2,263
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae

, &
Pages 183-194 | Received 14 Mar 2018, Accepted 15 Jul 2018, Published online: 10 Oct 2018

References

  • Adams, M. E., & O’Shea, M. (1983). Peptide cotransmitter at a neuromuscular junction. Science, 221, 286–289. doi:10.1126/science.6134339
  • Agrawal, T., Sadaf, S., & Hasan, G. (2013). A genetic RNAi screen for IP3/Ca2+ coupled GPCRs in Drosophila identifies the PdfR as a regulator of insect flight. PLoS Genetics, 9, e1003849. doi:10.1371/journal.pgen.1003849
  • Anderson, M. S., Halpern, M. E., & Keshishian, H. (1988). Identification of the neuropeptide transmitter proctolin in Drosophila larvae: Characterization of muscle fiber-specific neuromuscular endings. Journal of Neuroscience, 8, 242–255. doi:10.1523/JNEUROSCI.08-01-00242.1988
  • Arimura, A. (1992). Pituitary adenylate cyclase activating polypeptide (PACAP): Discovery and current status of research. Regulatory Peptides, 37, 287–303. doi:10.1016/0167-0115(92)90621-Z
  • Atwood, H. L., Govind, C. K., & Wu, C. F. (1993). Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology, 24, 1008–1024. doi:10.1002/neu.480240803
  • Bhattacharya, A., Lakhman, S. S., & Singh, S. (2004). Modulation of L-type calcium channels in Drosophila via a pituitary adenylyl cyclase-activating polypeptide (PACAP)-mediated pathway. Journal of Biological Chemistry, 279, 37291–37297. doi:10.1074/jbc.M403819200
  • Belanger, J. H., & Orchard, I. (1993). The locust ovipositor opener muscle: Proctolinergic central and peripheral neuromodulation in a centrally driven motor system. Journal of Experimental Biology, 174, 343–362.
  • Brembs, B., Christiansen, F., Pflüger, H. J., & Duch, C. (2007). Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. Journal of Neuroscience, 27, 11122–11131. doi:10.1523/JNEUROSCI.2704-07.2007
  • Brody, T., & Cravchik, A. (2000). Drosophila melanogaster G protein-coupled receptors. Journal of Cell Biology, 150, F83–F88. doi:10.1083/jcb.150.2.F83
  • Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., & Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology, 11, 213–221. doi:10.1016/S0960-9822(01)00068-9
  • Brown, B. E., & Starratt, A. N. (1975). Isolation of proctolin, a myotropic peptide from Periplaneta americana. Journal of Insect Physiology, 21, 1879–1881. doi:10.1016/0022-1910(75)90257-7
  • Busch, S., Selcho, M., Ito, K., & Tanimoto, H. (2009). A map of octopaminergic neurons in the Drosophila brain. Journal of Comparative Neurology, 513, 643–667. doi:10.1002/cne.21966
  • Cantera, R., & Nässel, D. R. (1992). Segmental peptidergic innervation of abdominal targets in larval and adult dipteran insects revealed with an antiserum against leucokinin I. Cell and Tissue Research, 269, 459–471. doi:10.1007/BF00353901
  • Caers, J., Verlinden, H., Zels, S., Vandersmissen, H. P., Vuerinckx, K., & Schoofs, L. (2012). More than two decades of research on insect neuropeptide GPCRs: An overview. Frontiers in Endocrinology, 3, 151. Article 151. doi:10.3389/fendo.2012.00151
  • Cardoso, J. C. R., Vieira, F. A., Gomes, A. S., & Power, D. M. (2010). The serendipitous origin of chordate secretin peptide family members. BMC Evolutionary Biology, 10, 135. doi:10.1186/1471-2148-10-135
  • Cazzamali, G., & Grimmelikhuijzen, C. J. P. (2002). Molecular cloning and functional expression of the first insect FMRFamide receptor. Proceedings of the National Academy of Sciences of the United States of America, 99, 12073–12078. doi:10.1073/pnas.192442799
  • Certel, S. J., Savella, M. G., Schlegel, D. C. F., & Kravitz, E. A. (2007). Modulation of Drosophila male behavioral choice. Proceedings of the National Academy of Sciences of the United States of America, 104, 4706–4711. doi:10.1073/pnas.0700328104
  • Chouhan, A. K., Zhang, J., Zinsmaier, K. E., & Macleod, G. T. (2010). Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. Journal of Neuroscience, 30, 1869–1881. doi:10.1523/JNEUROSCI.4701-09.2010
