960
Views
6
CrossRef citations to date
0
Altmetric
Original Research Article

Inter-relationships among physical dimensions, distal–proximal rank orders, and basal GCaMP fluorescence levels in Ca2+ imaging of functionally distinct synaptic boutons at Drosophila neuromuscular junctions

&
Pages 195-208 | Received 20 May 2018, Accepted 20 Jul 2018, Published online: 16 Oct 2018

References

  • Akerboom, J., Chen, T.-W., Wardill, T.J., Tian, L., Marvin, J.S., Mutlu, S., … Looger, L.L. (2012). Optimization of a GCaMP calcium indicator for neural activity imaging. Journal of Neuroscience, 32, 13819–13840. doi:10.1523/JNEUROSCI.2601-12.2012
  • Atwood, H.L., Govind, C.K., & Wu, C.F. (1993). Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. Journal of Neurobiology, 24, 1008–1024. doi:10.1002/neu.480240803
  • Atwood, H.L., & Karunanithi, S. (2002). Diversification of synaptic strength: Presynaptic elements. Nature Reviews Neuroscience, 3, 497–516. doi:10.1038/nrn876
  • Bradacs, H., Cooper, R., Msghina, M., & Atwood, H. (1997). Differential physiology and morphology of phasic and tonic motor axons in a crayfish limb extensor muscle. Journal of Experimental Biology, 200, 677–691.
  • Brown, T.H., Chapman, P.F., Kairiss, E.W., & Keenan, C.L. (1988). Long-term synaptic potentiation. Science, 242, 724–728. doi:10.1126/science.2903551
  • Budnik, V., Zhong, Y., & Wu, C.F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. Journal of Neuroscience, 10, 3754–3768. doi:10.1523/JNEUROSCI.10-11-03754.1990
  • Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., … Kim, D.S. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295–300. doi:10.1038/nature12354
  • Chouhan, A.K., Zhang, J., Zinsmaier, K.E., & Macleod, G.T. (2010). Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. Journal of Neuroscience, 30, 1869–1881. doi:10.1523/JNEUROSCI.4701-09.2010
  • David, G., Barrett, J.N., & Barrett, E.F. (1998). Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. Journal of Physiology, 509, 59–65. doi:10.1111/j.1469-7793.1998.059bo.x
  • Dason, J.S., Romero-Pozuelo, J., Marin, L., Iyengar, B.G., Klose, M.K., Ferrus, A., & Atwood, H.L. (2009). Frequenin/NCS-1 and the Ca2+-channel alpha1-subunit co-regulate synaptic transmission and nerve-terminal growth. Journal of Cell Science, 122, 4109–4121. doi:10.1242/jcs.055095
  • Dipolo, R., & Beaugé, L. (1979). Physiological role of ATP-driven calcium pump in squid axon. Nature, 278, 271–273. doi:10.1038/278271a0
  • Feng, Y., Ueda, A., & Wu, C.-F. (2004). A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. Journal of Neurogenetics, 18, 377–402. doi:10.1080/01677060490894522
  • Ganetzky, B., & Wu, C.F. (1982). Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics, 100, 597–614.
  • Ganetzky, B., & Wu, C.-F. (1983). Neurogenetic analysis of potassium currents in Drosophila: Synergistic effects on neuromuscular transmission in double mutants. Journal of Neurogenetics, 1, 17–28. doi:10.3109/01677068309107069
  • Ganetzky, B., & Wu, C.F. (1985). Genes and membrane excitability in Drosophila. Trends in Neurosciences, 8, 322–326. doi:10.1016/0166-2236(85)90113-4
  • Ganetzky, B., & Wu, C.-F. (1986). Neurogenetics of membrane excitability in Drosophila. Annual Review of Genetics, 20, 13–44. doi:10.1146/annurev.ge.20.120186.000305
  • Guerrero, G., Reiff, D.F., Agarwal, G., Ball, R.W., Borst, A., Goodman, C.S., & Isacoff, E.Y. (2005). Heterogeneity in synaptic transmission along a Drosophila larval motor axon. Nature Neuroscience, 8(9), 1188–1196. Erratum in: Nature Neuroscience, 8, 1411. doi:10.1038/nn1526
  • He, T., Singh, V., Rumpal, N., & Lnenicka, G.A. (2009). Differences in Ca2+ regulation for high-output Is and low-output Ib motor terminals in Drosophila larvae. Neuroscience, 159, 1283–1291. doi:10.1016/j.neuroscience.2009.01.074
