Neuroscience, 14, 3969–3984.
  • Aransay, A., Rodriguez-Lopez, C., Garcia-Amado, M., Clasca, F., & Prensa, L. (2015). Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. Frontiers in Neuroanatomy, 9, 59.
  • Ashby, F.G., & Crossley, M.J. (2011). A computational model of how cholinergic interneurons protect striatal-dependent learning. Journal of Cognitive Neuroscience, 23, 1549–1566.
  • Aso, Y., Siwanowicz, I., Bracker, L., Ito, K., Kitamoto, T., & Tanimoto, H. (2010). Specific dopaminergic neurons for the formation of labile aversive memory. Current Biology, 20, 1445–1451.
  • Aso, Y., Herb, A., Ogueta, M., Siwanowicz, I., Templier, T., Friedrich, A.B., … Tanimoto, H. (2012). Three dopamine pathways induce aversive odor memories with different stability. PLoS Genetics, 8, e1002768.
  • Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., … Rubin, G.M. (2014a). The neuronal architecture of the mushroom body provides a logic for associative learning. Elife, 3, e04577.
  • Aso, Y., Sitaraman, D., Ichinose, T., Kaun, K.R., Vogt, K., Belliart-Guerin, G., … Rubin, G.M. (2014b). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife, 3, e04580.
  • Ault, D.T., Radeff, J.M., & Werling, L.L. (1998). Modulation of [3H]Dopamine release from rat nucleus accumbens by neuropeptide Y may involve a sigma1-like receptor. Journal of Pharmacology and Experimental Therapeutics, 284, 553–560.
  • Avery, L., & Horvitz, H.R. (1990). Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. Journal of Experimental Zoology, 253, 263–270.
  • Barreiro-Iglesias, A., Cornide-Petronio, M.E., Anadon, R., & Rodicio, M.C. (2009). Serotonin and GABA are colocalized in restricted groups of neurons in the larval sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. Journal of Anatomy, 215, 435–443.
  • Berger, B.D., Wise, C.D., & Stein, L. (1971). Norepinephrine: reversal of anorexia in rats with lateral hypothalamic damage. Science, 172, 281–284.
  • Berry, J.A., Cervantes-Sandoval, I., Chakraborty, M., & Davis, R.L. (2015). Sleep facilitates memory by blocking dopamine neuron-mediated forgetting. Cell, 161, 1656–1667.
  • Boto, T., Louis, T., Jindachomthong, K., Jalink, K., & Tomchik, S.M. (2014). Dopaminergic modulation of cAMP drives nonlinear plasticity across the Drosophila mushroom body lobes. Current Biology, 24, 822–831.
  • Brand, A.H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  • Brischoux, F., Chakraborty, S., Brierley, D.I., & Ungless, M.A. (2009). Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proceedings of National Academic Sciences of United States of America, 106, 4894–4899.
  • Brody, T., & Cravchik, A. (2000). Drosophila melanogaster G protein-coupled receptors. Journal of Cell Biology, 150, F83–F88.
  • Brown, R.E., & McKenna, J.T. (2015). Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Frontiers in Neurology, 6, 135.
  • Bubar, M.J., Stutz, S.J., & Cunningham, K.A. (2011). 5-HT(2C) receptors localize to dopamine and GABA neurons in the rat mesoaccumbens pathway. PLoS One, 6, e20508.
  • Burke, C.J., Huetteroth, W., Owald, D., Perisse, E., Krashes, M.J., Das, G., … Waddell, S. (2012). Layered reward signalling through octopamine and dopamine in Drosophila. Nature, 492, 433–437.
  • Campbell, A.D., Kohl, R.R., & McBride, W.J. (1996). Serotonin-3 receptor and ethanol-stimulated somatodendritic dopamine release. Alcohol, 13, 569–574.
  • Cannell, E., Dornan, A.J., Halberg, K.A., Terhzaz, S., Dow, J.A., & Davies, S.A. (2016). The corticotropin-releasing factory-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides. doi: 10.1016/j.peptides.2016.02.004.
  • Caputi, A., Melzer, S., Michael, M., & Monyer, H. (2013). The long and short of GABAergic neurons. Current Opinion in Neurobiology, 23, 179–186.