  • Christie, A. E. (2014). Peptide discovery in the ectoparasitic crustacean Argulus siamensis: Identification of the first neuropeptides from a member of the Branchiura. General & Comparative Endocrinology, 204, 114–125. doi:10.1016/j.ygcen.2014.05.004
  • Christie, A. E. (2015). In silico characterization of the neuropeptidome of the Western black widow spider Latrodectus hesperus. General & Comparative Endocrinology, 210, 63–80. doi:10.1016/j.ygcen.2014.10.005
  • Christie, A. E., Chi, M., Lameyer, T. J., Pascual, M. G., Shea, D. N., Stanhope, M. E., … Dickinson, P. S. (2015). Neuropeptidergic signaling in the American lobster, Homarus americanus: New insights from high-throughput nucleotide sequencing. PLoS One, 10, e0145964. doi:10.1371/journal.pone.0145964
  • Christie, A. E., Stemmler, E. A., & Dickinson, P. S. (2010). Crustacean neuropeptides. Cellular and Molecular Life Sciences, 67, 4135–4169. doi:10.1007/s00018-010-0482-8
  • Clark, J., Milakovic, M., Cull, A., Klose, M. K., & Mercier, A. J. (2008). Evidence for postsynaptic modulation of muscle contraction by a Drosophila neuropeptide. Peptides, 29, 1140–1149. doi:10.1016/j.peptides.2008.02.013
  • de Haro, M., Al-Ramahi, I., Benito-Sipos, J., López-Arias, B., Dorado, B., Veenstra, J. A., & Herrero, P. (2010). Detailed analysis of leucokinin-expressing neurons and their candidate functions in the Drosophila nervous system. Cell and Tissue Research, 339, 321–336. doi:10.1007/s00441-009-0890-y
  • DeZazzo, J., Xia, S., Christensen, J., Velinzon, K., & Tully, T. (1999). Developmental expression of an amn+ transgene rescues the mutant memory defect of amnesiac adults. Journal of Neuroscience, 19, 8740–8746. doi:10.1523/JNEUROSCI.19-20-08740.1999
  • Dierick, H. A. (2008). Fly fighting: Octopamine modulates aggression. Current Biology, 18, R161–R163. doi:10.1016/j.cub.2007.12.026
  • Donini, A., & Lange, A. B. (2004). Evidence for a possible neurotransmitter/neuromodulator role of tyramine on the locust oviducts. Journal of Insect Physiology, 50, 351–361. doi:10.1016/j.jinsphys.2004.02.005
  • Dunn, T. W., & Mercier, A. J. (2005). Synaptic modulation by a Drosophila neuropeptide is motor neuron-specific and requires CaMKII activity. Peptides, 26, 269–276. doi:10.1016/j.peptides.2004.09.010
  • Egerod, K., Reynisson, E., Hauser, F., Cazzamali, G., Williamson, M., & Grimmelikhuijzen, C. J. (2003a). Molecular cloning and functional expression of the first two specific insect myosuppressin receptors. Proceedings of the National Academy of Sciences of the United States of America, 100, 9808–9813. doi:10.1073/pnas.1632197100
  • Egerod, K., Reynisson, E., Hauser, F., Williamson, M., Cazzamali, G., & Grimmelikhuijzen, C. J. (2003b). Molecular identification of the first insect proctolin receptor. Biochemical and Biophysical Research Communications, 306, 437–9813. doi:10.1016/S0006-291X(03)00997-5
  • El-Kholy, S., Stephano, F., Li, Y., Bhandari, A., Fink, C., & Roeder, T. (2015). Expression analysis of octopamine and tyramine receptors in Drosophila. Cell and Tissue Research, 361, 669–684. doi:10.1007/s00441-015-2137-4
  • Erxleben, C. F. J., deSantis, A., & Rathmayer, W. (1995). Effects of proctolin on contractions, membrane resistance, and non-voltage-dependent sarcolemmal ion channels in crustacean muscle fibers. Journal of Neuroscience, 15, 4356–4369. doi:10.1523/JNEUROSCI.15-06-04356.1995
  • Evans, P. D. (1984). The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. Journal of Physiology (London), 348, 325–340. doi:10.1113/jphysiol.1984.sp015113
  • Evans, P. D., & Maqueira, B. (2005). Insect octopamine receptors: A new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invertebrate Neuroscience, 5, 111–118. doi:10.1007/s10158-005-0001-z
  • Evans, P. D., & Robb, S. (1993). Octopamine receptor subtypes and their modes of action. Neurochemical Research, 18, 869–874. doi:10.1007/BF00998270
  • Ewer, J. (2005). Behavioral actions of neuropeptides in invertebrates: Insights from Drosophila. Hormones and Behavior, 48, 418–429. doi:10.1016/j.yhbeh.2005.05.018
  • Farooqui, T. (2012). Review of octopamine in insect nervous systems. Open Access Insect Physiology 2012, 4, 1–17.
