874
Views
41
CrossRef citations to date
0
Altmetric
Review Article

Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes

, , &
Pages 89-100 | Received 26 Mar 2016, Accepted 21 Apr 2016, Published online: 14 Jun 2016

References

  • Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., & Keller, P.J. (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature Methods, 10, 413–420.
  • Allan, M.J., Godenschwege, T.A., Tanouye, M.A., & Phelan, P. (2006). Making an escape: development and function of the Drosophila giant fiber system. Seminars in cell and Developmental Biology, 17, 31–41.
  • Bacon, J.P., & Strausfeld, N.J. (1986). The dipteran ‘Giant fibre’ pathway: neurons and signals. Journal of Comparative Physiology A, 158, 529–548.
  • Baines, R.A., Uhler, J.P., Thompson, A., Sweeney, S.T., & Bate, M. (2001). Altered electrical properties in drosophila neurons. The Journal of Neuroscience, 21, 1523–1531.
  • Bernhardt, R.R., Chitnis, A.B., Lindamer, L., & Kuwada, J.Y. (1915). Mauthner’s cell and the nucleus motorius tegmenti. Journal of Comparative Neurology, 25, 87–128.
  • Bernhardt, R.R., Chitnis, A.B., Lindamer, L., & Kuwada, J.Y. (1990). Identification of spinal neurons in the embryonic and larval zebrafish. Journal of Comparative Neurology, 302, 603–616.
  • Bierman, H.S., Zottoli, S.J, & Hale, M.E. (2009). Evolution of the Mauthner axon cap. Brain Behavior and Evolution, 73, 174–187.
  • Bodian, D. (1937). The structure of the vertebrate synapse. A study of the axon endings on Mauthner’s cell and neighboring centers in the goldfish. Journal of Comparative Neurology, 68, 117–159.
  • Borst, A. (2014). Neural circuits for elementary motion detection. Journal of Neurogenetics, 2014, 361–373.
  • Card, G.M. (2012). Escape behaviors in insects. Current Opinion in Neurobiology, 22, 180–186.
  • Card, G., & Dickinson, M. (2008a). Performance trade-offs in the flight initiation of Drosophila. Journal of Experimental Biology, 211, 341–353.
  • Card, G., & Dickinson, M. (2008b). Visually mediated motor planning in the escape response of Drosophila. Current Biology, 18, 1300–1307.
  • Cho, W., Heberlein, U., & Wolf, F.W. (2004). Habituation of an odorant-induced startle response in Drosophila. Genes, Brain and Behavior, 3, 127–137.
  • Currie, S., & Carlsen, R.C. (1985). A rapid startle response in larval lampreys. Brain Research, 358, 367–371.
  • Davis, M.I., Gendelman, D.S., Tischler, M.D., & Gendelman, P.M. (1982). A primary acoustic startle circuit: lesion and stimulation studies. The Journal of Neuroscience, 2, 791–805.
  • De Vries, S.E.J., & Clandinin, T.R. (2012). Loom sensitive neurons link computation to action in the Drosophila visual system. Current Biology, 22, 353–362.
  • Diamond, J. (1971. The Mauthner cell. In: Hoar, W.S., Randall, D.J. eds. Fish Physiology vol. V., New York: Academic Press, 265–346.
  • Dill, L.M. (1974). The escape response of the zebra danio (Brachdanio rerio). I. The stimulus for escape. Animal Behaviour, 22, 710–721.
  • Domenici, P., & Blake, R. (1997). The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 200, 1165–1178.
  • Doudna, J.A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 1077–1087.
  • Dunn, T.W., Gebhardt, C., Naumann, E.A., Riegler, C., Ahrens, M.B., Engert, F., & Del Bene, F. (2016). Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron, 89, 613–628.
  • Eaton, R.C., & Emberley, S.D. (1991). How stimulus direction determines the trajectory of the Mauthner-initiated escape response in a teleost fish. Journal of Experimental Biology, 161, 469–487.
  • Eaton, R.C., Lee, R.K.K., & Foreman, M.B. (2001). The Mauthner cell and other identified neurons of the brainstem escape network of fish. Progress in Neurobiology, 63, 467–485.
