955
Views
3
CrossRef citations to date
0
Altmetric
Original Research Article

Parvalbumin expression affects synaptic development and physiology at the Drosophila larval NMJ

, &
Pages 209-220 | Received 23 Mar 2018, Accepted 05 Jul 2018, Published online: 03 Sep 2018

References

  • Andressen, C., Blümcke, I., & Celio, M.R. (1993). Calcium-binding proteins: selective markers of nerve cells. Cell and Tissue Research, 271, 181–208. doi:10.1007/BF00318606
  • Atluri, P.P., & Regehr, W.G. (1996). Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. Journal of Neuroscience, 16, 5661–5671. doi:10.1523/JNEUROSCI.16-18-05661.1996
  • Baimbridge, K.G., Celio, M.R., & Rogers, J.H. (1992). Calcium-binding proteins in the nervous system. Trends in Neurosciences, 15, 303–308. doi:10.1016/0166-2236(92)90081-I
  • Bastianelli, E. (2003). Distribution of calcium-binding proteins in the cerebellum. Cerebellum, 2, 242–262. doi:10.1080/14734220310022289
  • Bittner, G.D., & Sewell, V.L. (1976). Facilitation at crayfish neuromuscular junctions. Journal of Comparative Physiology, 109, 287–308. doi:10.1007/BF00663610
  • Budnik, V., Zhong, Y., & Wu, C.F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. Journal of Neuroscience, 10, 3754–3768. doi:10.1523/JNEUROSCI.10-11-03754.1990
  • Caillard, O., Moreno, H., Schwaller, B., Llano, I., Celio, M.R., & Marty, A. (2000). Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 97, 13372–13377. doi:10.1073/pnas.230362997
  • Charlton, M.P., & Bittner, G.D. (1978). Facilitation of transmitter release at squid synapses. Journal of General Physiology, 72, 471–486. doi:10.1085/jgp.72.4.471
  • Cheung, U.S., Shayan, A.J., Boulianne, G.L., & Atwood, H.L. (1999). Drosophila larval neuromuscular junction's responses to reduction of cAMP in the nervous system. Journal of Neurobiology, 40, 1–13. doi:10.1002/(SICI)1097-4695(199907)40:1<1::AID-NEU1>3.0.CO;2-1
  • Chouhan, A.K., Ivannikov, M.V., Lu, Z., Sugimori, M., Llinas, R.R., & Macleod, G.T. (2012). Cytosolic calcium coordinates mitochondrial energy metabolism with presynaptic activity. Journal of Neuroscience, 32, 1233–1243. doi:10.1523/JNEUROSCI.1301-11.2012
  • Collin, T., Chat, M., Lucas, M.G., Moreno, H., Racay, P., Schwaller, B., … Llano, I. (2005). Developmental changes in parvalbumin regulate presynaptic Ca2+ signaling. Journal of Neuroscience, 25, 96–107. doi:10.1523/JNEUROSCI.3748-04.2005
  • Davis, G.W., DiAntonio, A., Petersen, S.A., & Goodman, C.S. (1998). Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila. Neuron, 20, 305–315. doi:10.1016/S0896-6273(00)80458-4
  • DeFelipe, J. (1997). Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. Journal of Chemical Neuroanatomy, 14, 1–19. doi:10.1016/S0891-0618(97)10013-8
  • Delaney, K.R., & Tank, D.W. (1994). A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. Journal of Neuroscience, 14, 5885–5902. doi:10.1523/JNEUROSCI.14-10-05885.1994
  • DiAntonio, A., Petersen, S.A., Heckmann, M., & Goodman, C.S. (1999). Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. Journal of Neuroscience, 19, 3023–3032. doi:10.1523/JNEUROSCI.19-08-03023.1999
  • Eggermann, E., Bucurenciu, I., Goswami, S.P., & Jonas, P. (2012). Nanodomain coupling between Ca(2)(+) channels and sensors of exocytosis at fast mammalian synapses. Nature Reviews Neuroscience, 13, 7–21. doi:10.1038/nrn3125
  • Feng, Y., Ueda, A., & Wu, C.F. (2004). A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. Journal of Neurogenetics, 18, 377–402. doi:10.1080/01677060490894522
  • Gertner, D.M., Desai, S., & Lnenicka, G.A. (2014). Synaptic excitation is regulated by the postsynaptic dSK channel at the Drosophila larval NMJ. Journal of Neurophysiology, 111, 2533–2543. doi:10.1152/jn.00903.2013