  • Feany, M. B., & Quinn, W. G. (1995). A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science, 268, 869–873. doi:10.1126/science.7754370
  • Fox, L. E., Soll, D. R., & Wu, C.-F. (2006). Coordination and modulation of locomotion pattern generators in Drosophila larvae: Effects of altered biogenic amine levels by the tyramine sz hydroxylase mutation. Journal of Neuroscience, 26, 1486–1498. doi:10.1523/JNEUROSCI.4749-05.2006
  • Fung, S. J., Chan, J. Y. H., Manzoni, D., White, S. R., Lai, Y. Y., Strahlendorf, H. K., … Barnes, C. D. (1994). Cotransmitter-mediated locus coeruleus action on motoneurons. Brain Research Bulletin, 35, 423–432. doi:10.1016/0361-9230(94)90155-4
  • Ganetzky, B., & Wu, C.-F. (1982). Drosophila mutants with opposing effects on nerve excitability: Genetic and spatial interactions in repetitive firing. Journal of Neurophysiology, 47, 501–514. doi:10.1152/jn.1982.47.3.501
  • Garelli, A., Heredia, F., Casimiro, A. P., Macedo, A., Nunes, A., Garcez, M., … Gontijo, A. M. (2015). Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nature Communications, 6, 8732. doi:10.1038/ncomms9732
  • Gielow, M. L., Gu, G.-G., & Singh, S. (1995). Resolution and pharmacological analysis of the voltage-dependent calcium channels of Drosophila larval muscles. Journal of Neuroscience, 15, 6085–6093. doi:10.1523/JNEUROSCI.15-09-06085.1995
  • Giurfa, M. (2006). Associative learning: The instructive function of biogenic amines. Current Biology, 16, R892–R895. doi:10.1016/j.cub.2006.09.021
  • Gorczyca, M., Augart, C., & Budnik, V. (1993). Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila. Journal of Neuroscience, 13, 3692–3704. doi:10.1523/JNEUROSCI.13-09-03692.1993
  • Greenberg, M. J., & Price, D. A. (1992). Relationships among the FMRFamide-like peptides. Progress in Brain Research, 92, 25–37. doi:10.1016/S0079-6123(08)61162-0
  • Griffith, L. C., Verselis, L. M., Aitken, K. M., Kyriacou, C. P., Danho, W., & Greenspan, R. J. (1993). Inhibition of calcium/calmodulin-dependent protein kinase in Drosophila disrupts behavioral plasticity. Neuron, 10, 501–509. doi:10.1016/0896-6273(93)90337-Q
  • Grygoruk, A., Chen, A., Martin, C. A., Lawal, H. O., Fei, H., Gutierrez, G., … Krantz, D. E. (2014). The redistribution of Drosophila vesicular monoamine transporter mutants from synaptic vesicles to large dense-core vesicles impairs amine-dependent behaviors. Journal of Neuroscience, 34, 6924–6937. doi:10.1523/JNEUROSCI.0694-14.2014
  • Guo, H.-F., The, I., Hannan, F., Bernards, A., & Zhong, Y. (1997). Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science, 276, 795–798. doi:10.1126/science.276.5313.795
  • Hana, S., & Lange, A. B. (2017a). Cloning and functional characterization of Octsz2-receptor and Tyr1-receptor in the Chagas disease vector, Rhodnius prolixus. Frontiers in Physiology, 8, 1830–1836. Article 744. doi:10.3389/fphys.2017.00744
  • Hana, S., & Lange, A. B. (2017b). Octopamine and tyramine regulate the activity of reproductive visceral muscles in the adult female blood-feeding bug, Rhodnius prolixus. Journal of Experimental Biology, 220, 1830–1836. doi:10.1242/jeb.156307
  • Hashimoto, H., Shintani, N., & Baba, A. (2002). Higher brain functions of PACAP and a homologous Drosophila memory gene amnesiac: Insights from knockouts and mutants. Biochemical and Biophysical Research Communications, 297, 427–432. doi:10.1016/S0006-291X(02)02144-7
  • Hewes, R. S., Snowdeal, E. S., Saitoe, M., & Taghert, P. H. (1998). Functional redundancy of FMRFamide-related peptides at the Drosophila larval neuromuscular junction. Journal of Neuroscience, 18, 7138–7151. doi:10.1523/JNEUROSCI.18-18-07138.1998
  • Hewes, R. S., & Taghert, P. H. (2001). Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Research, 11, 1126–1142. doi:10.1101/gr.169901
  • Hoang, B., & Chiba, A. (2001). Single-cell analysis of Drosophila larval neuromuscular synapses. Developmental Biology, 229, 55–70. doi:10.1006/dbio.2000.9983
  • Hoyer, S. C., Eckart, A., Herrel, A., Zars, T., Fischer, S. A., Hardie, S. L., & Heisenberg, M. (2008). Octopamine in male aggression of Drosophila. Current Biology, 18, 159–167. doi:10.1016/j.cub.2007.12.052
  • Hoyle, G. (1978). Intrinsic rhythm and basic tonus in insect skeletal muscle. Journal of Experimental Biology, 73, 173–303.
