1,626
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Noradrenergic gating of long-lasting synaptic potentiation in the hippocampus: from neurobiology to translational biomedicine

&
Pages 171-182 | Received 08 Apr 2018, Accepted 03 Jul 2018, Published online: 03 Sep 2018

References

  • Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R., & Bourtchouladze, R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell, 88, 615–626. doi: 10.1016/S0092-8674(00)81904-2
  • Abraham, W.C. (2008). Metaplasticity: Tuning synapses and networks for plasticity. Nature Reviews Neuroscience, 9, 387–399. doi: 10.1038/nrn2356
  • Abraham, W.C., & Bear, M.F. (1996). Metaplasticity: The plasticity of synaptic plasticity. Trends in Neurosciences, 19, 126–130.
  • Abraham, W.C., Logan, B., Greenwood, J.M., & Dragunow, M. (2002). Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. Journal of Neuroscience, 22, 9626–9634. doi: 10.1523/JNEUROSCI.22-21-09626.2002
  • Abraham, W.C., & Williams, J.M. (2008). LTP maintenance and its protein synthesis-dependence. Neurobiology of Learning and Memory, 89, 260–268.
  • Andersen, P., Sundberg, S.H., Sveen, O., & Wigström, H. (1977). Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature, 266, 736–737. doi: 10.1038/266736a0
  • Aston-Jones, G., & Bloom, F.E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. Journal of Neuroscience, 1, 876–886. doi: 10.1523/JNEUROSCI.01-08-00876.1981
  • Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience, 14, 4467–4480.
  • Axmacher, N., Elger, C.E., & Fell, J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain, 131, 1806–1817.
  • Banke, T.G., Bowie, D., Lee, H., Huganir, R.L., Schousboe, A., & Traynelis, S.F. (2000). Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. The Journal of Neuroscience, 20, 89–102.
  • Banko, J.L., Poulin, F., Hou, L., DeMaria, C.T., Sonenberg, N., & Klann, E. (2005). The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. Journal of Neuroscience, 25, 9581–9590. doi: 10.1523/JNEUROSCI.2423-05.2005
  • Barros, D.M., Izquierdo, L.A., Sant'Anna, M.K., Quevedo, J., Medina, J.H., McGaugh, J.L., & Izquierdo, I. (1999). Stimulators of the cAMP cascade reverse amnesia induced by intra-amygdala but not intrahippocampal KN-62 administration. Neurobiology of Learning and Memory, 71, 94–103. doi: 10.1006/nlme.1998.3830
  • Bisel, B.E., Henkins, K.M., & Parfitt, K.D. (2007). Alzheimer amyloid beta-peptide A-beta25-35 blocks adenylate cyclase-mediated forms of hippocampal long-term potentiation. Annals of the New York Academy of Sciences, 1097, 58–63. doi: 10.1196/annals.1379.020
  • Blitzer, R.D., Connor, J.D., Brown, G.P., Wong, T., Shenolikar, S., … Landau, E.M. (1998). Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science, 280, 1940–1942. doi: 10.1126/science.280.5371.1940
  • Bourtchouladze, R., Abel, T., Berman, N., Gordon, R., Lapidus, K., & Kandel, E.R. (1998). Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learning & Memory, 5, 365–374. [PMC][10454361]
  • Brown, G.P., Blitzer, R.D., Connor, J.H., Wong, T., Shenolikar, S., Iyengar, R., & Landau, E.M. (2000). Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. Journal of Neuroscience, 20, 7880–7887. doi: 10.1523/JNEUROSCI.20-21-07880.2000
  • Buzsaki, G., Haas, H.L., & Anderson, E.G. (1987). Long-term potentiation induced by physiologically relevant stimulus patterns. Brain Research, 435, 331–333. doi: 10.1016/0006-8993(87)91618-0
  • Buzsaki, G. (1989). Two-stage model of memory trace formation: a role for "noisy" brain states. Neuroscience, 31, 551–570. doi: 10.1016/0306-4522(89)90423-5
  • Buzsaki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25, 1073–1188. doi: 10.1002/hipo.22488
  • Careaga, M.B.L., Girardi, C.E.N., & Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neuroscience and Biobehavioral Reviews, 71, 48–57. doi: 10.1016/j.neubiorev.2016.08.023
  • Clark, K.B., Krahl, S.E., Smith, D.C., & Jensen, R.A. (1995). Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiology of Learning and Memory, 63, 213–216. doi: 10.1006/nlme.1995.1024
  • Clark, K.B., Naritoku, D.K., Smith, D.C., Browning, R.A., & Jensen, R.A. (1999). Enhanced recognition memory following vagus nerve stimulation in human subjects. Nature Neuroscience, 2, 94–98. doi: 10.1038/4600
  • Colledge, M., Dean, R.A., Scott, G.K., Langeberg, L.K., Huganir, R.L., & Scott, J.D. (2000). Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron, 27, 107–119. doi: 10.1016/S0896-6273(00)00013-1
  • Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K., Colina, R., Cuello, C., … Sonenberg, N. (2007). eIF2-alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell, 129, 195–206. doi: 10.1016/j.cell.2007.01.050
  • Costa-Mattioli, M., Sossin, W.S., Klann, E., & Sonenberg, N. (2009). Translational control of long-lasting synaptic plasticity and memory. Neuron, 61, 10–26. doi: 10.1016/j.neuron.2008.10.055
  • Debiec, J., & Ledoux, J.E. (2004). Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience, 129, 267–272.
