237
Views
4
CrossRef citations to date
0
Altmetric
Original Research Article

Zebrafish expression reporters and mutants reveal that the IgSF cell adhesion molecule Dscamb is required for feeding and survival

, , , , , & show all
Pages 336-352 | Received 30 Mar 2018, Accepted 22 Jun 2018, Published online: 11 Sep 2018

References

  • Agarwala, K. L., Ganesh, S., Amano, K., Suzuki, T., & Yamakawa, K. (2001). DSCAM, a highly conserved gene in mammals, expressed in differentiating mouse brain. Biochemical and Biophysical Research Communications, 281, 697–705. doi:10.1006/bbrc.2001.4420
  • Agarwala, K. L., Ganesh, S., Tsutsumi, Y., Suzuki, T., Amano, K., & Yamakawa, K. (2001). Cloning and functional characterization of DSCAML1, a novel DSCAM-like cell adhesion molecule that mediates homophilic intercellular adhesion. Biochemical and Biophysical Research Communications, 285, 760–772. doi:10.1006/bbrc.2001.5214
  • Allen, J. R., Bhattacharyya, K. D., Asante, E., Almadi, B., Schafer, K., Davis, J., … Chandrasekhar, A. (2017). Role of branchiomotor neurons in controlling food intake of zebrafish larvae. Journal of Neurogenetics, 1, 10. doi:10.1080/01677063.2017.1358270
  • Amano, K., Fujii, M., Arata, S., Tojima, T., Ogawa, M., Morita, N., … Yamakawa, K. (2009). DSCAM deficiency causes loss of pre-inspiratory neuron synchroneity and perinatal death. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29, 2984–2996. doi:10.1523/JNEUROSCI.3624-08.2009
  • Asakawa, K., & Kawakami, K. (2009). The Tol2-mediated Gal4-UAS method for gene and enhancer trapping in zebrafish. Methods, 49, 275–281. doi:10.1016/j.ymeth.2009.01.004
  • Barlow, G. M., Micales, B., Chen, X.-N., Lyons, G. E., & Korenberg, J. R. (2002). Mammalian DSCAMs: Roles in the development of the spinal cord, cortex, and cerebellum? Biochemical and Biophysical Research Communications, 293, 881–891. doi:10.1016/S0006-291X(02)00307-8
  • Barlow, G. M., Micales, B., Lyons, G. E., & Korenberg, J. R. (2001). Down syndrome cell adhesion molecule is conserved in mouse and highly expressed in the adult mouse brain. Cytogenetics and Cell Genetics, 94, 155–162. doi:10.1159/000048808
  • Bhandiwad, A. A., Zeddies, D. G., Raible, D. W., Rubel, E. W., & Sisneros, J. A. (2013). Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. The Journal of Experimental Biology, 216, 3504–3513. doi:10.1242/jeb.087635
  • Bilotta, J., & Saszik, S. (2001). The zebrafish as a model visual system. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 19, 621–629. doi:10.1016/S0736-5748(01)00050-8
  • Burgess, H. A., & Granato, M. (2007a). Modulation of locomotor activity in larval zebrafish during light adaptation. The Journal of Experimental Biology, 210, 2526–2539. doi:10.1242/jeb.003939
  • Burgess, H. A., & Granato, M. (2007b). Sensorimotor gating in larval zebrafish. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 4984–4994. doi:10.1523/JNEUROSCI.0615-07.2007
  • Burgess, H. A., Schoch, H., & Granato, M. (2010). Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Current Biology, 20, 381–386. doi:10.1016/j.cub.2010.01.022
  • Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., … Voytas, D. F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39, e82. doi:10.1093/nar/gkr218
  • Chandrasekhar, A. (2004). Turning heads: development of vertebrate branchiomotor neurons. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 229, 143–161. doi:10.1002/dvdy.10444
  • China, V., & Holzman, R. (2014). Hydrodynamic starvation in first-feeding larval fishes. Proceedings of the National Academy of Sciences of the United States of America, 111, 8083–8088. doi:10.1073/pnas.1323205111
  • Das, A., & Gage Crump, J. (2012). Bmps and Id2a act upstream of Twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genetics, 8, e1002710. doi:10.1371/journal.pgen.1002710
  • de Andrade, G. B., Kunzelman, L., Merrill, M. M., & Fuerst, P. G. (2014). Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Molecular Vision, 20, 1422–1433.