  • Isaac, R. E., Taylor, C. A., Hamasaka, Y., Nässel, D. R., & Shirras, A. D. (2004). Proctolin in the post-genomic era: new insights and challenges. Invertebrate Neuroscience, 5, 51–64. doi:10.1007/s10158-004-0029-5
  • Jan, L. Y., & Jan, Y. N. (1976). L-glutamate as excitatory transmitter at the Drosophila larval neuromuscular junction. Journal of Physiology (London), 262, 215–236. doi:10.1113/jphysiol.1976.sp011593
  • Jekely, J. (2013). Global view of the evolution and diversity of metazoan neuropeptide signaling. Proceedings of the National Academy of Sciences of the United States of America, 110, 8702–8707. doi:10.1073/pnas.1221833110
  • Jia, X. X., Gorczyca, M., & Budnik, V. (1993). Ultrastructure of neuromuscular junctions in Drosophila: Comparison of wild type and mutants with increased excitability. Journal of Neurobiology, 24, 1025–1044. doi:10.1002/neu.480240804
  • Johansen, J., Halpern, M. E., Johansen, K. M., & Keshishian, H. (1989). Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. Journal of Neuroscience, 9, 710–725. doi:10.1523/JNEUROSCI.09-02-00710.1989
  • Johnson, E. C., Bohn, L. M., Barak, L. S., Birse, R. T., Nässel, D. R., Caron, M. G., & Taghert, P. H. (2003). Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-sz-arrestin2 interactions. Journal of Biological Chemistry, 278, 52172–52178. doi:10.1074/jbc.M306756200
  • Johnson, E. C., Garczynski, S. F., Park, D., Crim, J. W., Nassel, D. R., & Taghert, P. H. (2003). Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 100, 6198–6203. doi:10.1073/pnas.1030108100
  • Kastin, A. J. (2013). Handbook of biologically active peptides (2nd ed.). San Diego, CA: Academic Press.
  • Keshishian, H., Chiba, A., Chang, T. N., Halfon, M. S., Harkins, E. W., Jarecki, J., … Johansen, J. (1993). Cellular mechanisms governing synaptic development in Drosophila melanogaster. Journal of Neurobiology, 24, 757–787. doi:10.1002/neu.480240606
  • Keshishian, H., Broadie, K., Chiba, A., & Bate, M. (1996). The Drosophila neuromuscular junction: A model for studying synaptic development and function. Annual Review of Neurocience, 19, 545–575. doi:10.1146/annurev.ne.19.030196.002553
  • Keene, A. C., Stratmann, M., Keller, A., Perrat, P. N., Vosshall, L. B., & Waddell, S. (2004). Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron, 44, 521–533. doi:10.1016/j.neuron.2004.10.006
  • Kim, Y. J., Zitnan, D., Cho, K. H., Schooley, D. A., Mizoguchi, A., & Adams, M. E. (2006). Central peptidergic ensembles associated with organization of an innate behavior. Proceedings of the National Academy of Sciences of the United States of America, 103, 14211–14216. doi:10.1073/pnas.0603459103
  • Klose, M. K., Dason, J. S., Atwood, H. L., Boulianne, G. L., & Mercier, A. J. (2010). Peptide-induced modulation of synaptic transmission and escape response in Drosophila requires two G-protein-coupled receptors. Journal of Neuroscience, 30, 14724–14734. doi:10.1523/JNEUROSCI.3612-10.2010
  • Kohout, T. A., & Lefkowitz, R. J. (2003). Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Molecular Pharmacology, 63, 9–18. doi:10.1124/mol.63.1.9
  • Koon, A. C., Ashley, J., Barria, R., DasGupta, S., Brain, R., Waddell, S., … Budnik, V. (2011). Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nature Neuroscience, 14, 190–199. doi:10.1038/nn.2716
  • Kravitz, E. A., Glusman, S., Harris-Warrick, R. M., Livingstone, M. S., Schwarz, T., & Goy, M. F. (1980). Amines and a peptide as neurohormones in lobsters: actions on neuromuscular preparations and preliminary behavioural studies. Journal of Experimental Biology, 89, 159–175.