  • Edwards, D.H., Heitler, W.J and Krasne, F.B. (1999). Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. Trends in Neurosciences, 22, 153–161.
  • Faber, D.S., & Korn, H. (1978. Neurobiology of the Mauthner Cell. New York: Raven Press.
  • Facchin, L., Burgess, H.A., Siddiqi, M., Granato, M., & Halpern, M.E. (2009). Determining the function of zebrafish epithalamic asymmetry. Philosophical Transactions of the Royal Society B, 364, 1021–1032.
  • Fetcho, J.R., & Faber, S.D. (1988). Identification of motoneurons and interneurons in the spinal network for escapes initiated by the Mauthner cell in goldfish. The Journal of Neuroscience, 8, 4192–4213.
  • Fetcho, J.R., & O'Malley, D.M. (1995). Visualization of active neural circuitry in the spinal cord of intact zebrafish. Journal of Neurophysiology, 73, 399–406.
  • Foreman, M.B., & Eaton, C.R. (1993). The direction change concept for reticulospinal control of goldfish escape. The Journal of Neuroscience, 13, 4101–4113.
  • Gómez-Nieto, R., José de Anchieta, C., Castellano, O., Millian-Morell, L., Rubio, M.E., & López, D.E. (2014). Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex. Frontiers in Neuroscience, 8, 216. doi:10.3389/fnins.2014.00216.
  • Granato, M., van Eeden, F.J.M., Schach, U., Trowe, T., Brand, M., Furutani-Seiki, M., …. Nusslein-Volhard, C. (1996). Genes controlling and mediating locomotion behaviour of the zebrafish embryo and larva. Development, 123,399–413.
  • Hale, M.E. (2002). S- and C-start escape responses of the muskellunge (Esox masquinongy) require alternative neuromotor mechanisms. Journal of Experimental Biology, 205, 2005–2016.
  • Hale, M.E., Ritter, D.A and Fetcho, R.J. (2001). A confocal study of spinal interneurons in living larval zebrafish. Journal of Comparative Neurology, 437, 1–16.
  • Hale, M.E., Kheirbek, M.A., Schriefer, J.E., & Prince, V.E. (2004). Hox gene misexpression and cell-specific lesions reveal functionality of homeotically transformed neurons. The Journal of Neuroscience, 24, 3070–3076.
  • Hammond, S., & M’Shea, O. (2007). Escape flight initation in the fly. Journal of Comparative Physiology A, 193, 471–476.
  • Heidenreich, M., & Zhang, F. (2016). Application of CRISPR-Cas systems in neuroscience. Nature Reviews Neuroscience, 17, 36–44.
  • Ison, J.R., McAdam, D.W., & Hammond, R.G. (1973). Latency and amplitude changes in the acoustic startle reflex of the rat produced by variation in auditory prestimulation. Physiology & Behavior, 10, 1035–1039.
  • Kamikouchi, A., Inagaki, H.K., Effertz, T., Hendrich, O., Fiala, A., Göpfert, M.C., & Ito, K. (2009). The neural basis of Drosophila gravity-sensing and hearing. Nature, 458, 165–71.
  • Katsov, A.Y., & Clandinin, T.R. (2008). Motion processing streams in Drosophila are behaviorally specialized. Neuron, 59, 322–35.
  • Kimura, Y., Okamura, Y., & Higashijima, S.-I. (2006). alx, a zebrafish homolog of chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits. The Journal of Neuroscience, 26, 5684–5697.
  • King, D.G., & Wyman, R.J. (1980). Anatomy of the giant fibre pathway in Drosophila. I. Three thoracic components of the pathway. Journal of Neurocytology, 9, 753–770.
  • Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., … Boyden, E.S. (2014). Independent optical excitation of distinct neural populations. Nature Methods, 11, 338–346.
  • Koch, M. (1999). The neurobiology of startle. Progress in Neurobiology, 59, 107–128.
  • Koch, M., & Schnitzler, H.U. (1997). The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behavioural Brain Research, 89, 35–49.
  • Korn, H., & Faber, S.D. (1975). An electrically mediated inhibition in goldfish medulla. Journal of Neurophysiology, 38, 452–471.
  • Korn, H., & Faber, S.D. (2005). The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron, 47, 13–28.