  • Cheong, M.C., Artyukhin, A.B., You, Y.-J., & Avery, L. (2015). An opioid-like system regulating feeding behavior in C. elegans. eLife, 4:e06683. doi: 10.7554/eLife.06683.
  • Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., … Hwang, J.K. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology, 21, 1–11.
  • Claridge-Chang, A., Roorda, R.D., Vrontou, E., Sjulson, L., Li, H., Hirsh, J., & Miesenbock, G. (2009). Writing memories with light-addressable reinforcement circuitry. Cell, 139, 405–415.
  • Cohen, J.Y., Amoroso, M.W., & Uchida, N. (2015). Serotonergic neurons signal reward and punishment on multiple timescales. eLife, 4:e06346.
  • Cohn, R., Morantte, I., & Ruta, V. (2015). Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell, 163, 1–15.
  • Cone, J.J., McCutcheon, J.E., & Roitman, M.F. (2014). Ghrelin acts as an interface between physiological state and phasic dopamine signaling. Journal of Neuroscience, 34, 4905–4913.
  • Cornwall, J., Cooper, J.D., & Phillipson, O.T. (1990). Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Research Bulletin, 25, 271–284.
  • Cox, S.M., Frank, M.J., Larcher, K., Fellows, L.K., Clark, C.A., Leyton, M., & Dagher, A. (2015). Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes. Neuroimage, 109, 95–101.
  • Croll, N.A. (1975). Indolealkylamines in the coordination of nematode behavioral activities. Canadian Journal of Zoology, 53, 894–903.
  • Crow, T.J. (1972). A map of the rat mesencephalon for electrical self-stimulation. Brain reserach, 36, 265–273.
  • de Bono, M., Tobin, D.M., Davis, M.W., Avery, L., & Bargmann, C.I. (2002). Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature, 419, 899–903.
  • del Valle Rodriguez, A., Didiano, D., & Desplan, C. (2012). Power tools for gene expression and clonal analysis in Drosophila. Nature methods, 9, 47–55.
  • Dobbs, L.K., & Cunningham, C.L. (2014). The role of the laterodorsal tegmental nucleus in methamphetamine conditioned place preference and locomotor activity. Behavior Brain Research, 265, 198–202.
  • Farooqui, T., Robinson, K., Vaessin, H., & Smith, B.H. (2003). Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. Journal of Neuroscience, 23, 5370–5380.
  • Farris, S.M. (2011). Are mushroom bodies cerebellum-like structures? Arthropod Structure & Development, 40, 368–379.
  • Fenno, L., Yizhar, O., & Deisseroth, K. (2011). The development and application of optogenetics. Annual Review of Neuroscience, 34, 389–412.
  • Franklin, N.T., & Frank, M.J. (2015). A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. Elife, 4:e12029 1–29. doi:10.7554/eLife.12029.
  • Fu, W., Le Maitre, E., Fabre, V., Bernard, J.F., David Xu, Z.Q., & Hokfelt, T. (2010). Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. Journal of Comparative Neurology, 518, 3464–3494.
  • Gagnon, D., & Parent, M. (2014). Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS One, 9, e87709.
  • Gilpin, N.W. (2012). Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence. Neuropeptides, 46, 253–259.
  • Gronier, B., & Rasmussen, K. (1998). Activation of midbrain presumed dopaminergic neurones by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat. British Journal of Pharmacology, 124, 455–464.
  • Gu, H., Zou, Y.R., & Rajewsky, K. (1993). Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell, 73, 1155–1164.
  • Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., & Garrity, P.A. (2008). An internal thermal sensor controlling temperature preference in Drosophila. Nature, 454, 217–220.
  • Hammer, M., & Menzel, R. (1998). Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Memory, 5, 146–156.
  • Han, K.A., Millar, N.S., Grotewiel, M.S., & Davis, R.L. (1996). DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron, 16, 1127–1135.
  • Haynes, P.R., Christmann, B.L., & Griffith, L.C. (2015). A single pair of neurons links sleep to memory consolidation in Drosophila Melanogaster. Elife, 4:e03868 1–24. doi:10.7554/eLife.03868.
  • Hen, R. (1992). Of mice and flies: commonalities among 5-HT receptors. Trends in Pharmacology Science, 13, 160–165.