  • Kurdyak, P., Atwood, H. L., Stewart, B. A., & Wu, C.-F. (1994). Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. Journal of Comparative Neurology, 350, 463–472. doi:10.1002/cne.903500310
  • Landgraf, M., Sánchez-Soriano, N., Technau, G. M., Urban, J., & Prokop, A. (2003). Charting the Drosophila neuropile: A strategy for the standardised characterisation of genetically amenable neurites. Developmental Biology, 260, 207–225. doi:10.1016/S0012-1606(03)00215-X
  • Lange, A. B. (2001). Feeding state influences the content of FMRFamide- and tachykinin-related peptides in the endocrine-like cells of the midgut of Locusta migratoria. Peptides, 22, 229–234. doi:10.1016/S0196-9781(00)00386-7
  • Lange, A. B. (2002). A review of the involvement of proctolin as a cotransmitter and local neurohormone in the oviduct of the locust, Locusta migratoria. Peptides, 23, 2063–2070. doi:10.1016/S0196-9781(02)00223-1
  • Lenz, O., Xiong, J., Nelson, M. D., Raizen, D. M., & Williams, J. A. (2015). FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain, Behavior and Immunity, 47, 141–148. doi:10.1016/j.bbi.2014.12.028
  • Li, X. J., Wolfgang, W., Wu, Y. N., North, R. A., & Forte, M. (1991). Cloning, heterologous expression and developmental regulation of a Drosophila receptor for tachykinin-like peptides. EMBO Journal, 10, 3221–3229.
  • Liu, W., Guo, F., Lu, B., & Guo, A. (2008). amnesiac regulates sleep onset and maintenance in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 372, 798–803. doi:10.1016/j.bbrc.2008.05.119
  • Lnenicka, G. A., & Keshishian, H. (2000). Identified motor terminals in Drosophila larvae show distance differences in morphology and physiology. Journal of Neurobiology, 43, 186–197. doi:10.1002/1097-4695(200005)43:2<186::AID-NEU8>3.0.CO;2-N
  • Mahoney, R. E., Azpurua, J., & Eaton, B. A. (2016). Insulin signaling controls neurotransmission via the 4eBP-dependent modification of the exocytotic machinery. eLife, 5, e16807. doi:10.7554/eLife.16807.001
  • Majdi, S., Berglund, E. C., Dunevall, J., Oleinick, A. I., Amatore, C., Krantz, D. E., & Ewing, A. G. (2015). Electrochemical measurements of optogenetically stimulated quantal amine release from single nerve cell varicosities in Drosophila larvae. Angewandte Chemie, 127, 13813–13816. doi:10.1002/ange.201506743
  • Milakovic, M., Ormerod, K. G., Klose, M. K., & Mercier, A. J. (2014). Mode of action of a Drosophila FMRFamide in inducing muscle contraction. Journal of Experimental Biology, 217, 1725–1736. doi:10.1242/jeb.096941
  • Marder, E., Hooper, S. L., & Siwicki, K. K. (1986). Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric system. Journal of Comparative Neurology, 243, 454–467. doi:10.1002/cne.902430403
  • Marder, E., O'Leary, T., & Shruti, S. (2014). Neuromodulation of circuits with variable parameters: Single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annual Review of Neuroscience, 37, 329–346. doi:10.1146/annurev-neuro-071013-013958
  • Mertens, I., Vandingenen, A., Johnson, E. C., Shafer, O. T., Li, W., Trigg, J. S., … Taghert, P. H. (2005). PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron, 48, 213–219. doi:10.1016/j.neuron.2005.09.009
  • Martin, C. A., Myers, K. M., Chen, A., Martin, N. T., Barajas, A., Schweizer, F. E., & Krantz, D. E. (2016). Ziram, a pesticide associated with increased risk for Parkinson’s disease, differentially affects the presynaptic function of aminergic and glutamatergic nerve terminal at the Drosophila neuromuscular junction. Experimental Neurology, 275, 232–241. doi:10.1016/j.expneurol.2015.09.017
  • Maynard, B. F., Bass, C., Katanski, C., Thakur, K., Manoogian, B., Leander, M., & Nichols, R. (2013). Structure–activity relationships of FMRF-NH2 peptides demonstrate a role for the conserved C terminus and unique N-terminal extension in modulating cardiac contractility. PLoS One, 8, e75502. doi:10.1371/journal.pone.0075502