  • Koyama, M., Kinkhabwala, A., Satou, C., Higashijima, S.-I., & Fetcho, J.R. (2011). Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. Proceedings of the National Academy of Sciences of the United States of America, 108, 1170–1175.
  • Krasne, F.B., Heitler, W.J., & Edwards, D.H. (2014). The escape behavior of crayfish. Nervous Systems and Control of Behavior, 3, 396–427.
  • Lacoste, A.M., Schoppik, D., Robson, D.N., Haesemeyer, M., Portugues, R., Li, J.M., … Schier, A.F. (2015). A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Current Biology, 25,1526–1534.
  • Lee, R.K., Eaton, R.C, & Zottoli, S.J. (1993). Segmental arrangement of reticulospinal neurons in the goldfish hindbrain. Journal of Comparative Neurology, 329, 539–556.
  • Lee, R.K.K., & Eaton, C,R. (1991). Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio Rerio. Journal of Comparative Neurology, 304, 34–52.
  • Lee, Y., López, D.E., Meloni, E.G., & Davis, M. (1996). A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. The Journal of Neuroscience, 16, 3775–3789.
  • Lehnert, B.P., Baker, A.E., Gaudry, Q., Chiang, A., & Wilson, R.I. (2013). Distinct roles of TRP channels in auditory transduction and amplification in drosophila. Neuron, 77, 115–128.
  • Li, L., & Dowling, E,J. (1997). A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. Proceedings of the National Academy of Sciences of the United States of America, 94, 11640–11650.
  • Liao, J.C., & Fetcho, J.R. (2008). Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish. The Journal of Neuroscience, 28, 12982–12992.
  • Lingenhöhl, K., & Friauf, E. (1992). Giant neurons in the caudal pontine reticular formation receive short latency acoustic input: an intracellular recording and HRP‐study in the rat. Journal of Comparative Neurology, 325, 473–492.
  • Lingenhöhl, K., & Friauf, E. (1994). Giant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit. The Journal of Neuroscience, 14, 1176–1194.
  • Liu, K.S., Gray, M., Otto, S.J., Fetcho, J.R., & Beattie, C.E. (2003). Mutations in deadly seven/notch1a reveal developmental plasticity in the escape response circuit. The Journal of Neuroscience, 23, 8159–8166.
  • Liu, K.S., & Fetcho, J.R. (1999). Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. Neuron, 23, 325–335.
  • Liu, Y.C., Bailey, I., & Hale, M.E. (2012). Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio). Journal of Comparative Physiology A 198, 11–24.
  • Liu, Y.C., & Hale, M.E. (2014). Alternative forms of axial startle behaviors in fishes. Zoology, 117, 36–47.
  • Lorent, K., Liu, K.S., Fetcho, J.R., & Granato, M. (2001). The zebrafish space cadet gene controls axonal pathfinding of neurons that modulate fast turning movements. Development, 128, b2131–2142.
  • Mauthner, L. (1859). Untersuchungen uuml;ber den Bau des Ruuml;ckenmarks der Fische. Eine vorlauml;ufige Mittheilung. Sitzgsber Kaiserl Akad Wiss Wien Math-Naturw Classe, 34, 31–6.
  • McClintock, J.M., Kheirbek, M.A., & Prince, V.E. (2002). Knockdown of duplicated zebrafish hoxb1b genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development, 129, 2339–2354.
  • Milde, J.J., & Strausfeld, N.J. (1990). Cluster Organization and Response Characteristics of the Giant Fiber Pathway of the Blowfly Calliphora erythrocephala. Journal of Comparative Neurology, 294, 57–75.
  • Mu, L., Bacon, J.P., Ito, K., & Strausfeld, N.J. (2014). Responses of Drosophila giant descending neurons to visual and mechanical stimuli. Journal of Experimental Biology, 217, 2121–2129.
  • Nakajima, Y. (1974). Fine structure of the synaptic endings on the Mauthner cell of the goldfish. Journal of Comparative Neurology, 156, 375–402.
  • O’Malley, D.M., Kao, Y.-H., & Fetcho, J.R. (1996). Imaging the functional organization of zebrafish hindbrain segments during escape behavior. Neuron, 17, 1145–1155.
