995
Views
3
CrossRef citations to date
0
Altmetric
Original Research Article

Strong stimulation triggers full fusion exocytosis and very slow endocytosis of the small dense core granules in carotid glomus cells

, , , , &
Pages 267-278 | Received 15 Mar 2018, Accepted 03 Jul 2018, Published online: 28 Nov 2018

References

  • Albillos, A., Dernick, G., Horstmann, H., Almers, W., Alvarez de Toledo, G., & Lindau, M. (1997). The exocytotic event in chromaffin cells revealed by patch amperometry. Nature, 389, 509–512. doi:10.1038/39081
  • Artalejo, C.R., Elhamdani, A., & Palfrey, H.C. (2002). Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 6358–6363. doi:10.1073/pnas.082658499
  • Artalejo, C.R., Henley, J.R., McNiven, M.A., & Palfrey, H.C. (1995). Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proceedings of the National Academy of Sciences of the United States of America, 92, 8328–8332. doi:10.1073/pnas.92.18.8328
  • Berberian, K., Torres, A.J., Fang, Q., Kisler, K., & Lindau, M. (2009). F-actin and myosin II accelerate catecholamine release from chromaffin granules. The Journal of neuroscience, 29, 863–870. doi:10.1523/JNEUROSCI.2818-08.2009
  • Bruns, D., & Jahn, R. (1995). Real-time measurement of transmitter release from single synaptic vesicles. Nature, 377, 62–65. doi:10.1038/377062a0
  • Bruns, D., Riedel, D., Klingauf, J., & Jahn, R. (2000). Quantal release of serotonin. Neuron, 28, 205–220. doi:10.1016/S0896-6273(00)00097-0
  • Buckler, K.J., & Vaughan-Jones, R.D. (1994). Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. Journal of Physiology, 476, 423–428. doi:10.1113/jphysiol.1994.sp020143
  • Doupe, A.J., Patterson, P.H., & Landis, S.C. (1985). Small intensely fluorescent cells in culture: role of glucocorticoids and growth factors in their development and interconversions with other neural crest derivatives. The Journal of neuroscience, 5, 2143–2160. doi:10.1523/JNEUROSCI.05-08-02143.1985
  • Duchen, M.R., Caddy, K.W., Kirby, G.C., Patterson, D.L., Ponte, J., & Biscoe, T.J. (1988). Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience, 26, 291–311. doi:10.1016/0306-4522(88)90146-7
  • Elhamdani, A., Azizi, F., & Artalejo, C.R. (2006a). Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. The Journal of neuroscience, 26, 3030–3036. doi:10.1523/JNEUROSCI.5275-05.2006
  • Elhamdani, A., Azizi, F., Solomaha, E., Palfrey, H.C., & Artalejo, C.R. (2006b). Two mechanistically distinct forms of endocytosis in adrenal chromaffin cells: Differential effects of SH3 domains and amphiphysin antagonism. FEBS letters, 580, 3263–3269. doi:10.1016/j.febslet.2006.04.083
  • Engisch, K.L., & Nowycky, M.C. (1998). Compensatory and excess retrieval: Two types of endocytosis following single step depolarizations in bovine adrenal chromaffin cells. The journal of Physiology, 506, 591–608. doi:10.1111/j.1469-7793.1998.591bv.x
  • Garcia, A.G., Garcia-de-Diego, A.M., Gandia, L., Borges, R., & Garcia-Sancho, J. (2006). Calcium signaling and exocytosis in adrenal chromaffin cells. Physiological reviews, 86, 1093–1131. doi:10.1152/physrev.00039.2005
  • Gronblad, M. (1983). Function and structure of the carotid body. Medical Biology, 61, 229–248.
  • Harata, N.C., Aravanis, A.M., & Tsien, R.W. (2006). Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. Journal of neurochemistry, 97, 1546–1570. doi:10.1111/j.1471-4159.2006.03987.x