  • Devauges, V., & Sara, S.J. (1991). Memory retrieval enhancement by locus coeruleus stimulation: Evidence for mediation by beta-receptors. Behavioral Brain Research, 43, 93–97. doi: 10.1016/S0166-4328(05)80056-7
  • Dodrill, C.B., & Morris, G.L. (2001). Effects of vagal nerve stimulation on cognition and quality of life in epilepsy. Epilepsy Behavior, 2, 46–53.
  • Dunwiddie, T.V., Taylor, M., Heginbotham, L.R., & Proctor, W.R. (1992). Long-term increases in excitability in the CA1 region of rat hippocampus induced by beta-adrenergic stimulation: Possible mediation by cAMP. Journal of Neuroscience, 12, 506–517. doi: 10.1523/JNEUROSCI.12-02-00506.1992
  • Ehlers, M.D. (2000). Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron, 28, 511–525.
  • Eschenko, O., & Sara, S.J. (2008). Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: Brain stem-cortex interplay for memory consolidation? Cerebral Cortex, 18, 2596–2603. doi: 10.1093/cercor/bhn020
  • Eschenko, O., Magri, C., Panzeri, S., & Sara, S.J. (2012). Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cerebral Cortex, 22, 426–435. doi: 10.1093/cercor/bhr121
  • Esteban, J.A., Shi, S.H., Wilson, C., Nuriya, M., Huganir, R.L., & Malinow, R. (2003). PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nature Neuroscience, 6, 136–143. doi: 10.1038/nn997
  • Faber, E.S., Delaney, A.J., Power, J.M., Sedlak, P.L., Crane, J.W., & Sah, P. (2008). Modulation of SK channel trafficking by beta adrenoceptors enhances excitatory synaptic transmission and plasticity in the amygdala. Journal of Neuroscience, 28, 10803–10813. doi: 10.1523/JNEUROSCI.1796-08.2008
  • Fisher, R.S., Afra, P., Macken, M., Minecan, D.N., Bagić, A., Benbadis, S.R., … Najimipour, B. (2016). Automatic vagus nerve stimulation triggered by ictal tachycardia: Clinical outcomes and device performance–The US E-37 trial. Neuromodulation, 19, 188–195. doi: 10.1111/ner.12376
  • Frey, U., Krug, M., Reymann, K.G., & Matthies, H. (1988). Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Research, 452, 57–65.