  • Meeusen, T., Mertens, I., Clynen, E., Baggerman, G., Nichols, R., Nachman, R. J., … Schoofs, L. (2002). Identification in Drosophila melanogaster of the invertebrate G protein-coupled FMRFamide receptor. Proceedings of the National Academy of Sciences of the United States of America, 99, 15363–15368. doi:10.1073/pnas.252339599
  • Mercier, A. J., Friedrich, R., & Boldt, M. (2003). Physiological functions of FMRFamide-like peptides (FLPs) in crustaceans. Microscopy Research and Technique, 60, 313–324. doi:10.1002/jemt.10270
  • Mesce, K. A. (2002). Metamodulation of the biogenic amines: Second-order modulation by steroid hormones and amine cocktails. Brain, Behavior and Evolution, 60, 339–349. doi:10.1159/000067793
  • Monastirioti, M., Gorczyca, M., Eckert, M., Rapus, J., White, K., & Budnik, V. (1995). Octopamine immunoreactivity in the fruit fly Drosophila melanogaster. Journal of Comparative Neurology, 356, 275–287. doi:10.1002/cne.903560210
  • Monastirioti, M., Linn, C. E., & White, K. (1996). Characterization of Drosophila tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine . Journal of Neuroscience, 16, 3900–3911. doi:10.1523/JNEUROSCI.16-12-03900.1996
  • Musacchio, J. M., Goldstein, M., Anagnoste, B., Poch, G., & Kopin, I. J. (1966). Inhibition of dopamine-beta-hydroxylase by disulfiram in vivo. Journal of Pharmacology and Experimental Therapeutics, 152, 56–61.
  • Nagaya, Y., Kutsukake, M., Chigusa, S. I., & Komatsu, A. (2002). A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster. Neuroscience Letters, 329, 324–328. doi:10.1016/S0304-3940(02)00596-7
  • Nambu, J. R., Murphy-Erdosh, C., Andrews, P. C., Feistner, G. J., & Scheller, R. H. (1988). Isolation and characterization of a Drosophila neuropeptide gene. Neuron, 1, 55–61. doi:10.1016/0896-6273(88)90209-7
  • Nässel, D. R., & Winther, A. M. E. (2010). Drosophila neuropeptides in regulation of physiology and behavior. Progress in Neurobiology, 92, 42–104. doi:10.1016/j.pneurobio.2010.04.010
  • Nishikawa, K., & Kidokoro, Y. (1999). Octopamine inhibits synaptic transmission at the larval neuromuscular junction in Drosophila melanogaster. Brain Research, 837, 67–74. doi:10.1016/S0006-8993(99)01676-5
  • Nusbaum, M. P., Blitz, D. M., Swensen, A. M., Wood, D., & Marder, E. (2001). The roles of co-transmission in neural network modulation. Trends in Neurosciences, 24, 146–154. doi:10.1016/S0166-2236(00)01723-9
  • Nusbaum, M. P., & Blitz, D. M. (2012). Neuropeptide modulation of microcircuits. Current Opinion in Neurobiology, 22, 592–601. doi:10.1016/j.conb.2012.01.003
  • Okusawa, S., Kohsaka, H., & Nose, A. (2014). Serotonin and downstream leucokinin neurons modulate larval turning behavior in Drosophila. Journal of Neuroscience, 34, 2544–2558. doi:10.1523/JNEUROSCI.3500-13.2014
  • Orchard, I., Belanger, J. H., & Lange, A. B. (1989). Proctolin: A review with emphasis on insects. Journal of Neurobiology, 20, 470–496. doi:10.1002/neu.480200515
  • Ormerod, K. G., Hadden, J. K., Deady, L. D., Mercier, A. J., & Krans, J. L. (2013). Action of octopamine and tyramine on muscles of Drosophila melanogaster larvae. Journal of Neurophysiology, 110, 1984–1996. doi:10.1152/jn.00431.2013
  • Ormerod, K. G., Krans, J. L., & Mercier, A. J. (2015). Cell-selective modulation of the Drosophila neuromuscular system by a neuropeptide. Journal of Neurophysiology, 113, 1631–1643. doi:10.1152/jn.00625.2014
  • Ormerod, K. G., LePine, O. K., Shahid Bhutta, M., Jung, J., Tattersall, G. J., & Mercier, A. J. (2016). Characterizing the physiological and behavioral roles of proctolin in Drosophila melanogaster. Journal of Neurophysiology, 115, 568–580. doi:10.1152/jn.00606.2015
  • Pasztor, V. M., & MacMillan, D. L. (1990). The actions of proctolin, octopamine and serotonin on crustacean proprioceptors show species and neurone specificity. Journal of Experimental Biology, 152, 485–504.