  • Hatakeyama, H., Takahashi, N., Kishimoto, T., Nemoto, T., & Kasai, H. (2007). Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse beta-cells. The journal of physiology, 582, 1087–1098. doi:10.1113/jphysiol.2007.135228
  • Kameda, Y. (1996). Immunoelectron microscopic localization of vimentin in sustentacular cells of the carotid body and the adrenal medulla of guinea pigs. The journal of histochemistry and cytochemistry, 44, 1439–1449. doi:10.1177/44.12.8985136
  • Kasai, H., Hatakeyama, H., Kishimoto, T., Liu, T.T., Nemoto, T., & Takahashi, N. (2005). A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. The journal of physiology, 568, 891–903. doi:10.1113/jphysiol.2005.093047
  • Kasai, H., Takahashi, N., & Tokumaru, H. (2012). Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiological reviews, 92, 1915–1964. doi:10.1152/physrev.00007.2012
  • Kasai, H., Kishimoto, T., Nemoto, T., Hatakeyama, H., Liu, T.T., & Takahashi, N. (2006). Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Advanced drug delivery reviews, 58,850–877 doi:10.1016/j.addr.2006.07.008
  • Kishimoto, T., Kimura, R., Liu, T.T., Nemoto, T., Takahashi, N., & Kasai, H. (2006). Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla. The EMBO journal, 25, 673–682. doi:10.1038/sj.emboj.7600983
  • Kusakabe, T., Powell, F.L., & Ellisman, M.H. (1993). Ultrastructure of the glomus cells in the carotid body of chronically hypoxic rats: with special reference to the similarity of amphibian glomus cells. The Anatomical Record, 237, 220–227. doi:10.1002/ar.1092370209
  • Lam, P.P., Ohno, M., Dolai, S., He, Y., Qin, T., Liang, T., … Gaisano, H.Y. (2013). Munc18b is a major mediator of insulin exocytosis in rat pancreatic β-cells. Diabetes, 62, 2416–2428. doi:10.2337/db12-1380
  • Lee, A.K., & Tse, A. (2001). Endocytosis in identified rat corticotrophs. The Journal of physiology, 533, 389–405. doi:10.1111/j.1469-7793.2001.0389a.x
  • Liu, T.T., Kishimoto, T., Hatakeyama, H., Nemoto, T., Takahashi, N., & Kasai, H. (2005). Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis. The Journal of physiology, 568, 917–929. doi:10.1113/jphysiol.2005.094011
  • McDonald, D.M., & Mitchell, R. (1975). The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. Journal of neurocytology, 4, 177–230. doi:10.1007/BF01098781
  • Nurse, C.A. (2010). Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Experimental physiology, 95, 657–667. doi:10.1113/expphysiol.2009.049312
  • Pallot, D.J., Al Neamy, K.W., & Blakeman, N. (1986). Quantitative studies of rat carotid body type I cells. Acta anatomica, 126, 187–192. doi:10.1159/000146213
  • Plattner, H., Artalejo, A.R., & Neher, E. (1997). Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. The Journal of cell biology, 139, 1709–1717. doi:10.1083/jcb.139.7.1709
  • Shin, W., Ge, L., Arpino, G., Villarreal, S.A., Hamid, E., Liu, H., … Wu, L.G. (2018). Visualization of membrane pore in live cells reveals a dynamic-pore theory governing fusion and endocytosis. Cell, 173, 934–945. doi:10.1016/j.cell.2018.02.062
  • Takahashi, N., Hatakeyama, H., Okado, H., Miwa, A., Kishimoto, T., Kojima, T., … Kasai, H. (2004). Sequential exocytosis of insulin granules is associated with redistribution of SNAP25. The Journal of cell biology, 165, 255–262. doi:10.1083/jcb.200312033
  • Tsai, C.C., Lin, C.L., Wang, T.L., Chou, A.C., Chou, M.Y., Lee, C.H., … Pan, C.Y. (2009). Dynasore inhibits rapid endocytosis in bovine chromaffin cells. American journal of physiology, Cell physiology, 297, C397–C406. doi:10.1152/ajpcell.00562.2008