  • Herve, D., Pickel, V.M., Joh, T.H., & Beaudet, A. (1987). Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Research, 435, 71–83.
  • Hige, T., Aso, Y., Rubin, G.M., & Turner, G.C. (2015). Plasticity-driven individualization of olfactory coding in mushroom body output neurons. Nature, 526, 258–262.
  • Hikida, T., Kimura, K., Wada, N., Funabiki, K., & Nakanishi, S. (2010). Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896–907.
  • Huang, Z.J., & Zeng, H. (2013). Genetic approaches to neural circuits in the mouse. Annual Review of Neuroscience, 36, 183–215.
  • Huetteroth, W., Perisse, E., Lin, S., Klappenbach, M., Burke, C., & Waddell, S. (2015). Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Current Biology, 25, 751–758.
  • Ichinose, T., Aso, Y., Yamagata, N., Abe, A., Rubin, G.M., & Tanimoto, H. (2015). Reward signal in a recurrent circuit drives appetitive long-term memory formation. Elife, 4:e10719 1–28.
  • Inada, K., Kohsaka, H., Takasu, E., Matsunaga, T., & Nose, A. (2011). Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLoS One, 6, e29019.
  • Inglis, F.M., Day, J.C., & Fibiger, H.C. (1994). Enhanced acetylcholine release in hippocampus and cortex during the anticipation and consumption of a palatable meal. Neuroscience, 62, 1049–1056.
  • Inglis, W.L., Olmstead, M.C., & Robbins, T.W. (2001). Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behavior in Brain Research, 123, 117–131.
  • Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L., & Stuber, G.D. (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496, 224–228.
  • Johnson, O., Becnel, J., & Nichols, C.D. (2011). Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster. Neuroscience, 192, 372–381.
  • Joshua, M., Adler, A., Mitelman, R., Vaadia, E., & Bergman, H. (2008). Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. Journal of Neuroscience, 28, 11673–11684.
  • Kaczer, L., Klappenbach, M., & Maldonado, H. (2011). Dissecting mechanisms of reconsolidation: octopamine reveals differences between appetitive and aversive memories in the crab Chasmagnathus. European Journal of Neuroscience, 34, 1170–1178.
  • Kaczer, L., & Maldonado, H. (2009). Contrasting role of octopamine in appetitive and aversive learning in the crab Chasmagnathus. PLoS One, 4, e6223.
  • Kim, Y.C., Lee, H.G., & Han, K.A. (2007). D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. Journal of Neuroscience, 27, 7640–7647.
  • Kim, Y.C., Lee, H.G., Seong, C.S., & Han, K.A. (2003). Expression of a D1 dopamine receptor dDA1/DmDOP1 in the central nervous system of Drosophila melanogaster. Gene Expression Patterns, 3, 237–245.
  • Kitai, S.T., Shepard, P.D., Callaway, J.C., & Scroggs, R. (1999). Afferent modulation of dopamine neuron firing patterns. Current Opinion in Neurobiology, 9, 690–697.
  • Kitamoto, T. (2002). Targeted expression of temperature-sensitive dynamin to study neural mechanisms of complex behavior in Drosophila. Journal of Neurogenetics, 16, 205–228.
  • Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., … Boyden, E.S. (2014). Independent optical excitation of distinct neural populations. Nature Methods, 11, 338–346.
  • Klappenbach, M., Maldonado, H., Locatelli, F., & Kaczer, L. (2012). Opposite actions of dopamine on aversive and appetitive memories in the crab. Learn Memory, 19, 73–83.
  • Korotkova, T.M., Brown, R.E., Sergeeva, O.A., Ponomarenko, A.A., & Haas, H.L. (2006). Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. European Journal of Neuroscience, 23, 2677–2685.
  • Krashes, M.J., DasGupta, S., Vreede, A., White, B., Armstrong, J.D., & Waddell, S. (2009). A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell, 139, 416–427.
  • Kravitz, A.V., Tye, L.D., & Kreitzer, A.C. (2012). Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nature Neuroscience, 15, 816–818.
  • Labouebe, G., Liu, S., Dias, C., Zou, H., Wong, J.C., Karunakaran, S., … Borgland, S.L. (2013). Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nature Neuroscience, 16, 300–308.
  • Lammel, S., Ion, D.I., Roeper, J., & Malenka, R.C. (2011). Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70, 855–862.
