1,278
Views
7
CrossRef citations to date
0
Altmetric
Original Research Article

Type II phosphatidylinositol 4-kinase regulates nerve terminal growth and synaptic vesicle recycling

, , & ORCID Icon
Pages 230-235 | Received 17 May 2018, Accepted 15 Jul 2018, Published online: 03 Sep 2018

References

  • Atwood, H. L., Govind, C. K., & Wu, C. F. (1993). Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology, 24, 1008–1024. doi:10.1002/neu.480240803
  • Banerji, S., Ngo, M., Lane, C. F., Robinson, C. A., Minogue, S., & Ridgway, N. D. (2010). Oxysterol binding protein-dependent activation of sphingomyelin synthesis in the golgi apparatus requires phosphatidylinositol 4-kinase IIα. Molecular Biology of the Cell, 21, 4141–4150. doi:10.1091/mbc.e10-05-0424
  • Betz, W. J., & Bewick, G. S. (1992). Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science, 255, 200–203. doi:10.1126/science.1553547
  • Brill, J. A., Hime, G. R., Scharer-Schuksz, M., & Fuller, M. T. (2000). A phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis. Development, 127, 3855–3864. http://dev.biologists.org/content/develop/127/17/3855.full.pdf
  • Budnik, V., Zhong, Y., & Wu, C. F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. Journal of Neuroscience, 10, 3754–3768. doi:10.1523/JNEUROSCI.10-11-03754.1990
  • Burgess, J., Del Bel, L. M., Ma, C. I., Barylko, B., Polevoy, G., Rollins, J., … Brill, J. A. (2012). Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Development, 139, 3040–3050. doi:10.1242/dev.077644
  • D'Angelo, G., Vicinanza, M., Di Campli, A., & De Matteis, M. A. (2008). The multiple roles of PtdIns(4)P – not just the precursor of PtdIns(4,5)P2. Journal of Cell Science, 121, 1955–1963. doi:10.1242/jcs.023630
  • Dason, J. S., Romero-Pozuelo, J., Marin, L., Iyengar, B. G., Klose, M. K., Ferrus, A., & Atwood, H. L. (2009). Frequenin/NCS-1 and the Ca2+ channel α1-subunit co-regulate synaptic transmission and nerve terminal growth. Journal of Cell Science, 122, 4109–4121. doi:10.1242/jcs.055095
  • Dason, J. S., Smith, A. J., Marin, L., & Charlton, M. P. (2010). Vesicular sterols are essential for synaptic vesicle cycling. Journal of Neuroscience, 30, 15856–15865. doi:10.1523/JNEUROSCI.4132-10.2010
  • Dason, J. S., Smith, A. J., Marin, L., & Charlton, M. P. (2014). Cholesterol and F-actin are required for clustering of recycling synaptic vesicle proteins in the presynaptic plasma membrane. Journal of Physiology, 592, 621–633. doi:10.1113/jphysiol.2013.265447
  • De Matteis, M. A., Wilson, C., & D'Angelo, G. (2013). Phosphatidylinositol-4-phosphate: The Golgi and beyond. Bioessays, 35, 612–622. doi:10.1002/bies.201200180
  • Di Paolo, G., Moskowitz, H. S., Gipson, K., Wenk, M. R., Voronov, S., Obayashi, M., … De Camilli, P. (2004). Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature, 431, 415–422. doi:10.1038/nature02896
  • Forrest, S., Chai, A., Sanhueza, M., Marescotti, M., Parry, K., Georgiev, A., … Pennetta, G. (2013). Increased levels of phosphoinositides cause neurodegeneration in a Drosophila model of amyotrophic lateral sclerosis. Human Molecular Genetics, 22, 2689–2704. doi:10.1093/hmg/ddt118
  • Frere, S. G., Chang-Ileto, B., & Di Paolo, G. (2012). Role of phosphoinositides at the neuronal synapse. Subcellular Biochemistry, 59, 131–175. doi:10.1007/978-94-007-3015-1
  • Guo, J., Wenk, M. R., Pellegrini, L., Onofri, F., Benfenati, F., & De Camilli, P. (2003). Phosphatidylinositol 4-kinase type IIalpha is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America, 100, 3995–4000. doi:10.1073/pnas.0230488100
  • Harris, K. P., & Littleton, J. T. (2015). Transmission, development, and plasticity of synapses. Genetics, 201, 345–375. doi:10.1534/genetics.115.176529
  • Hassan, B. A., Prokopenko, S. N., Breuer, S., Zhang, B., Paululat, A., & Bellen, H. J. (1998). skittles, a Drosophila phosphatidylinositol 4-phosphate 5-kinase, is required for cell viability, germline development and bristle morphology, but not for neurotransmitter release. Genetics, 150, 1527–1537. http://www.genetics.org/content/genetics/150/4/1527.full.pdf
  • Idevall-Hagren, O., Dickson, E. J., Hille, B., Toomre, D. K., & De Camilli, P. (2012). Optogenetic control of phosphoinositide metabolism. Proceedings of the National Academy of Sciences of the United States of America, 109, E2316–E2323. doi:10.1073/pnas.1211305109
  • Kay, A. R., Alfonso, A., Alford, S., Cline, H. T., Holgado, A. M., Sakmann, B., … Wu, L. G. (1999). Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron, 24, 809–817. doi:10.1016/S0896-6273(00)81029-6