  • de Andrade, G. B., Long, S. S., Fleming, H., Li, W., & Fuerst, P. G. (2014). DSCAM localization and function at the mouse cone synapse. The Journal of Comparative Neurology, 522, 2609–2633. doi:10.1002/cne.23552
  • Delabar, J. M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J. L., Prieur, M., … Sinet, P. M. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. European Journal of Human Genetics, 1, 114–124. doi:10.1159/000472398
  • Diogo, R., Hinits, Y., & Hughes, S. M. (2008). Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: Homologies and evolution of these muscles within bony fishes and tetrapods. BMC Developmental Biology, 8, 24. doi:10.1186/1471-213X-8-24
  • Field, H. A., Kelley, K. A., Martell, L., Goldstein, A. M., & Serluca, F. C. (2009). Analysis of gastrointestinal physiology using a novel intestinal transit assay in zebrafish. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 21, 304–312. doi:10.1111/j.1365-2982.2008.01234.x
  • Fleisch, V. C., & Neuhauss, S. C. F. (2006). Visual behavior in zebrafish. Zebrafish, 3, 191–201. doi:10.1089/zeb.2006.3.191
  • Fuerst, P. G., Bruce, F., Rounds, R. P., Erskine, L., & Burgess, R. W. (2012). Cell autonomy of DSCAM function in retinal development. Developmental Biology, 361, 326–337. doi:10.1016/j.ydbio.2011.10.028
  • Fuerst, P. G., Bruce, F., Tian, M., Wei, W., Elstrott, J., Feller, M. B., … Burgess, R. W. (2009). DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron, 64, 484–497. doi:10.1016/j.neuron.2009.09.027
  • Fuerst, P. G., Harris, B. S., Johnson, K. R., & Burgess, R. W. (2010). A novel null allele of mouse DSCAM survives to adulthood on an inbred C3H background with reduced phenotypic variability. Genesis, 48, 577–584. doi:10.1002/dvg.20662
  • Fuerst, P. G., Koizumi, A., Masland, R. H., & Burgess, R. W. (2008). Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature, 451, 470–474. doi:10.1038/nature06514
  • Gahtan, E., Tanger, P., & Baier, H. (2005). Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 9294–9303. doi:10.1523/JNEUROSCI.2678-05.2005
  • Hamdani, E. H., Kasumyan, A., & Døving, K. B. (2001). Is feeding behaviour in crucian carp mediated by the lateral olfactory tract? Chemical Senses, 26, 1133–1138. doi:10.1093/chemse/26.9.1133
  • Hattori, D., Millard, S. S., Wojtowicz, W. M., & Zipursky, S. L. (2008). Dscam-mediated cell recognition regulates neural circuit formation. Annual Review of Cell and Developmental Biology, 24, 597–620. doi:10.1146/annurev.cellbio.24.110707.175250
  • Hernandez, L. P., Patterson, S. E., & Devoto, S. H. (2005). The development of muscle fiber type identity in zebrafish cranial muscles. Anatomy and Embryology, 209, 323–334. doi:10.1007/s00429-004-0448-4
  • Hörnberg, H., Wollerton-van Horck, F., Maurus, D., Zwart, M., Svoboda, H., Harris, W. A., & Holt, C. E. (2013). RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 10384–10395. doi:10.1523/JNEUROSCI.5858-12.2013
  • Hughes, M. E., Bortnick, R., Tsubouchi, A., Bäumer, P., Kondo, M., Uemura, T., & Schmucker, D. (2007). Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron, 54, 417–427. doi:10.1016/j.neuron.2007.04.013
  • Hyatt, G. A., Schmitt, E. A., Fadool, J. M., & Dowling, J. E. (1996). Retinoic acid alters photoreceptor development in vivo. Proceedings of the National Academy of Sciences of the United States of America, 93, 13298–13303. doi:10.1073/pnas.93.23.13298
  • Jao, L.-E., Wente, S. R., & Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences of the United States of America, 110, 13904–13909. doi:10.1073/pnas.1308335110
  • Keeley, P. W., Sliff, B. J., Lee, S. C. S., Fuerst, P. G., Burgess, R. W., Eglen, S. J., & Reese, B. E. (2012). Neuronal clustering and fasciculation phenotype in Dscam- and Bax-deficient mouse retinas. The Journal of Comparative Neurology, 520, 1349–1364. doi:10.1002/cne.23033
  • Kimura, Y., Hisano, Y., Kawahara, A., & Higashijima, S.-I. (2015). Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Scientific Reports, 4, 6545. doi:10.1038/srep06545
  • Korenberg, J. R., Bradley, C., & Disteche, C. M. (1992). Down syndrome: Molecular mapping of the congenital heart disease and duodenal stenosis. American Journal of Human Genetics, 50, 294–302.