  • Lammel, S., Lim, B.K., Ran, C., Huang, K.W., Betley, M.J., Tye, K.M., … Malenka, R.C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491, 212–217.
  • Lee, P.T., Lin, H.W., Chang, Y.H., Fu, T.F., Dubnau, J., Hirsh, J., … Chiang, A.S. (2011). Serotonin-mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila. Proceedings of National academic Sciences of United States of America, 108, 13794–13799.
  • Lewis, L.P., Siju, K.P., Aso, Y., Friedrich, A.B., Bulteel, A.J., Rubin, G.M., & Grunwald Kadow, I.C. (2015). A higher brain circuit for immediate integration of conflicting sensory information in Drosophila. Current biology, 25, 2203–2214.
  • Liu, C., Placais, P.Y., Yamagata, N., Pfeiffer, B.D., Aso, Y., Friedrich, A.B., … Tanimoto, H. (2012). A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature, 488, 512–516.
  • Liu, W., Thielen, R.J., Rodd, Z.A., & McBride, W.J. (2006). Activation of serotonin-3 receptors increases dopamine release within the ventral tegmental area of Wistar and alcohol-preferring (P) rats. Alcohol, 40, 167–176.
  • Liu, X., & Davis, R.L. (2009). The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nature neuroscience, 12, 53–59.
  • Lobo, M.K., & Nestler, E.J. (2011). The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Frontiers in Neuroanatomy, 5, 41.
  • Loewi, O. (1921). Über humorale übertragbarkeit der Herznervenwirkung. Pflüger’s Archiv Für Die Gesamte Physiologie Des Menschen Und Der Tiere, 189, 239–242.
  • Luan, H., Peabody, N.C., Vinson, C.R., & White, B.H. (2006). Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron, 52, 425–436.
  • Luan, H., & White, B.H. (2007). Combinatorial methods for refined neuronal gene targeting. Current Opinion in Neurobiology, 17, 572–580.
  • Ma, P.M. (1994). Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus. Journal of Comparative Neurology, 344, 256–269.
  • Ma, P.M. (2003). Catecholaminergic systems in the zebrafish. IV. Organization and projection pattern of dopaminergic neurons in the diencephalon. Journal of Comparative Neurology, 460, 13–37.
  • Margolis, E.B., Toy, B., Himmels, P., Morales, M., & Fields, H.L. (2012). Identification of rat ventral tegmental area GABAergic neurons. PLoS One, 7, e42365.
  • Margules, D.L. (1969). Noradrenergic rather than serotonergic basis of reward in the dorsal tegmentum. Journal of Comparative and Physiological Psychology, 67, 32–35.
  • Maskos, U. (2008). The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. British Journal of Pharmacology, 153, S438–S445.
  • Matsuda, W., Furuta, T., Nakamura, K.C., Hioki, H., Fujiyama, F., Arai, R., & Kaneko, T. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. Journal of Neuroscience, 29, 444–453.
  • McDevitt, R.A., Tiran-Cappello, A., Shen, H., Balderas, I., Britt, J.P., Marino, R.A., … Bonci, A. (2014). Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential participation in reward circuitry. Cell reports, 8, 1857–1869.
  • Mendlin, A., Martin, F.J., & Jacobs, B.L. (1999). Dopaminergic input is required for increases in serotonin output produced by behavioral activation: an in vivo microdialysis study in rat forebrain. Neuroscience, 93, 897–905.
  • Mizunami, M., Hamanaka, Y., & Nishino, H. (2015). Toward elucidating diversity of neural mechanisms underlying insect learning. Zoological Letters, 1, 8.
  • Morris, G., Arkadir, D., Nevet, A., Vaadia, E., & Bergman, H. (2004). Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron, 43, 133–143.
  • Nair-Roberts, R.G., Chatelain-Badie, S.D., Benson, E., White-Cooper, H., Bolam, J.P., & Ungless, M.A. (2008). Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience, 152, 1024–1031.
  • Nakanishi, S., Hikida, T., & Yawata, S. (2014). Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors. Neuroscience, 282C, 49–59.
  • Nocjar, C., Roth, B.L., & Pehek, E.A. (2002). Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience, 111, 163–176.