  • Khuong, T. M., Habets, R. L., Slabbaert, J. R., & Verstreken, P. (2010). WASP is activated by phosphatidylinositol-4,5-bisphosphate to restrict synapse growth in a pathway parallel to bone morphogenetic protein signaling. Proceedings of the National Academy of Sciences of the United States of America, 107, 17379–17384. doi:10.1073/pnas.1001794107
  • Kurdyak, P., Atwood, H. L., Stewart, B. A., & Wu, C. F. (1994). Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. Journal of Comparative Neurology, 350, 463–472. doi:10.1002/cne.903500310
  • Lauwers, E., Goodchild, R., & Verstreken, P. (2016). Membrane lipids in presynaptic function and disease. Neuron, 90, 11–25. doi:10.1016/j.neuron.2016.02.033
  • Macleod, G. T., Hegstrom-Wojtowicz, M., Charlton, M. P., & Atwood, H. L. (2002). Fast calcium signals in Drosophila motor neuron terminals. Journal of Neurophysiology, 88, 2659–2663. doi:10.1152/jn.00515.2002
  • Romero-Pozuelo, J., Dason, J. S., Atwood, H. L., & Ferrús, A. (2007). Chronic and acute alterations in the functional levels of frequenins 1 and 2 reveal their roles in synaptic transmission and axon terminal morphology. European Journal of Neuroscience, 26, 2428–2443. doi:10.1111/j.1460-9568.2007.05877.x
  • Romero-Pozuelo, J., Dason, J. S., Mansilla, A., Baños-Mateos, S., Sardina, J. L., Chaves-Sanjuán, A., … Ferrús, A. (2014). The guanine-exchange factor Ric8a binds to the Ca2+ sensor NCS-1 to regulate synapse number and neurotransmitter release. Journal of Cell Science, 127, 4246–4259. doi:10.1242/jcs.152603
  • Simons, J. P., Al-Shawi, R., Minogue, S., Waugh, M. G., Wiedemann, C., Evangelou, S., … Hsuan, J. J. (2009). Loss of phosphatidylinositol 4-kinase 2alpha activity causes late onset degeneration of spinal cord axons. Proceedings of the National Academy of Sciences of the United States of America, 106, 11535–11539. doi:10.1073/pnas.0903011106
  • Stewart, B. A., Schuster, C. M., Goodman, C. S., & Atwood, H. L. (1996). Homeostasis of synaptic transmission in Drosophila with genetically altered nerve terminal morphology. Journal of Neuroscience, 16, 3877–3886. doi:10.1523/JNEUROSCI.16-12-03877.1996
  • Suh, B. C., & Hille, B. (2002). Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron, 35, 507–520. doi:10.1016/S0896-6273(02)00790-0
  • Suh, B. C., Leal, K., & Hille, B. (2010). Modulation of high-voltage activated Ca(2+) channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron, 67, 224–238. doi:10.1016/j.neuron.2010.07.001
  • Takamori, S., Holt, M., Stenius, K., Lemke, E. A., Grønborg, M., Riedel, D., … Jahn, R. (2006). Molecular anatomy of a trafficking organelle. Cell, 127, 831–846. doi:10.1016/j.cell.2006.10.030
  • Tan, J., Oh, K., Burgess, J., Hipfner, D. R., & Brill, J. A. (2014). PI4KIIIα is required for cortical integrity and cell polarity during Drosophila oogenesis. Journal of Cell Science, 127, 954–966. doi:10.1242/jcs.129031
  • Tan, J., & Brill, J. A. (2014). Cinderella story: PI4P goes from precursor to key signaling molecule. Critical Reviews in Biochemistry and Molecular Biology, 49, 33–58. doi:10.3109/10409238.2013.853024
  • Verstreken, P., Ohyama, T., & Bellen, H. J. (2008). FM 1-43 labeling of synaptic vesicle pools at the Drosophila neuromuscular junction. Methods in Molecular Biology, 440, 349–369. doi:10.1007/978-1-59745-178-9
  • Verstreken, P., Ohyama, T., Haueter, C., Habets, R. L., Lin, Y. Q., Swan, L. E., … Bellen, H. J. (2009). Tweek, an evolutionarily conserved protein, is required for synaptic vesicle recycling. Neuron, 63, 203–215. doi:10.1016/j.neuron.2009.06.017
  • Wagh, D. A., Rasse, T. M., Asan, E., Hofbauer, A., Schwenkert, I., Dürrbeck, H., … Buchner, E. (2006). Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron, 49, 833–844. doi:10.1016/j.neuron.2006.02.008
  • Walter, A. M., Müller, R., Tawfik, B., Wierda, K. D., Pinheiro, P. S., Nadler, A., … Sørensen, J. B. (2017). Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. Elife, 6, 1–14. doi:10.7554/eLife.30203.
  • Wiedemann, C., Schäfer, T., Burger, M. M., & Sihra, T. S. (1998). An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. Journal of Neuroscience, 18, 5594–5602. doi:10.1523/JNEUROSCI.18-15-05594.1998
  • Yan, Y., Denef, N., Tang, C., & Schüpbach, T. (2011). Drosophila PI4KIIIalpha is required in follicle cells for oocyte polarization and Hippo signaling. Development, 138, 1697–1703. doi:10.1242/dev.059279
  • Zhong, Y., Budnik, V., & Wu, C. F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade. Journal of Neuroscience, 12, 644–651. doi:10.1523/JNEUROSCI.12-02-00644.1992

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.