  • Gelinas, J.N., Banko, J.L., Hou, L., Sonenberg, N., Weeber, E.J., Klann, E., & Nguyen, P.V. (2007). ERK and mTOR signaling couple β-adrenergic receptors to translation initiation machinery to gate induction of protein synthesis-dependent long-term potentiation. Journal of Biological Chemistry, 282, 27527–27535. doi: 10.1074/jbc.M701077200
  • Gelinas, J.N., Banko, J.L., Peters, M.M., Klann, E., Weeber, E.J., & Nguyen, P.V. (2008). Activation of exchange protein activated by cyclic-AMP enhances long-lasting synaptic potentiation in the hippocampus. Learning & Memory, 15, 403–411. doi: 10.1101/lm.830008
  • Gelinas, J.N., & Nguyen, P.V. (2005). β-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. Journal of Neuroscience, 25, 3294–3303. doi: 10.1523/JNEUROSCI.4175-04.2005
  • Gelinas, J.N., & Nguyen, P.V. (2007). Neuromodulation of hippocampal synaptic plasticity, learning, and memory by noradrenaline. Central Nervous System Agents in Medicinal Chemistry, 7, 17–33. doi: 10.2174/187152407780059196
  • Geracioti, T.D., Baker, D.G., Ekhator, N.N., West, S.A., Hill, K.K., Bruce, A.B., … Kasckow, J.W. (2001). CSF norepinephrine concentrations in posttraumatic stress disorder. The American Journal of Psychiatry, 158, 1227–1230. doi: 10.1176/appi.ajp.158.8.1227
  • Ghacibeh, G.A., Shenker, J.I., Shenal, B., Uthman, B.M., & Heilman, K.M. (2006). The influence of vagus nerve stimulation on memory. Cognitive And Behavioral Neurology, 19, 119–122.
  • Girardeau, G., Benchenane, K., Wiener, S.I., Buzsaki, G., & Zugaro, M.B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12, 1222–1223. doi: 10.1038/nn.2384
  • Gray, E.E., Guglietta, R., Khakh, B.S., & O'Dell, T.J. (2014). Inhibitory interactions between phosphorylation sites in the C terminus of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunits. Journal of Biological Chemistry, 289, 14600–14611. doi: 10.1074/jbc.M114.553537
  • Grigoryan, G., Ardi, Z., Albrecht, A., Richter-Levin, G., & Segal, M. (2015). Juvenile stress alters LTP in ventral hippocampal slices: Involvement of noradrenergic mechanisms. Behavioural Brain Research, 278, 559–562. doi: 10.1016/j.bbr.2014.09.047
  • Guo, N.N., & Li, B.M. (2007). Cellular and subcellular distributions of beta1- and beta2-adrenoceptors in the CA1 and CA3 regions of the rat hippocampus. Neuroscience, 146, 298–305. doi: 10.1016/j.neuroscience.2007.01.013
  • Havekes, R., Canton, D.A., Park, A.J., Huang, T., Nie, T., Day, J.P., … Abel, T. (2012). Gravin orchestrates protein kinase A and β2-adrenergic receptor signaling critical for synaptic plasticity and memory. Journal of Neuroscience, 32, 18137–18149. doi: 10.1523/JNEUROSCI.3612-12.2012
  • Helmstaedter, C., Hoppe, C., & Elger, C.E. (2001). Memory alterations during acute high-intensity vagus nerve stimulation. Epilepsy Research, 47, 37–42. doi: 10.1016/S0920-1211(01)00291-1
  • Hendrickson, R.C., & Raskind, M.A. (2016). Noradrenergic dysregulation in the pathophysiology of PTSD. Experimental Neurology, 284, 181–195.
  • Hillman, K.L., Knudson, C.A., Carr, P.A., Doze, V.A., & Porter, J.E. (2005). Adrenergic receptor characterization of CA1 hippocampal neurons using real time single cell RT-PCR. Molecular Brain Research, 139, 267–276. doi: 10.1016/j.molbrainres.2005.05.033
  • Hoeffer, C.A., Cowansage, K.K., Arnold, E.C., Banko, J.L., Moerke, N.J., Rodriguez, R., … Klann, E. (2011). Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proceedings of the National Academy of Sciences of the United States of America, 108, 3383–3388. doi: 10.1073/pnas.1013063108
  • Hoeffer, C.A., Santini, E., Ma, T., Arnold, E.C., Whelan, A.M., Wong, H., … Klann, E. (2013). Multiple components of eIF4F are required for protein synthesis-dependent hippocampal long-term potentiation. Journal of Neurophysiology, 109, 68–76. doi: 10.1152/jn.00342.2012
  • Hoffman, D.A., & Johnston, D. (1999). Neuromodulation of dendritic action potentials. Journal of Neurophysiology, 81, 408–411.
  • Hoffmann, R., Baillie, G.S., MacKenzie, S.J., Yarwood, S.J., & Houslay, M.D. (1999). The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO Journal, 18, 893–903.
  • Hu, H., Real, E., Takamiya, K., Kang, M.G., Ledoux, J., Huganir, R.L., & Malinow, R. (2007). Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell, 131, 160–173.
  • Inostroza, M., & Born, J. (2013). Sleep for preserving and transforming episodic memory. Annual Review of Neuroscience, 36, 79–102.