  • Oakman, S.A., Faris, P.L., Kerr, P.E., Cozzari, C., & Hartman, B.K. (1995). Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. Journal of Neuroscience, 15, 5859–5869.
  • Okada, K., & Kobayashi, Y. (2013). Reward prediction-related increases and decreases in tonic neuronal activity of the pedunculopontine tegmental nucleus. Frontiers in Integrated Neuroscience, 7, 36.
  • Okada, K., Toyama, K., Inoue, Y., Isa, T., & Kobayashi, Y. (2009). Different pedunculopontine tegmental neurons signal predicted and actual task rewards. Journal of Neuroscience, 29, 4858–4870.
  • Opland, D.M., Leinninger, G.M., & Myers, M.G., Jr. (2010). Modulation of the mesolimbic dopamine system by leptin. Brain Research, 1350, 65–70.
  • Owald, D., Felsenberg, J., Talbot, C.B., Das, G., Perisse, E., Huetteroth, W., & Waddell, S. (2015). Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron, 86, 417–427.
  • Peroutka, S.J., & Howell, T.A. (1994). The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology, 33, 319–324.
  • Perry, C.J., & Barron, A.B. (2013). Neural mechanisms of reward in insects. Annual Reviews of Entomology, 58, 543–562.
  • Perry, M.L., Leinninger, G.M., Chen, R., Luderman, K.D., Yang, H., Gnegy, M.E., … Kennedy, R.T. (2010). Leptin promotes dopamine transporter and tyrosine hydroxylase activity in the nucleus accumbens of Sprague-Dawley rats. Journal of Neurochemistry, 114, 666–674.
  • Peyron, C., Luppi, P.H., Kitahama, K., Fort, P., Hermann, D.M., & Jouvet, M. (1995). Origin of the dopaminergic innervation of the rat dorsal raphe nucleus. Neuroreport, 6, 2527–2531.
  • Placais, P.Y., Trannoy, S., Friedrich, A.B., Tanimoto, H., & Preat, T. (2013). Two pairs of mushroom body efferent neurons are required for appetitive long-term memory retrieval in Drosophila. Cell Reports, 5, 769–780.
  • Pupe, S., & Wallen-Mackenzie, A. (2015). Cre-driven optogenetics in the heterogeneous genetic panorama of the VTA. Trends in Neuroscience, 38, 375–386.
  • Qi, C., & Lee, D. (2014). Pre- and postsynaptic role of dopamine D2 receptor DD2R in Drosophila olfactory associative learning. Biology (Basel), 3, 831–845.
  • Quarta, D., Leslie, C.P., Carletti, R., Valerio, E., & Caberlotto, L. (2011). Central administration of NPY or an NPY-Y5 selective agonist increase in vivo extracellular monoamine levels in mesocorticolimbic projecting areas. Neuropharmacology, 60, 328–335.
  • Quarta, D., & Smolders, I. (2014). Rewarding, reinforcing and incentive salient events involve orexigenic hypothalamic neuropeptides regulating mesolimbic dopaminergic neurotransmission. European Journal of Pharmaceutical Science, 57, 2–10.
  • Riemensperger, T., Voller, T., Stock, P., Buchner, E., & Fiala, A. (2005). Punishment prediction by dopaminergic neurons in Drosophila. Current Biology, 15, 1953–1960.
  • Rink, E., & Guo, S. (2004). The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience, 127, 147–154.
  • Rink, E., & Wullimann, M.F. (2001). The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Research, 889, 316–330.
  • Rink, E., & Wullimann, M.F. (2002). Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Research Bulletin, 57, 385–387.
  • Rink, E., & Wullimann, M.F. (2004). Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain research, 1011, 206–220.
  • Ritter, S., & Stein, L. (1974). Self-stimulation in the mesencephalic trajectory of the ventral noradrenergic bundle. Brain Research, 81, 145–157.
  • Roeder, T. (1999). Octopamine in invertebrates. Progress in Neurobiology, 59, 533–561.
  • Roeder, T. (2005). Tyramine and octopamine: ruling behavior and metabolism. Annual Review of Entomology, 50, 447–477.
  • Roeper, J. (2013). Dissecting the diversity of midbrain dopamine neurons. Trends in Neuroscience, 36, 336–342.