  • Korenberg, J. R., Chen, X. N., Schipper, R., Sun, Z., Gonsky, R., Gerwehr, S., … Disteche, C. (1994). Down syndrome phenotypes: The consequences of chromosomal imbalance. Proceedings of the National Academy of Sciences of the United States of America, 91, 4997–5001. doi:10.1073/pnas.91.11.4997
  • Langley, J. N. (1895). Note on regeneration of prae-ganglionic fibres of the sympathetic. The Journal of Physiology, 18, 280–284. doi:10.1113/jphysiol.1895.sp000566
  • Larison, K. D., & Bremiller, R. (1990). Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development, 109, 567–576.
  • Lawrence Zipursky, S., & Sanes, J. R. (2010). Chemoaffinity revisited: Dscams, protocadherins, and neural circuit assembly. Cell, 143, 343–353. doi:10.1016/j.cell.2010.10.009
  • Link, B. A., Fadool, J. M., Malicki, J., & Dowling, J. E. (2000). The zebrafish young mutation acts non-cell-autonomously to uncouple differentiation from specification for all retinal cells. Development, 127, 2177–2188.
  • Li, S., Sukeena, J. M., Simmons, A. B., Hansen, E. J., Nuhn, R. E., Samuels, I. S., & Fuerst, P. G. (2015). DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35, 5640–5654. doi:10.1523/JNEUROSCI.2202-14.2015
  • Matthews, B. J., Kim, M. E., Flanagan, J. J., Hattori, D., Clemens, J. C., Zipursky, S. L., & Grueber, W. B. (2007). Dendrite self-avoidance is controlled by Dscam. Cell, 129, 593–604. doi:10.1016/j.cell.2007.04.013
  • Maynard, K. R., & Stein, E. (2012). DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 16637–16650. doi:10.1523/JNEUROSCI.2811-12.2012
  • Millard, S. S., & Zipursky, S. L. (2008). Dscam-mediated repulsion controls tiling and self-avoidance. Current Opinion in Neurobiology, 18, 84–89. doi:10.1016/j.conb.2008.05.005
  • Montesinos, M. L. (2014). Roles for DSCAM and DSCAML1 in central nervous system development and disease. Advances in Neurobiology, 8, 249–270. doi:10.1007/978-1-4614-8090-7
  • Morales Diaz, H. D. (2014). Down syndrome cell adhesion molecule is important for early development in Xenopus tropicalis. Genesis, 52, 849–857. doi:10.1002/dvg.22804
  • Neuhauss, S. C., Biehlmaier, O., Seeliger, M. W., Das, T., Kohler, K., Harris, W. A., & Baier, H. (1999). Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19, 8603–8615. doi:10.1523/JNEUROSCI.19-19-08603.1999
  • Nevin, L. M., Taylor, M. R., & Baier, H. (2008). Hardwiring of fine synaptic layers in the zebrafish visual pathway. Neural Development, 3, 36. doi:10.1186/1749-8104-3-36
  • Palanca, A. M. S., Lee, S.-L., Yee, L. E., Joe-Wong, C., Trinh, L. A., Hiroyasu, E., … Sagasti, A. (2013). New transgenic reporters identify somatosensory neuron subtypes in larval zebrafish. Developmental Neurobiology, 73, 152–167. doi:10.1002/dneu.22049
  • Schilling, T. F., & Kimmel, C. B. (1997). Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development, 124, 2945–2960.