  • Jenkins, M.A., Wells, G., Bachman, J., Snyder, J.P., Jenkins, A., Huganir, R.L., … Traynelis, S.F. (2014). Regulation of GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor function by protein kinase C at serine-818 and threonine-840. Molecular Pharmacology, 85, 618–629. doi: 10.1124/mol.113.091488
  • Ji, J.Z., Wang, X.M., & Li, B.M. (2003). Deficit in long-term contextual fear memory induced by blockade of beta-adrenoceptors in hippocampal CA1 region. The European Journal of Neuroscience, 17, 1947–1952.
  • Ji, J.Z., Zhang, X.H., & Li, B.M. (2003). Deficient spatial memory induced by blockade of beta-adrenoceptors in the hippocampal CA1 region. Behavioral Neuroscience, 117, 1378–1384. doi: 10.1037/0735-7044.117.6.1378
  • Joiner, M-l. A., Lisé, M.-F., Yuen, E.Y., Kam, A.Y.F., Zhang, M., Hall, D.D., … Hell, J.W. (2010). Assembly of a beta2-adrenergic receptor-GluR1 signalling complex for localized cAMP signalling. EMBO Journal, 29, 482–495.
  • Jones, M.W., Peckham, H.M., Errington, M.L., Bliss, T.V., & Routtenberg, A. (2001). Synaptic plasticity in the hippocampus of awake C57BL/6 and DBA/2 mice: interstrain differences and parallels with behavior. Hippocampus, 11, 391–396. doi: 10.1002/hipo.1053
  • Jonsson, A., Sjo Stro M, T.A., Tybrandt, K., Berggren, M., & Simon, D.T. (2016). Chemical delivery array with millisecond neurotransmitter release. Science Advances, 2, e1601340. doi: 10.1126/sciadv.1601340
  • Jonsson, A., Inal, S., Uguz, I., Williamson, A.J., Kergoat, L., Rivnay, J., … Simon, D.T. (2016). Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proceedings of the National Academy of Sciences of the United States of America, 113, E6903–E9445. doi: 10.1073/pnas.1615817113
  • Kandel, E.R. (2001). The molecular biology of memory storage: A dialogue between genes and synapses. Science, 294, 1030–1038.
  • Katsuki, H., Izumi, Y., & Zorumski, C.F. (1997). Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. Journal of Neurophysiology, 77, 3013–3020.
  • Kelleher, R.J., 3rd, Govindarajan, A., & Tonegawa, S. (2004). Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron, 44, 59–73. doi: 10.1016/j.neuron.2004.09.013
  • Khodagholy, D., Gelinas, J.N., & Buzsaki, G. (2017). Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science, 358, 369–372. doi: 10.1126/science.aan6203
  • Klann, E., Antion, M.D., Banko, J.L., & Hou, L. (2004). Synaptic plasticity and translation initiation. Learning & Memory, 11, 365–372. doi: 10.1101/lm.79004
  • Klinkenberg, S., Majoie, H.J., van der Heijden, M.M., Rijkers, K., Leenen, L., & Aldenkamp, A.P. (2012). Vagus nerve stimulation has a positive effect on mood in patients with refractory epilepsy. Clinical Neurology and Neurosurgery, 114, 336–340. doi: 10.1016/j.clineuro.2011.11.016
  • Krook-Magnuson, E., Gelinas, J.N., Soltesz, I., & Buzsaki, G. (2015). Neuroelectronics and biooptics: Closed-loop technologies in neurological disorders. JAMA Neurology, 72, 823–829.
  • Lee, A.K., & Wilson, M.A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36, 1183–1194.
  • Li, Q., Navakkode, S., Rothkegel, M., Soong, T.W., Sajikumar, S., & Korte, M. (2017). Metaplasticity mechanisms restore plasticity and associativity in an animal model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 114, 5527–5532. doi: 10.1073/pnas.1613700114
  • Li, Z., Zhou, Q., Li, L., Mao, R., Wang, M., Peng, W., … Cao, J. (2005). Effects of unconditioned and conditioned aversive stimuli in an intense fear conditioning paradigm on synaptic plasticity in the hippocampal CA1 area in vivo. Hippocampus, 15, 815–824. doi: 10.1002/hipo.20104
  • Lin, M.T., Lujan, R., Watanabe, M., Adelman, J.P., & Maylie, J. (2008). SK2 channel plasticity contributes to LTP at schaffer collateral-CA1 synapses. Nature Neuroscience, 11, 170–177. doi: 10.1038/nn2041
  • Lin, Y.W., Min, M.Y., Chiu, T.H., & Yang, H.W. (2003). Enhancement of associative long-term potentiation by activation of beta-adrenergic receptors at CA1 synapses in rat hippocampal slices. The Journal of Neuroscience, 23, 4173–4181.