  • Rohwedder, A., Selcho, M., Chassot, B., & Thum, A.S. (2015). Neuropeptide F neurons modulate sugar reward during associative olfactory learning of Drosophila larvae. Journal of Comparative Neurology, 523, 2637–2664.
  • Rolls, M.M, & Jegla, T.J. (2015). Neuronal polarity: an evolutionary perspective. Journal of Experimental Biology, 218, 572–580.
  • Root, D.H., Hoffman, A.F., Good, C.H., Zhang, S., Gigante, E., Lupica, C.R., & Morales, M. (2015). Norepinephrine activates dopamine D4 receptors in the rat lateral habenula. Journal of Neuroscience, 35, 3460–3469.
  • Root, D.H., Mejias-Aponte, C.A., Qi, J., & Morales, M. (2014). Role of glutamatergic projections from ventral tegmental area to lateral habenula in aversive conditioning. Journal of Neuroscience, 34, 13906–13910.
  • Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., … Fiala, A. (2006). Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Current Biology, 16, 1741–1747.
  • Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., & Heisenberg, M. (2003). Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. Journal of Neuroscience, 23, 10495–10502.
  • Schwarz, L.A., Miyamichi, K., Gao, X.J., Beier, K.T., Weissbourd, B., DeLoach, K.E., … Luo, L. (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 524, 88–92.
  • Sejourne, J., Placais, P.Y., Aso, Y., Siwanowicz, I., Trannoy, S., Thoma, V., … Preat, T. (2011). Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nature Neuroscience, 14, 903–910.
  • Shinohara, F., Kihara, Y., Ide, S., Minami, M., & Kaneda, K. (2014). Critical role of cholinergic transmission from the laterodorsal tegmental nucleus to the ventral tegmental area in cocaine-induced place preference. Neuropharmacology, 79, 573–579.
  • Shohat-Ophir, G., Kaun, K.R., Azanchi, R., Mohammed, H., & Heberlein, U. (2012). Sexual deprivation increases ethanol intake in Drosophila. Science, 335, 1351–1355.
  • Shuai, Y., Hu, Y., Qin, H., Campbell, R.A., & Zhong, Y. (2011). Distinct molecular underpinnings of Drosophila olfactory trace conditioning. Proceedings of National Academic Sciences of United States of America, 108, 20201–20206.
  • Sitaraman, D., LaFerriere, H., Birman, S., & Zars, T. (2012). Serotonin is critical for rewarded olfactory short-term memory in Drosophila. Journal of Neurogenetics, 26, 238–244.
  • Solecki, W., Wickham, R.J., Behrens, S., Wang, J., Zwerling, B., Mason, G.F., & Addy, N.A. (2013). Differential role of ventral tegmental area acetylcholine and N-methyl-D-aspartate receptors in cocaine-seeking. Neuropharmacology, 75, 9–18.
  • Song, B.M., Faumont, S., Lockery, S., & Avery, L. (2013). Recognition of familiar food activates feeding via an endocrine serotonin signal in Caenorhabditis elegans. Elife, 2, e00329.
  • Sorensen, A.T., Nikitidou, L., Ledri, M., Lin, E.J., During, M.J., Kanter-Schlifke, I., & Kokaia, M. (2009). Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP. Experimental Neurology, 215, 328–333.
  • Spitzer, N.C. (2015). Neurotransmitter Switching? No Surprise. Neuron, 86, 1131–1144. doi:10.1016/j.neuron.2015.05.028
  • Stephenson-Jones, M., Floros, O., Robertson, B., & Grillner, S. (2012). Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems. Proceedings of National Academic Sciences of United States of America, 109, E164–E173.
  • Strausfeld, N.J. (2009). Brain organization and the origin of insects: an assessment. Proceedings of the Biological Sciences, 276, 1929–1937.
  • Strausfeld, N.J., & Hirth, F. (2013). Deep homology of arthropod central complex and vertebrate basal ganglia. Science, 340, 157–161.
  • Suo, S., Culotti, J.G., & Van Tol, H.H. (2009). Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO Journal, 28, 2437–2448.
  • Sze, J.Y., Victor, M., Loer, C., Shi, Y., & Ruvkun, G. (2000). Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature, 403, 560–564.