  • Hoang, B., & Chiba, A. (2001). Single-cell analysis of Drosophila larval neuromuscular synapses. Developmental Biology, 229, 55–70. doi:10.1006/dbio.2000.9983
  • Jia, X.X., Gorczyca, M., & Budnik, V. (1993). Ultrastructure of neuromuscular junctions in Drosophila: Comparison of wild type and mutants with increased excitability. Journal of Neurobiology, 24, 1025–1044. doi:10.1002/neu.480240804 [Erratum (1994) 25, 893–895]
  • Johansen, J., Halpern, M.E., Johansen, K.M., & Keshishian, H. (1989). Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. Journal of Neuroscience, 9, 710–725. doi:10.1523/JNEUROSCI.09-02-00710.1989
  • Klose, M.K., Boulianne, G.L., Robertson, R.M., & Atwood, H.L. (2009). Role of ATP-dependent calcium regulation in modulation of Drosophila synaptic thermotolerance. Journal of Neurophysiology, 102, 901–913. doi:10.1152/jn.91209.2008
  • Koon, A.C., Ashley, J., Barria, R., DasGupta, S., Brain, R., Waddell, S., … Budnik, V. (2011). Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nature Neuroscience, 14, 190–199. doi:10.1038/nn.2716
  • Kurdyak, P., Atwood, H.L., Stewart, B.A., & Wu, C.F. (1994). Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. Journal of Comparative Neurology, 350, 463–472. doi:10.1002/cne.903500310
  • Lee, J., Ueda, A., & Wu, C.F. (2014). Distinct roles of Drosophila cacophony and Dmca1D Ca2+ channels in synaptic homeostasis: Genetic interactions with slowpoke Ca2+-activated BK channels in presynaptic excitability and postsynaptic response. Developmental Neurobiology, 74, 1–15. doi:10.1002/dneu.22120
  • Lnenicka, G.A., Grizzaffi, J., Lee, B., & Rumpal, N. (2006). Ca2+ dynamics along identified synaptic terminals in Drosophila larvae. Journal of Neuroscience, 26, 12283–12293. doi:10.1523/JNEUROSCI.2665-06.2006
  • Lnenicka, G.A., & Keshishian, H. (2000). Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. Journal of Neurobiology, 43, 186–197. doi:10.1002/(SICI)1097-4695(200005)43:2<186::AID-NEU8>3.0.CO;2-N
  • Lohmann, C., & Bonhoeffer, T. (2008). A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia. Neuron, 59, 253–260. doi:10.1016/j.neuron.2008.05.025
  • Melom, J.E., Akbergenova, Y., Gavornik, J.P., & Littleton, J.T. (2013). Spontaneous and evoked release are independently regulated at individual active zones. Journal of Neuroscience, 33, 17253–17263. doi:10.1523/JNEUROSCI.3334-13.2013
  • Millar, A.G., Zucker, R.S., Ellis-Davies, G.C., Charlton, M.P., & Atwood, H.L. (2005). Calcium sensitivity of neurotransmitter release differs at phasic and tonic synapses. Journal of Neuroscience, 25, 3113–3125. doi:10.1523/JNEUROSCI.4717-04.2005
  • Monastirioti, M., Gorczyca, M., Rapus, J., Eckert, M., White, K., & Budnik, V. (1995). Octopamine immunoreactivity in the fruit fly Drosophila melanogaster. Journal of Comparative Neurology, 356, 275–287. doi:10.1002/cne.903560210
  • Nakai, J., Ohkura, M., & Imoto, K. (2001). A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnology, 19, 137–141. doi:10.1038/84397
  • Nguyen, P.V., Marin, L., & Atwood, H.L. (1997). Synaptic physiology and mitochondrial function in crayfish tonic and phasic motor neurons. Journal of Neurophysiology, 78, 281–294. doi:10.1152/jn.1997.78.1.281
  • Parker, L., Padilla, M., Du, Y., Dong, K., & Tanouye, M.A. (2011). Drosophila as a model for epilepsy: Bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures. Genetics, 187, 523–534. doi:10.1534/genetics.110.123299
  • Peled, E.S., & Isacoff, E.Y. (2011). Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons. Nature Neuroscience, 14, 519–526. doi:10.1038/nn.2767
  • Pérez Koldenkova, V., & Nagai, T. (2013). Genetically encoded Ca2+ indicators: Properties and evaluation. Biochimica et Biophysica Acta, 1833, 1787–1797. doi:10.1016/j.bbamcr.2013.01.011