  • Gorbunova, Y.V., & Spitzer, N.C. (2002). Dynamic interactions of cyclic AMP transients and spontaneous Ca(2+) spikes. Nature, 418, 93–96. doi:10.1038/nature00835
  • Harrisingh, M.C., Wu, Y., Lnenicka, G.A., & Nitabach, M.N. (2007). Intracellular Ca2+ regulates free-running circadian clock oscillation in vivo. Journal of Neuroscience, 27, 12489–12499. doi:10.1523/JNEUROSCI.3680-07.2007
  • He, T., & Lnenicka, G.A. (2011). Ca(2+) buffering at a Drosophila larval synaptic terminal. Synapse, 65, 687–693. doi:10.1002/syn.20909
  • He, T., Singh, V., Rumpal, N., & Lnenicka, G.A. (2009). Differences in Ca2+ regulation for high-output Is and low-output Ib motor terminals in Drosophila larvae. Neuroscience, 159, 1283–1291. doi:10.1016/j.neuroscience.2009.01.074
  • Hoang, B., & Chiba, A. (2001). Single-cell analysis of Drosophila larval neuromuscular synapses. Developmental Biology, 229, 55–70. doi:10.1006/dbio.2000.9983
  • Hof, P.R., Glezer, I.I., Conde, F., Flagg, R.A., Rubin, M.B., Nimchinsky, E.A., & Vogt Weisenhorn, D.M. (1999). Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. Journal of Chemical Neuroanatomy, 16, 77–116. doi:10.1016/S0891-0618(98)00065-9
  • Jackman, S.L., & Regehr, W.G. (2017). The mechanisms and functions of synaptic facilitation. Neuron, 94, 447–464. doi:10.1016/j.neuron.2017.02.047
  • Jackman, S.L., Turecek, J., Belinsky, J.E., & Regehr, W.G. (2016). The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature, 529, 88–91. doi:10.1038/nature16507
  • Jan, L.Y., & Jan, Y.N. (1982). Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. Proceedings of the National Academy of Sciences of the United States of America, 79, 2700–2704. doi:10.1073/pnas.79.8.2700
  • Jande, S.S., Maler, L., & Lawson, D.E. (1981). Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature, 294, 765–767. doi:10.1038/294765a0
  • Kaeser, P.S., & Regehr, W.G. (2014). Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annual Review of Physiology, 76, 333–363. doi:10.1146/annurev-physiol-021113-170338
  • Lee, S.H., Schwaller, B., & Neher, E. (2000). Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: Implications for [Ca2+] transients of neuronal dendrites. Journal of Physiology, 525, 419–432. doi:10.1111/j.1469-7793.2000.t01-2-00419.x
  • Lin, D.M., & Goodman, C.S. (1994). Ectopic and increased expression of fasciclin II alters motoneuron growth cone guidance. Neuron, 13, 507–523. doi:10.1016/0896-6273(94)90022-1
  • Linder, T.M. (1974). The accumulative properties of facilitation at crayfish neuromuscular synapses. Journal of Physiology, 238, 223–234. doi:10.1113/jphysiol.1974.sp010520
  • Lnenicka, G.A., & Keshishian, H. (2000). Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. Journal of Neurobiology, 43, 186–197. doi:10.1002/(SICI)1097-4695(200005)43:2<186::AID-NEU8>3.0.CO;2-N
  • Lnenicka, G.A., Grizzaffi, J., Lee, B., & Rumpal, N. (2006). Ca2+ dynamics along identified synaptic terminals in Drosophila larvae. Journal of Neuroscience, 26, 12283–12293. doi:10.1523/JNEUROSCI.2665-06.2006
  • Lnenicka, G.A., Spencer, G.M., & Keshishian, H. (2003). Effect of reduced impulse activity on the development of identified motor terminals in Drosophila larvae. Journal of Neurobiology, 54, 337–345. doi:10.1002/neu.10133
  • Lnenicka, G.A., Theriault, K., & Monroe, R. (2006). Sexual differentiation of identified motor terminals in Drosophila larvae. Journal of Neurobiology, 66, 488–498. doi:10.1002/neu.20234
  • Macleod, G.T., Hegstrom-Wojtowicz, M., Charlton, M.P., & Atwood, H.L. (2002). Fast calcium signals in Drosophila motor neuron terminals. Journal of Neurophysiology, 88, 2659–2663. doi:10.1152/jn.00515.2002
  • Magleby, K.L., & Zengel, J.E. (1976). Augmentation: A process that acts to increase transmitter release at the frog neuromuscular junction. Journal of Physiology, 257, 449–470. doi:10.1113/jphysiol.1976.sp011378