  • Liu, L., Orozco, I.J., Planel, E., Wen, Y., Bretteville, A., Krishnamurthy, P., … Duff, K. (2008). A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiology of Disease, 31, 46–57. doi: 10.1016/j.nbd.2008.03.005
  • Lu, W., Shi, Y., Jackson, A.C., Bjorgan, K., During, M.J., Sprengel, R., … Nicoll, R.A. (2009). Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron, 62, 254–268. doi: 10.1016/j.neuron.2009.02.027
  • Ma, T., Tzavaras, N., Tsokas, P., Landau, E.M., & Blitzer, R.D. (2011). Synaptic stimulation of mTOR is mediated by Wnt signaling and regulation of glycogen synthetase kinase-3. Journal of Neuroscience, 31, 17537–17546. doi: 10.1523/JNEUROSCI.4761-11.2011
  • Maingret, N., Girardeau, G., Todorova, R., Goutierre, M., & Zugaro, M. (2016). Hippocampo-cortical coupling mediates memory consolidation during sleep. Nature Neuroscience, 19, 959–964. doi: 10.1038/nn.4304
  • Maity, S., Rah, S., Sonenberg, N., Gkogkas, C.G., & Nguyen, P.V. (2015). Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs. Learning & Memory, 22, 499–508. doi: 10.1101/lm.039222.115
  • Makino, Y., Johnson, R.C., Yu, Y., Takamiya, K., & Huganir, R.L. (2011). Enhanced synaptic plasticity in mice with phosphomimetic mutation of the GluA1 AMPA receptor. Proceedings of the National Academy of Sciences of the United States of America, 108, 8450–8455. doi: 10.1073/pnas.1105261108
  • Man, H.Y., Sekine-Aizawa, Y., & Huganir, R.L. (2007). Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proceedings of the National Academy of Sciences of the United States of America, 104, 3579–3584. doi: 10.1073/pnas.0611698104
  • Martin, S.J., Grimwood, P.D., & Morris, R.G.M. (2000). Synaptic plasticity and memory: An evaluation of the hypothesis. Annual Review of Neuroscience, 23, 649–711.
  • McGaugh, J.L. (2013). Making lasting memories: Remembering the significant. Proceedings of the National Academy of Sciences of the United States of America, 110, 10402–10407. doi: 10.1073/pnas.1301209110
  • Mercuri, N.B., & Bernardi, G. (2005). The 'magic' of L-dopa: Why is it the gold standard Parkinson's disease therapy? Trends in Pharmacological Sciences, 26, 341–344. doi: 10.1016/j.tips.2005.05.002
  • Miller, J.K., McDougall, S., Thomas, S., & Wiener, J.M. (2017). Impairment in active navigation from trauma and post-traumatic stress disorder. Neurobiology of Learning and Memory, 140, 114–123. doi: 10.1016/j.nlm.2017.02.019
  • Moody, T.D., Thomas, M.J., Makhinson, M., & O'Dell, T.J. (1998). 5-Hz stimulation of CA3 pyramidal cell axons induces a beta-adrenergic modulated potentiation at synapses on CA1, but not CA3, pyramidal cells. Brain Research, 794, 75–79. doi: 10.1016/S0006-8993(98)00217-0
  • Moody, T.D., Watabe, A.M., Indersmitten, T., Komiyama, N.H., Grant, S.G., & O'Dell, T.J. (2011). Beta-adrenergic receptor activation rescues theta frequency stimulation-induced LTP deficits in mice expressing C-terminally truncated NMDA receptor GluN2A subunits. Learning & Memory, 18, 118–127. doi: 10.1101/lm.2045311
  • Murchison, C.F., Zhang, X.Y., Zhang, W.P., Ouyang, M., Lee, A., & Thomas, S.A. (2004). A distinct role for norepinephrine in memory retrieval. Cell, 117, 131–143.