  • Tan, K.R., Yvon, C., Turiault, M., Mirzabekov, J.J., Doehner, J., Labouèbe, G., … Lüscher, C. (2012). GABA neurons of the VTA drive conditioned place aversion. Neuron, 73, 1173–1183.
  • Tan, C.O., & Bullock, D. (2008). A dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons. Journal of Neurophysiology, 100, 2409–2421.
  • Tay, T.L., Ronneberger, O., Ryu, S., Nitschke, R., & Driever, W. (2011). Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nature Communications, 2, 171.
  • Tomchik, S.M., & Davis, R.L. (2009). Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Neuron, 64, 510–521.
  • Ungless, M.A., Magill, P.J., & Bolam, J.P. (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli Science, 303, 2040–2042.
  • Unoki, S., Matsumoto, Y., & Mizunami, M. (2005). Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study. European journal of Neuroscience, 22, 1409–1416.
  • Vahatalo, L.H., Ruohonen, S.T., Ailanen, L., & Savontaus, E. (2015). Neuropeptide Y in noradrenergic neurons induces obesity in transgenic mouse models. Neuropeptides, 55:31–37. doi:10.1016/j.npep.2015.11.088.
  • van Zessen, R., PHillips, J.L., Budygin, E.A., & Stuber, G.D. (2012). Activation of VTA GABA neurons disrupts reward consumption. Neuron, 73, 1184–1194.
  • Velasquez-Martinez, M.C., Vazquez-Torres, R., & Jimenez-Rivera, C.A. (2012). Activation of alpha1-adrenoceptors enhances glutamate release onto ventral tegmental area dopamine cells. Neuroscience, 216, 18–30.
  • Venken, K.J., Simpson, J.H., & Bellen, H.J. (2011). Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron, 72, 202–230.
  • Vergoz, V., Roussel, E., Sandoz, J.C., & Giurfa, M. (2007). Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS One, 2, e288.
  • Voigt, J.P., & Fink, H. (2015). Serotonin controlling feeding and satiety. Behavior Brain Research, 277, 14–31.
  • Waddell, S. (2013). Reinforcement signalling in Drosophila; dopamine does it all after all. Current Opinion in Neurobiology, 23, 324–329.
  • Wang, Y., Pu, Y., & Shen, P. (2013). Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. Cell Reports, 3, 820–830.
  • Witten, I.B., Lin, S.C., Brodsky, M., Prakash, R., Diester, I., Anikeeva, P., … Deisseroth, K. (2010). Cholinergic interneurons control local circuit activity and cocaine conditioning. Science, 330, 1677–1681.
  • Wolff, G. H., & Strausfeld, N.J. (2015). Genealogical correspondence of mushroom bodies across invertebrate phyla. Current Biology, 25, 38–44.
  • Wood, J., Verma, D., Lach, G., Bonaventure, P., Herzog, H., Sperk, G., & Tasan, R.O. (2015). Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala. Brain Structure and Function. 1–19 doi:10.1007/s00429-015-1107-7.
  • Wu, C.L., Shih, M.F., Lee, P.T., & Chiang, A.S. (2013). An octopamine-mushroom body circuit modulates the formation of anesthesia-resistant memory in Drosophila. Current Biology, 23, 2346–2354.
  • Wu, Q., Wen, T., Lee, G., Park, J.H., Cai, H.N., & Shen, P. (2003). Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron, 39 (1), 147–161.
  • Xia, S., & Chiang, A.S. (2009). NMDA receptors in Drosophila. In: A.M. Van Dongen, ed. Biology of the NMDA Receptor. Boca Raton, FL: CRC Press.
  • Yawata, S., Yamaguchi, T., Danjo, T., Hikida, T., & Nakanishi, S. (2012). Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proceedings of National Academic Sciences of United States of America, 109, 12764–12769.
  • Yokobori, E., Azuma, M., Nishiguchi, R., Kang, K.S., Kamijo, M., Uchiyama, M., & Matsuda, K. (2012). Neuropeptide Y stimulates food intake in the Zebrafish, Danio rerio. Journal of Neuroendocrinology, 24, 766–773.
  • Zhang, T., Branch, A., & Shen, P. (2013). Octopamine-mediated circuit mechanism underlying controlled appetite for palatable food in Drosophila. Proceedings of National Academic Sciences of United States of America, 110, 15431–15436.