  • Tse, A., & Tse, F.W. (1998). Alpha-adrenergic stimulation of cytosolic Ca2+ oscillations and exocytosis in identified rat corticotrophs. The Journal of physiology, 512, 385–393. doi:10.1111/j.1469-7793.1998.385be.x
  • Tse, F.W., Tse, A., Hille, B., Horstmann, H., & Almers, W. (1997). Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron, 18, 121–132. doi:10.1016/S0896-6273(01)80051-9
  • Tse, A., Yan, L., Lee, A.K., & Tse, F.W. (2012). Autocrine and paracrine actions of ATP in rat carotid body. Canadian journal of physiology and pharmacology, 90, 705–711. doi:10.1139/y2012-054
  • Verna, A. (1979). Ulstrastructure of the carotid body in the mammals. International Review of Cytology, 60, 271–330. doi:10.1016/S0074-7696(08)61265-6
  • Wang, N., Kwan, C., Gong, X., de Chaves, E.P., Tse, A., & Tse, F.W. (2010). Influence of cholesterol on catecholamine release from the fusion pore of large dense core chromaffin granules. The Journal of neuroscience, 30, 3904–3911. doi:10.1523/JNEUROSCI.4000-09.2010
  • Wang, N., Lee, A.K., Yan, L., Simpson, M.R., Tse, A., & Tse, F.W. (2012). Granule matrix property and rapid "kiss-and-run" exocytosis contribute to the different kinetics of catecholamine release from carotid glomus and adrenal chromaffin cells at matched quantal size. Canadian journal of physiology and pharmacology, 90, 791–801. doi:10.1139/y2012-040
  • Wen, X., Saltzgaber, G.W., & Thoreson, W.B. (2017). Kiss-and-Run Is a Significant Contributor to Synaptic Exocytosis and Endocytosis in Photoreceptors. Frontiers in cellular neuroscience, 11, 1?18, Article No. 286. doi:10.3389/fncel.2017.00286
  • Wu, L.G., Hamid, E., Shin, W., & Chiang, H.C. (2014). Exocytosis and endocytosis: Modes, functions, and coupling mechanisms. Annual review of physiology, 76, 301–331. doi:10.1146/annurev-physiol-021113-170305
  • Xia, X., Lessmann, V., & Martin, T.F. (2009). Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events. Journal of cell science, 122, 75–82. doi:10.1242/jcs.034603
  • Xu, T., Binz, T., Niemann, H., & Neher, E. (1998). Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nature neuroscience, 1, 192–200. doi:10.1038/642
  • Xu, F., Tse, F.W., & Tse, A. (2007). Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the oxygen sensing type I (glomus) cells of rat carotid bodies via reduction of a background TASK-like K + current. Journal of neurochemistry, 101, 1284–1293. doi:10.1111/j.1471-4159.2007.04468.x
  • Xu, J., Tse, F.W., & Tse, A. (2003). ATP triggers intracellular Ca2+ release in type II cells of the rat carotid body. The Journal of physiology, 549, 739–747. doi:10.1113/jphysiol.2003.039735
  • Xu, J., Xu, F., Tse, F.W., & Tse, A. (2005). ATP inhibits the hypoxia response in type I cells of rat carotid bodies. Journal of neurochemistry, 92, 1419–1430. doi:10.1111/j.1471-4159.2004.02978.x
  • Yan, L., Lee, A.K., Tse, F.W., & Tse, A. (2012). Ca2+ homeostasis and exocytosis in carotid glomus cells: role of mitochondria. Cell Calcium, 51, 155–163. doi:10.1016/j.ceca.2011.12.003
  • Zhang, Q., Li, Y., & Tsien, R.W. (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science, 323, 1448–1453. doi:10.1126/science.1167373
  • Zhang, M., Piskuric, N.A., Vollmer, C., & Nurse, C.A. (2012). P2Y2 receptor activation opens pannexin-1 channels in rat carotid body type II cells: Potential role in amplifying the neurotransmitter ATP. The Journal of physiology, 590, 4335–4350. doi:10.1113/jphysiol.2012.236265

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.