  • Pyakurel, P., Champaloux, E. P., & Venton, B. J. (2016). Fast-scan cyclic voltammetry (FSCV) detection of endogenous octopamine in Drosophila melanogaster ventral nerve cord. ACS Chemical Neuroscience, 7, 1112–1119. doi:10.1021/acschemneuro.6b00070
  • Python, F., & Stocker, R. F. (2002). Immunoreactivity against choline acetyltransferase, g-aminobutyric acid, histamine, octopamine and serotonin in the larval chemosensory system of Drosophila melanogaster. Journal of Comparative Neurology, 453, 157–167. doi.org/10.1002/cne.10383
  • Renger, J. J., Ueda, A., Atwood, H. L., Govind, C. K., & Wu, C.-F. (2000). Role of cAMP cascade in synaptic stability and plasticity: Ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. Journal of Neuroscience, 20, 3980–3992. doi:10.1523/JNEUROSCI.20-11-03980.2000
  • Rezaval, C., Nojima, T., Neville, M. C., Lin, A. C., & Goodwin, S. F. (2014). Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Current Biology, 24, 725–730. doi:10.1016/j.cub.2013.12.051
  • Roeder, T. (1999). Octopamine in invertebrates. Progress in Neurobiology, 59, 533–561. doi:10.1016/S0301-0082(99)00016-7
  • Santos, J. G., Vömel, M., Struck, R., Homberg, U., Nässel, D. R., & Wegener, C. (2007). Neuroarchitecture of peptidergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One, 2, e695. doi:10.1371/journal.pone.0000695
  • Saraswati, S., Fox, L. E., Soll, D. R., & Wu, C.-F. (2004). Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. Journal of Neurobiology, 58, 425–441. doi:10.1002/neu.10298
  • Shakiryanova, D., Tully, A., Hewes, R. S., Deitcher, D. L., & Levitan, E. S. (2005). Activity-dependent liberation of synaptic neuropeptide vesicles. Nature Neuroscience, 8, 173–178. doi:10.1038/nn1377
  • Shakiryanova, D., Zettel, G. M., Gu, T., Hewes, R. S., & Levitan, E. S. (2011). Synaptic neuropeptide release induced by octopamine without Ca2+ entry into the nerve terminal. Proceedings of the National Academy of Sciences of the United States of America, 108, 4477–4481. doi:10.1073/pnas.1017837108
  • Schneider, L. E., Roberts, M. S., & Taghert, P. H. (1993). Cell type-specific transcriptional regulation of the Drosophila FMRFamide neuropeptide gene. Neuron, 10, 279–291. doi:10.1016/0896-6273(93)90318-L
  • Schneider, L. E., & Taghert, P. H. (1988). Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proceedings of the National Academy of Sciences of the United States of America, 85, 1993–1997. doi:10.1073/pnas.85.6.1993
  • Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J., & Wu, C. F. (1994). Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. Journal of Comparative Physiology A, 175, 179–191. doi:10.1007/BF00215114
  • Suver, M. P., Mamiya, A., & Dickinson, M. H. (2012). Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. Current Biology, 22, 2294–2302. doi:10.1016/j.cub.2012.10.034
  • Taghert, P. H. (1999). FMRFamide neuropeptides and neuropeptide-associated enzymes in Drosophila. Microscopy Research and Technique, 45, 80–95. doi:10.1002/(SICI)1097-0029(19990415)45:2<80::AID-JEMT3>3.0.CO;2-X
  • Taylor, C. A. M., Winther, A. M. E., Siviter, R. J., Shirras, A. D., Isaac, R. E., & Nässel, D. R. (2004). Identification of a proctolin preprohormone gene (Proct) of Drosophila melanogaster: Expression and predicted prohormone processing. Journal of Neurobiology, 58, 379–391. doi:10.1002/neu.10301
  • Terhzaz, S., O'Connell, F. C., Pollock, V. P., Kean, L., Davies, S. A., Veenstra, J. A., & Dow, J. A. (1999). Isolation and characterization of a leucokinin-like peptide of Drosophila melanogaster. Journal of Experimental Biology, 202, 3667–3676.