  • Nguyen, P.V. (2006). Comparative plasticity of brain synapses in inbred mouse strains. Journal of Experimental Biology, 209, 2293–2303. doi: 10.1242/jeb.01985
  • Nguyen, P.V., Abel, T., & Kandel, E.R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science, 265, 1104–1107.
  • Nguyen, P.V., Duffy, S.N., & Young, J.Z. (2000). Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. Journal of Neurophysiology, 84, 2484–2493. doi: 10.1152/jn.2000.84.5.2484
  • Nguyen, P.V., & Woo, N.H. (2003). Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Progress in Neurobiology, 71, 401–437. doi: 10.1016/j.pneurobio.2003.12.003
  • Nicholas, A.P., Pieribone, V.A., & Hokfelt, T. (1993). Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience, 56, 1023–1039.
  • Novitskaya, Y., Sara, S.J., Logothetis, N.K., & Eschenko, O. (2016). Ripple-triggered stimulation of the locus coeruleus during post-learning sleep disrupts ripple/spindle coupling and impairs memory consolidation. Learning & Memory, 23, 238–248. doi: 10.1101/lm.040923.115
  • O'Dell, T.J., Connor, S.A., Gelinas, J.N., & Nguyen, P.V. (2010). Viagra for your synapses: Enhancement of hippocampal long-term potentiation by activation of beta-adrenergic receptors. Cellular Signalling, 22, 728–736. doi: 10.1016/j.cellsig.2009.12.004
  • O'Dell, T.J., Connor, S.A., Guglietta, R., & Nguyen, P.V. (2015). β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learning & Memory, 22, 461–471. doi: 10.1101/lm.031088.113
  • Oh, M.C., Derkach, V.A., Guire, E.S., & Soderling, T.R. (2006). Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. Journal of Biological Chemistry, 281, 752–758. doi: 10.1074/jbc.M509677200
  • Peyrache, A., Battaglia, F.P., & Destexhe, A. (2011). Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proceedings of the National Academy of Sciences of the United States of America, 108, 17207–17212. doi: 10.1073/pnas.1103612108
  • Przybyslawski, J., Roullet, P., & Sara, S.J. (1999). Attenuation of emotional and nonemotional memories after their reactivation: Role of β adrenergic receptors. Journal of Neuroscience, 19, 6623–6628. doi: 10.1523/JNEUROSCI.19-15-06623.1999
  • Qi, X.L., Zhu, B., Zhang, X.-H., & Li, B.-M. (2008). Are beta-adrenergic receptors in hippocampal CA1 region required for retrieval of contextual fear memory? Biochemical and Biophysical Research Communications, 368, 186–191. doi: 10.1016/j.bbrc.2008.01.007
  • Qian, H., Matt, L., Zhang, M., Nguyen, M., Patriarchi, T., Koval, O.M., … Hell, J.W. (2012). β2-adrenergic receptor supports prolonged theta tetanus-induced LTP. Journal of Neurophysiology, 107, 2703–2712. doi: 10.1152/jn.00374.2011
  • Ramadan, W., Eschenko, O., & Sara, S.J. (2009). Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PloS One, 4, e6697
  • Ren, Y., Barnwell, L.F., Alexander, J.C., Lubin, F.D., Adelman, J.P., Pfaffinger, P.J., … Anderson, A.E. (2006). Regulation of surface localization of the small conductance Ca2+-activated potassium channel, Sk2, through direct phosphorylation by cAMP-dependent protein kinase. Journal of Biological Chemistry, 281, 11769–11779. doi: 10.1074/jbc.M513125200
  • Roche, K.W., O'Brien, R.J., Mammen, A.L., Bernhardt, J., & Huganir, R.L. (1996). Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron, 16, 1179–1188. doi: 10.1016/S0896-6273(00)80144-0
  • Roosevelt, R.W., Smith, D.C., Clough, R.W., Jensen, R.A., & Browning, R.A. (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Research, 1119, 124–132. doi: 10.1016/j.brainres.2006.08.048
  • Rorabaugh, J.M., Chalermpalanupap, T., Botz-Zapp, C.A., Fu, V.M., Lembeck, N.A., Cohen, R.M., & Weinshenker, D. (2017). Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer's disease. Brain, 140, 3023–3038. doi: 10.1093/brain/awx232
  • Sara, S.J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10, 211–223. doi: 10.1038/nrn2573
  • Sara, S.J., Roullet, P., & Przybyslawski, J. (1999). Consolidation of memory for odor-reward association: Beta-adrenergic receptor involvement in the late phase. Learning & Memory, 6, 63–96. doi: 10.1155/NP.1998.63
  • Schachter, S.C., & Saper, C.B. (1998). Vagus nerve stimulation. Epilepsia, 39, 677–686.