  • Renger, J.J., Ueda, A., Atwood, H.L., Govind, C.K., & Wu, C.F. (2000). Role of cAMP cascade in synaptic stability and plasticity: Ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. Journal of Neuroscience, 20, 3980–3992. doi:10.1523/JNEUROSCI.20-11-03980.2000
  • Reiff, D.F., Ihring, A., Guerrero, G., Isacoff, E.Y., Joesch, M., Nakai, J., & Borst, A. (2005). In vivo performance of genetically encoded indicators of neural activity in flies. Journal of Neuroscience, 25, 4766–4778. doi:10.1523/JNEUROSCI.4900-04.2005
  • Rusakov, D.A. (2006). Ca2+-dependent mechanisms of presynaptic control at central synapses. Neuroscientist, 12, 317–326. doi:10.1177/1073858405284672
  • Schmid, A., Chiba, A., & Doe, C.Q. (1999). Clonal analysis of Drosophila embryonic neuroblasts: Neural cell types, axon projections and muscle targets. Development, 126, 4653–4689.
  • Shutov, L.P., Kim, M.S., Houlihan, P.R., Medvedeva, Y.V., & Usachev, Y.M. (2013). Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. Journal of Physiology (London), 591, 2443–2462. doi:10.1113/jphysiol.2012.249219
  • Stewart, B.A., Atwood, H.L., Renger, J.J., Wang, J., & Wu, C.F. (1994). Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. Journal of Comparative Physiology A, 175, 179–191. doi:10.1007/BF00215114
  • Tank, D.W., Regehr, W.G., & Delaney, K.R. (1995). A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. Journal of Neuroscience, 15, 7940–7952. doi:10.1523/JNEUROSCI.15-12-07940.1995
  • Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., … Looger, L.L. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods, 6, 875–881. doi:10.1038/nmeth.1398
  • Torroja, L., Packard, M., Gorczyca, M., White, K., & Budnik, V. (1999). The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J Neurosci, 19, 7793–7803.
  • Ueda, A., & Wu, C.-F. (2006). Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila shaker and shab mutations. Journal of Neuroscience, 26, 6238–6248. doi:10.1523/JNEUROSCI.0862-06.2006
  • Ueda, A., & Wu, C.F. (2009). Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: Reduced synaptic strength and precision in a Drosophila memory mutant. Journal of Neurogenetics, 23, 185–199. doi:10.1080/01677060802471726
  • Ueda, A., & Wu, C.F. (2012). Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: Neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations. Journal of Neurogenetics, 26, 64–81. doi:10.3109/01677063.2011.652752
  • Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B., & Axel, R. (2003). Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell, 112, 271–282. doi:10.1016/S0092-8674(03)00004-7
  • Wang, Y., Guo, H.F., Pologruto, T.A., Hannan, F., Hakker, I., Svoboda, K., & Zhong, Y. (2004). Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. Journal of Neuroscience, 24, 6507–6514. doi:10.1523/JNEUROSCI.3727-03.2004
  • Xing, X., & Wu, C.F. (2018). Unraveling synaptic GCaMP Signals: Differential excitability and clearance mechanisms underlying distinct Ca2+ dynamics in tonic and phasic excitatory, and aminergic modulatory motor terminals in Drosophila. eNeuro, pii: ENEURO.0362-17.2018. doi:10.1523/ENEURO.0362-17.2018. PMID: 29464198; PMCID:PMC5818553.
  • Zhong, Y., & Wu, C.F. (2004). Neuronal activity and adenylyl cyclase in environment-dependent plasticity of axonal outgrowth in Drosophila. Journal of Neuroscience, 24, 1439–1445. doi:10.1523/JNEUROSCI.0740-02.2004
  • Zucker, R.S. (1996). Exocytosis: A molecular and physiological perspective. Neuron, 17, 1049–1055. doi:10.1016/S0896-6273(00)80238-X
  • Zucker, R.S., & Regehr, W.G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405. doi:10.1146/annurev.physiol.64.092501.114547

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.