  • Ueda, A., & Wu, C. F. (2015). The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutation. Frontiers in Cellular Neuroscience, 9, 10. Retrieved from https://doi.org/10.3389/fncel.2015.00010
  • Ueda, A., & Wu, C. F. (2012). Cyclic adenosine monophosphate metabolism in synaptic growth, strength and precision: Neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenyl cyclase mutations. Journal of Neurogenetics, 26, 64–81. doi:10.3109/01677063.2011.652752
  • Ueda, A., & Wu, C.-F. (2009). Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: Reduced synaptic strength and precision in a Drosophila memory mutant. Journal of Neurogenetics, 23, 185–199. doi:10.1080/01677060802471726
  • Ui-Tei, K., Sakuma, M., Watanabe, Y., Miyake, T., & Miyata, Y. (1995). Chemical analysis of neurotransmitter candidates in clonal cell lines from Drosophila central nervous system, II: Neuropeptides and amino acids. Neuroscience Letters, 195, 187–190. doi:10.1016/0304-3940(95)11815-E
  • Vanden, B. J. (2001). Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides, 22, 241–254. doi:10.1016/S0196-9781(00)00376-4
  • Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pflüger, H. J., Blenau, W., & Vanden Broeck, J. (2010). The role of octopamine in locusts and other arthropods. Journal of Insect Physiology, 56, 854–867. doi:10.1016/j.jinsphys.2010.05.018
  • Wasserman, S. M., Aptekar, J. W., Lu, P., Nguyen, J., Wang, A. L., Keles, M. F., … Frye, M. A. (2015). Olfactory neuromodulation of motion vision circuitry in Drosophila. Current Biology, 25, 467–472. doi:10.1016/j.cub.2014.12.012
  • Wegener, C., & Nässel, D. R. (2000). Peptide-induced Ca(2+) movements in a tonic insect muscle: effects of proctolin and periviscerokinin-2. Journal of Neurophysiology, 84, 3056–3066. doi:10.1152/jn.2000.84.6.3056
  • Wegener, C., & Veenstra, J. A. (2015). Chemical identity, function and regulation of enteroendocrine peptides in insects. Current Opinion in Insect Science, 11, 8–13. doi:10.1016/j.cois.2015.07.003
  • Wilcox, C. L., & Lange, A. B. (1995). Role of extracellular and intracellular calcium on proctolin-induced contractions in an insect visceral muscle. Regulatory Peptides, 56, 49–59. doi:10.1016/0167-0115(95)00006-W
  • Wong, M. Y., Zhou, C., Shakiryanova, D., Lloyd, T. E., Deitcher, D. L., & Levitan, E. S. (2012). Neuropeptide delivery to synapses by long-range vesicle circulation and sporadic capture. Cell, 148, 1029–1038. doi:10.1016/j.cell.2011.12.036
  • Xing, X., & Wu, C.-F. (2018). Unraveling synaptic GCaMP signals: Differential excitability and clearance mechanisms underlying distinct Ca2+ dynamics in tonic and phasic excitatory, and aminergic modulatory motor terminals in Drosophila. eNeuro.0362, 17, 20128–20181. Retrieved from http://dx.doi.org/10.1523/ENEURO.0362-17.2018
  • Yeoh, J. G. C., Pandit, A. A., Zandawala, M., Nassel, D. R., Davies, S. A., & Dow, J. A. T. (2017). DINeR: Database for insect neuropeptide research. Insect Biochemistry and Molecular Biology, 86, 9–19. doi:10.1016/j.ibmb.2017.05.001
  • Zhong, Y., & Peña, L. A. (1995). A novel synaptic transmission mediated by a PACAP-like neuropeptide in Drosophila. Neuron, 14, 527–536. doi:10.1016/0896-6273(95)90309-7
  • Zhong, Y., & Wu, C.-F. (1991). Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science, 251, 198–201. doi:10.1126/science.1670967
  • Zhong, Y., Budnik, V., & Wu, C.-F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade. Journal of Neuroscience, 12, 644–651. doi:10.1523/JNEUROSCI.12-02-00644.1992

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.