  • Schafe, G.E., Nadel, N.V., Sullivan, G.M., Harris, A., & LeDoux, J.E. (1999). Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learning & Memory, 6, 97–110.
  • Scharf, M.T., Woo, N.H., Lattal, K.M., Young, J.Z., Nguyen, P.V., & Abel, T. (2002). Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. Journal of Neurophysiology, 87, 2770–2777.
  • Schmitt, J.M., & Stork, P.J. (2000). β2-adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G protein rap1 and the serine/threonine kinase B-Raf. Journal of Biological Chemistry, 275, 25342–25350. doi: 10.1074/jbc.M003213200
  • Segal, M., Richter-Levin, G., & Maggio, N. (2010). Stress-induced dynamic routing of hippocampal connectivity: a hypothesis. Hippocampus, 20, 1332–1338. doi: 10.1002/hipo.20751
  • Seol, G.H., Ziburkus, J., Huang, SYong., Song, L., Kim, I.T., Takamiya, K., … Kirkwood, A. (2007). Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron, 55, 919–929. doi: 10.1016/j.neuron.2007.08.013
  • Simon, D.T., Kurup, S., Larsson, K.C., Hori, R., Tybrandt, K., Goiny, M., … Richter-Dahlfors, A. (2009). Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nature Materials, 8, 742–746. doi: 10.1038/nmat2494
  • Simon, D.T., Larsson, K.C., Nilsson, D., Burstrom, G., Galter, D., Berggren, M., & Richter-Dahlfors, A. (2015). An organic electronic biomimetic neuron enables auto-regulated neuromodulation. Biosensors & Bioelectronics, 71, 359–364. doi: 10.1016/j.bios.2015.04.058
  • Sirota, A., Csicsvari, J., Buhl, D., & Buzsaki, G. (2003). Communication between neocortex and hippocampus during sleep in rodents. Proceedings of the National Academy of Sciences of the United States of America, 100, 2065–2069. doi: 10.1073/pnas.0437938100
  • Stanton, P.K., & Sarvey, J.M. (1984). Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. The Journal of Neuroscience, 4, 3080–3088.
  • Sutton, M.A., & Schuman, E.M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 127, 49–58.
  • Swanson-Park, J.L., Coussens, C.M., Mason-Parker, S.E., Raymond, C.R., Hargreaves, E.L., Dragunow, M., … Abraham, W.C. (1999). A double dissociation within the hippocampus of dopamine D1/D5 receptor and β-adrenergic receptor contributions to the persistence of long-term potentiation. Neuroscience, 92, 485–497. doi: 10.1016/S0306-4522(99)00010-X
  • Sweatt, J.D. (2004). Mitogen-activated protein kinases in synaptic plasticity and memory. Current Opinion in Neurobiology, 14, 311–317. doi: 10.1016/j.conb.2004.04.001
  • Szot, P. (2012). Common factors among Alzheimer's disease, Parkinson's disease, and epilepsy: Possible role of the noradrenergic nervous system. Epilepsia, 53, 61–66. doi: 10.1111/j.1528-1167.2012.03476.x
  • Tempesta, D., Mazza, M., Iaria, G., De Gennaro, L., & Ferrara, M. (2012). A specific deficit in spatial memory acquisition in post-traumatic stress disorder and the role of sleep in its consolidation. Hippocampus, 22, 1154–1163. doi: 10.1002/hipo.20961
  • Tenorio, G., Connor, S.A., Guevremont, D., Abraham, W.C., Williams, J., O'Dell, T.J., & Nguyen, P.V. (2010). ‘Silent’ priming of translation-dependent LTP by β-adrenergic receptors involves phosphorylation and recruitment of AMPA receptors. Learning & Memory, 17, 627–638. doi: 10.1101/lm.1974510
  • Thomas, M.J., Moody, T.D., Makhinson, M., & O'Dell, T.J. (1996). Activity-dependent β-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron, 17, 475–482. doi: 10.1016/S0896-6273(00)80179-8
  • Thomas, M.J., Watabe, A.M., Moody, T.D., Makhinson, M., & O’Dell, T.J. (1998). Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. Journal of Neuroscience, 18, 7118–7126. doi: 10.1523/JNEUROSCI.18-18-07118.1998
  • Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., … Dingledine, R. (2010). Glutamate receptor ion channels: Structure, regulation, and function. Pharmacological Reviews, 62, 405–496. doi: 10.1124/pr.109.002451
  • Tronel, S., Feenstra, M.G., & Sara, S.J. (2004). Noradrenergic action in prefrontal cortex in the late stage of memory consolidation. Learning & Memory, 11, 453–458. doi: 10.1101/lm.74504
  • Tsokas, P., Ma, T., Iyengar, R., Landau, E.M., & Blitzer, R.D. (2007). Mitogen-activated protein kinase upregulates the dendritic translation machinery in long-term potentiation by controlling the mammalian target of rapamycin pathway. Journal of Neuroscience, 27, 5885–5894. doi: 10.1523/JNEUROSCI.4548-06.2007
  • Twarkowski, H., & Manahan-Vaughan, D. (2016). Loss of catecholaminergic neuromodulation of persistent forms of hippocampal synaptic plasticity with increasing age. Frontiers in Synaptic Neuroscience, 8 doi: 10.3389/fnsyn.2016.00030
  • Ul Haq, R., Anderson, M., Liotta, A., Shafiq, M., Sherkheli, M.A., & Heinemann, U. (2016). Pretreatment with beta-adrenergic receptor agonists facilitates induction of LTP and sharp wave ripple complexes in rodent hippocampus. Hippocampus, 26, 1486–1492. doi: 10.1002/hipo.22665
  • Vanhoose, A.M., Clements, J.M., & Winder, D.G. (2006). Novel blockade of protein kinase A-mediated phosphorylation of AMPA receptors. Journal of Neuroscience, 26, 1138–1145. doi: 10.1523/JNEUROSCI.3572-05.2006
  • Vanhoose, A.M., & Winder, D.G. (2003). NMDA and β1-adrenergic receptors differentially signal phosphorylation of glutamate receptor type 1 in area CA1 of hippocampus. Journal of Neuroscience, 23, 5827–5834. doi: 10.1523/JNEUROSCI.23-13-05827.2003
  • Vankov, A., Herve-Minvielle, A., & Sara, S.J. (1995). Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. European Journal of Neuroscience, 7, 1180–1187. doi: 10.1111/j.1460-9568.1995.tb01108.x
  • Weinshenker, D. (2018). Long road to ruin: Noradrenergic dysfunction in neurodegenerative disease. Trends in Neurosciences, 41, 211–223.
  • Wenthold, R.J., Petralia, R.S., Blahos, J., II., & Niedzielski, A.S. (1996). Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. The Journal of Neuroscience, 16, 1982–1989.
  • Whitlock, J.R., Heynen, A.J., Shuler, M.G., & Bear, M.F. (2006). Learning induces long-term potentiation in the hippocampus. Science, 313, 1093–1097.
  • Wilson, C.B., Ebenezer, P.J., McLaughlin, L.D., & Francis, J. (2014). Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PloS One, 9, e89104. doi: 10.1371/journal.pone.0089104
  • Wilson, M.A., & McNaughton, B.L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676–679.
  • Winder, D.G., Martin, K.C., Muzzio, I.A., Rohrer, D., Chruscinski, A., Kobilka, B., & Kandel, E.R. (1999). ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron, 24, 715–726. doi: 10.1016/S0896-6273(00)81124-1
  • Yuan, L.L., Adams, J.P., Swank, M., Sweatt, J.D., & Johnston, D. (2002). Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. Journal of Neuroscience, 22, 4860–4868. doi: 10.1523/JNEUROSCI.22-12-04860.2002
  • Zhang, M., Patriarchi, T., Stein, I.S., Qian, H., Matt, L., Nguyen, M., … Hell, J.W. (2013). Adenylyl cyclase anchoring by a kinase anchor protein AKAP5 (AKAP79/150) is important for postsynaptic β-adrenergic signaling. Journal of Biological Chemistry, 288, 17918–17931. doi: 10.1074/jbc.M112.449462
  • Zuo, Y., Smith, D.C., & Jensen, R.A. (2007). Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiology & Behavior, 90, 583–589. doi: 10.1016/j.physbeh.2006.11.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.