  • Schmitt, E. A., & Dowling, J. E. (1996). Comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio. The Journal of Comparative Neurology, 371, 222–234. doi:10.1002/(SICI)1096-9861(19960722)371: 2<222::AID-CNE3>3.0.CO;2-4
  • Schmucker, D. (2007). Molecular diversity of Dscam: Recognition of molecular identity in neuronal wiring. Nature Reviews. Neuroscience, 8, 915–920. doi:10.1038/nrn2256
  • Schmucker, D., & Chen, B. (2009). Dscam and DSCAM: Complex genes in simple animals, complex animals yet simple genes. Genes & Development, 23, 147–156. doi:10.1101/gad.1752909
  • Schmucker, D., Clemens, J. C., Shu, H., Worby, C. A., Xiao, J., Muda, M., … Zipursky, S. L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell, 101, 671–684. doi:10.1016/S0092-8674(00)80878-8
  • Soba, P., Zhu, S., Emoto, K., Younger, S., Yang, S.-J., Yu, H.-H., … Jan, Y.-N. (2007). Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron, 54, 403–416. doi:10.1016/j.neuron.2007.03.029
  • Sperry, R. W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proceedings of the National Academy of Sciences of the United States of America, 50, 703–710. doi:10.1073/pnas.50.4.703
  • Sun, C., Galicia, C., & Stenkamp, D. L. (2018). Transcripts within rod photoreceptors of the Zebrafish retina. BMC Genomics, 19, 127. doi:10.1186/s12864-018-4499-y
  • Suster, M. L., Abe, G., Schouw, A., & Kawakami, K. (2011). Transposon-mediated BAC transgenesis in zebrafish. Nature Protocols, 6, 1998–2021. doi:10.1038/nprot.2011.416
  • Talbot, J. C., & Amacher, S. L. (2014). A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. Zebrafish, 11, 583–585. doi:10.1089/zeb.2014.1047
  • Uribe, R. A., & Gross, J. M. (2007). Immunohistochemistry on cryosections from embryonic and adult zebrafish eyes. Cold Spring Harbor Protocols, 2007. doi:10.1101/pdb.prot4779
  • Vaughn, D. E., & Bjorkman, P. J. (1996). The (Greek) key to structures of neural adhesion molecules. Neuron, 16, 261–273. doi:10.1016/S0896-6273(00)80045-8
  • Versonnen, B. J., Roose, P., Monteyne, E. M., & Janssen, C. R. (2004). Estrogenic and toxic effects of methoxychlor on zebrafish (Danio rerio). Environmental Toxicology and Chemistry/SETAC, 23, 2194–2201. doi:10.1897/03-228
  • Wilson, C. (2012). Aspects of larval rearing. ILAR Journal/National Research Council, Institute of Laboratory Animal Resources, 53, 169–178. doi:10.1093/ilar.53.2.169
  • Wolman, M. A., Jain, R. A., Liss, L., & Granato, M. (2011). Chemical modulation of memory formation in larval zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 108, 15468–15473. doi:10.1073/pnas.1107156108
  • Yamagata, M., & Sanes, J. R. (2008). Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature, 451, 465–469. doi:10.1038/nature06469
  • Yamagata, M., & Sanes, J. R. (2012). Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 14402–14414. doi:10.1523/JNEUROSCI.3193-12.2012
  • Yamagata, M., Weiner, J. A., & Sanes, J. R. (2002). Sidekicks: Synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell, 110, 649–660. doi:10.1016/S0092-8674(02)00910-8
  • Yamakawa, K., Huot, Y. K., Haendelt, M. A., Hubert, R., Chen, X. N., Lyons, G. E., & Korenberg, J. R. (1998). DSCAM: A novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human Molecular Genetics, 7, 227–237. doi:10.1093/hmg/7.2.227
  • Yimlamai, D., Konnikova, L., Moss, L. G., & Jay, D. G. (2005). The zebrafish Down syndrome cell adhesion molecule is involved in cell movement during embryogenesis. Developmental Biology, 279, 44–57. doi:10.1016/j.ydbio.2004.12.001
  • Zearfoss, N. R., Chan, A. P., Wu, C. F., Kloc, M., & Etkin, L. D. (2004). Hermes is a localized factor regulating cleavage of vegetal blastomeres in Xenopus laevis. Developmental Biology, 267, 60–71. doi:10.1016/j.ydbio.2003.10.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.