  • Mallart, A., & Martin, A.R. (1967). An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. Journal of Physiology, 193, 679–694. doi:10.1113/jphysiol.1967.sp008388
  • Mallart, A. (1993). Calcium-dependent modulation of the facilitation of transmitter release at neuromuscular junctions of Drosophila. Journal of Physiology, 87, 83–88. doi:10.1016/0928-4257(93)90002-B
  • Melom, J.E., Akbergenova, Y., Gavornik, J.P., & Littleton, J.T. (2013). Spontaneous and evoked release are independently regulated at individual active zones. Journal of Neuroscience, 33, 17253–17263. doi:10.1523/JNEUROSCI.3334-13.2013
  • Morgans, C.W., El, F.O., Berntson, A., Wassle, H., & Taylor, W.R. (1998). Calcium extrusion from mammalian photoreceptor terminals. Journal of Neuroscience, 18, 2467–2474. doi:10.1523/JNEUROSCI.18-07-02467.1998
  • Mulkey, R.M., & Zucker, R.S. (1992). Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation. Journal of Neuroscience, 12, 4327–4336. doi:10.1523/JNEUROSCI.12-11-04327.1992
  • Muller, M., Felmy, F., Schwaller, B., & Schneggenburger, R. (2007). Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of held that accelerates the decay of Ca2+ and short-term facilitation. Journal of Neuroscience, 27, 2261–2271. doi:10.1523/JNEUROSCI.5582-06.2007
  • Nagerl, U.V., Novo, D., Mody, I., & Vergara, J.L. (2000). Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+). Biophysical Journal, 79, 3009–3018. doi:10.1016/S0006-3495(00)76537-4
  • Neher, E. (1995). The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology, 34, 1423–1442. doi:10.1016/0028-3908(95)00144-U
  • Paradis, S., Sweeney, S.T., & Davis, G.W. (2001). Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron, 30, 737–749. doi:10.1016/S0896-6273(01)00326-9
  • Petersen, S.A., Fetter, R.D., Noordermeer, J.N., Goodman, C.S., & DiAntonio, A. (1997). Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron, 19, 1237–1248. doi:10.1016/S0896-6273(00)80415-8
  • Powers, A.S., Grizzaffi, J., & Lnenicka, G.A. (2017). Increased postsynaptic Ca(2+) reduces mini frequency at the Drosophila larval NMJ. Synapse, 71, e21971. doi:10.1002/syn.21971
  • Powers, A.S., Grizzaffi, J., Ribchester, R., & Lnenicka, G.A. (2016). Regulation of quantal currents determines synaptic strength at neuromuscular synapses in larval Drosophila. Pflügers Archiv, 468, 2031–2040. doi:10.1007/s00424-016-1893-7
  • Ramirez, D.M., & Kavalali, E.T. (2011). Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Current Opinion in Neurobiology, 21, 275–282. doi:10.1016/j.conb.2011.01.007
  • Regehr, W.G., Delaney, K.R., & Tank, D.W. (1994). The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. Journal of Neuroscience, 14, 523–537. doi:10.1523/JNEUROSCI.14-02-00523.1994
  • Reuter, H., & Porzig, H. (1995). Localization and functional significance of the Na+/Ca2+ exchanger in presynaptic boutons of hippocampal cells in culture. Neuron, 15, 1077–1084. doi:10.1016/0896-6273(95)90096-9
  • Rivosecchi, R., Pongs, O., Theil, T., & Mallart, A. (1994). Implication of frequenin in the facilitation of transmitter release in Drosophila. Journal of Physiology, 474, 223–232. doi:10.1113/jphysiol.1994.sp020015
  • Roberts, W.M. (1994). Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. Journal of Neuroscience, 14, 3246–3262. doi:10.1523/JNEUROSCI.14-05-03246.1994
  • Rogers, J.H. (1989). Two calcium-binding proteins mark many chick sensory neurons. Neuroscience, 31, 697–709. doi:10.1016/0306-4522(89)90434-X
  • Rozov, A., Burnashev, N., Sakmann, B., & Neher, E. (2001). Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. Journal of Physiology, 531, 807–826. doi:10.1111/j.1469-7793.2001.0807h.x