  • Palanca, A.M.S., Lee, S.-L., Yee, L.E., Joe-Wong, C., Trinh, L.A., Hiroyasu, E., … Stagasti, A. (2012). New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Developmental Neurobiology, 73, 152–167.
  • Pfaff, D.W., Martin, E.M., & Faber, D. (2012). Origins of arousal: roles for medullary reticular neurons. Trends in Neurosciences, 35, 468–476.
  • Pfeiffer, B.D., Ngo, T.T., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., & Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics, 186, 735–755.
  • Phelan, P., Nakagawa, M., Wilkin, M.B., Moffat, K.G., O'Kane, C.J., Davies, J.A., & Bacon, J.P. (1996). Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system. The Journal of Neuroscience, 16, 1101–1113.
  • Power, M.E. (1948). The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. Journal of Comparative Neurology, 88, 347–409.
  • Rovainen, C.M. (1967). Physiological and anatomical studies on large neurons of central nervous system of sea lamprey (Petromyzon marinus). I. Müller and Mauthner cells. Journal of Neurophysiology, 30, 1000–1023.
  • Satou, C., Kimura, Y., Kohashi, T., Horikawa, K., Takeda, H., Oda, Y., & Higashijima, S.-I. (2009). Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish. The Journal of Neuroscience, 29, 6780–6793.
  • Scott, J.W., Zottoli, S.J., Beatty, N.P., & Korn, H. (1994). Origin and function of spiral fibers projecting to the goldfish Mauthner cell. Journal of Comparative Neurology, 339, 76–90.
  • Sivan-Loukianova, E., & Eberl, D.F. (2005). Synaptic ultrastructure of the Johnston’s organ axon terminals as revealed by an enhancer trap. Journal of Comparative Neurology, 491, 46–55.
  • Svoboda, K.R., Linares, A.E., & Ribera, A.B. (2001). Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development, 128, 3511–3520.
  • Tanouye, M.A., & Wyman, R.J. (1980). Motor outputs of giant nerve fiber in Drosophila. Journal of Neurophysiology, 44, 405–421.
  • Temizer, I., Donovan, J.C., Baier, H., & Semmelhack, J.L. (2015). A visual pathway for looming-evoked escape in larval zebrafish. Current Biology, 25, 1823–1834.
  • Thorsen, D.H., & Hale, M.E. (2007). Neural development of the zebrafish (Danio rerio) pectoral fin. Journal of Comparative Neurology, 504, 168–184.
  • Trimarchi, J.R., & Schneiderman, A.M. (1995). Initation of flight in the unrestrained fly, Drosophila melanogaster. Journal of Zoology, 235, 211–222.
  • Von Reyn, C.R., Breads, P., Peek, M.Y., Zheng, G.Z., Williamson, W.R., Lee, A.L., … Card, G.M. (2014). A spike-timing mechanism for action selection. Nature Neuroscience, 17, 962–970.
  • Yamamoto, A., Zwarts, L., Callaerts, P., Norga, K., Mackay, T.F.C, & Anholt, R.R.H. (2008). Neurogenetic Networks for startle-induced locomotion in Drosophila melanogaster. PNAS, 105, 12393–12398.
  • Yasargil, G.M., & Diamond, J. (1968). Startle response in teleost fish; an elementary circuit for neural descrimination. Nature, 220, 241–243.
  • Yeomans, J.S., & Frankland, P.W. (1995). The acoustic startle reflex: neurons and connections. Brain Research Review, 21, 301–314.
  • Yeomans, J.S., Li, L., Scott, B.W., & Frankland, P.W., (2002). Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neuroscience & Biobehavioral Reviews, 26, 1–11.
  • Zottoli, S.J. (1978. Comparative morphology of the Mauthner cell in fish and amphibians. In: Faber, D.S., Korn, H. ed. Neurobiology of the Mauthner Cell. New York: Raven Press, 13–45.
  • Zottoli, S.J., & Faber, D.S. (2000). The Mauthner cell: what has it taught us? The Neuroscientist, 6, 26–38.
  • Zottoli, S.J., Hordes, A.R, & Faber, D.S. (1987). Localization of optic tectal input to the ventral dendrite of the goldfish Mauthner cell. Brain Research, 401, 113–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.