  • Sanyal, S., Consoulas, C., Kuromi, H., Basole, A., Mukai, L., Kidokoro, Y., … Ramaswami, M. (2005). Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability. Genetics, 169, 737–750. doi:10.1534/genetics.104.031930
  • Saraswati, S., Adolfsen, B., & Littleton, J.T. (2007). Characterization of the role of the Synaptotagmin family as calcium sensors in facilitation and asynchronous neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America, 104, 14122–14127. doi:10.1073/pnas.0706711104
  • Schwaller, B., Meyer, M., & Schiffmann, S. (2002). ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum, 1, 241–258. doi:10.1080/147342202320883551
  • Scotti, A.L., Chatton, J.Y., & Reuter, H. (1999). Roles of Na(+)-Ca2+ exchange and of mitochondria in the regulation of presynaptic Ca2+ and spontaneous glutamate release. Philosophical Transactions of The Royal Society B Biological Sciences, 354, 357–364. doi:10.1098/rstb.1999.0387
  • Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J., & Wu, C.F. (1994). Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. Journal of Comparative Physiology A, 175, 179–191. doi:10.1007/BF00215114
  • Stewart, B.A., Schuster, C.M., Goodman, C.S., & Atwood, H.L. (1996). Homeostasis of synaptic transmission in Drosophila with genetically altered nerve terminal morphology. Journal of Neuroscience, 16, 3877–3886. doi:10.1523/JNEUROSCI.16-12-03877.1996
  • Tank, D.W., Regehr, W.G., & Delaney, K.R. (1995). A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. Journal of Neuroscience, 15, 7940–7952. doi:10.1523/JNEUROSCI.15-12-07940.1995
  • Turrigiano, G.G. (1999). Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends in Neurosciences, 22, 221–227. doi:10.1016/S0166-2236(98)01341-1
  • Vasin, A., Zueva, L., Torrez, C., Volfson, D., Littleton, J.T., & Bykhovskaia, M. (2014). Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. Journal of Neuroscience, 34, 10554–10563. doi:10.1523/JNEUROSCI.5074-13.2014
  • Vonhoff, F., & Keshishian, H. (2017). In vivo calcium signaling during synaptic refinement at the Drosophila neuromuscular junction. Journal of Neuroscience, 37, 5511–5526. doi:10.1523/JNEUROSCI.2922-16.2017
  • Vreugdenhil, M., Jefferys, J.G., Celio, M.R., & Schwaller, B. (2003). Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. Journal of Neurophysiology, 89, 1414–1422. doi:10.1152/jn.00576.2002
  • Wagh, D.A., Rasse, T.M., Asan, E., Hofbauer, A., Schwenkert, I., Durrbeck, H., … Buchner, E. (2006). Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron, 49, 833–844. doi:10.1016/j.neuron.2006.02.008
  • Zengel, J.E., & Magleby, K.L. (1980). Differential effects of Ba2+, Sr2+, and Ca2+ on stimulation-induced changes in transmitter release at the frog neuromuscular junction. Journal of General Physiology, 76, 175–211. doi:10.1085/jgp.76.2.175
  • Zengel, J.E., Magleby, K.L., Horn, J.P., McAfee, D.A., & Yarowsky, P.J. (1980). Facilitation, augmentation, and potentiation of synaptic transmission at the superior cervical ganglion of the rabbit. Journal of General Physiology, 76, 213–231. doi:10.1085/jgp.76.2.213
  • Zhong, Y., Budnik, V., & Wu, C.F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade. Journal of Neuroscience, 12, 644–651. doi:10.1523/JNEUROSCI.12-02-00644.1992
  • Zucker, R.S., & Regehr, W.G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405. doi:10.1146/annurev.physiol.64.092501.114547
  • Zucker, R.S. (1974). Characteristics of crayfish neuromuscular facilitation and their calcium dependence. Journal of Physiology, 241, 91–110. doi:10.1113/jphysiol.1974.sp010642
  • Zucker, R.S. (1996). Exocytosis: a molecular and physiological perspective. Neuron, 17, 1049–1055. doi:10.1016/S0896-6273(00)80238-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.