383
Views
15
CrossRef citations to date
0
Altmetric
Original Research Article

Cortical astroglia undergo transcriptomic dysregulation in the G93A SOD1 ALS mouse model

, ORCID Icon, &
Pages 322-335 | Received 07 Nov 2017, Accepted 06 Aug 2018, Published online: 06 Nov 2018

References

  • Adams, S.J., Aydin, I.T., & Celebi, J.T. (2012). GAB2 – a scaffolding protein in cancer. Molecular Cancer Research, 10, 1265–1270. doi:10.1158/1541-7786.MCR-12-0352
  • Allaman, I., Belanger, M., & Magistretti, P.J. (2011). Astrocyte-neuron metabolic relationships: For better and for worse. Trends in Neurosciences, 34, 76–87. doi:10.1016/j.tins.2010.12.001
  • Angel, I., Bar, A., Horovitz, T., Taler, G., Krakovsky, M., Resnitsky, D., … Kozak, A. (2002). Metal ion chelation in neurodegenerative disorders. Drug Development Research, 56, 300–309. doi:10.1002/ddr.10083
  • Arias, M., Quintans, B., Garcia-Murias, M., & Sobrido, M.J. (1993). Spinocerebellar Ataxia Type 36. In M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens, & A. Amemiya (Eds.), GeneReviews((R)). Seattle (WA): University of Washington.
  • Armon, C., Kurland, L.T., Daube, J.R., & O'Brien, P.C. (1991). Epidemiologic correlates of sporadic amyotrophic lateral sclerosis. Neurology, 41, 1077–1084. doi:10.1212/WNL.41.7.1077
  • Arrazola, M.S., Silva-Alvarez, C., & Inestrosa, N.C. (2015). How the Wnt signaling pathway protects from neurodegeneration: The mitochondrial scenario. Frontiers in Cellular Neuroscience, 9, 166. doi:10.3389/fncel.2015.00166
  • Bahadorani, S., Mukai, S., Egli, D., & Hilliker, A.J. (2010). Overexpression of metal-responsive transcription factor (MTF-1) in Drosophila melanogaster ameliorates life-span reductions associated with oxidative stress and metal toxicity. Neurobiology of Aging, 31, 1215–1226. doi:10.1016/j.neurobiolaging.2008.08.001
  • Bellingham, S.A., Coleman, L.A., Masters, C.L., Camakaris, J., & Hill, A.F. (2009). Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1. Journal of Biological Chemistry, 284, 1291–1301. doi:10.1074/jbc.M804755200
  • Bertram, L., & Tanzi, R.E. (2009). Genome-wide association studies in Alzheimer's disease. Human Molecular Genetics, 18, R137–R145. doi:10.1093/hmg/ddp406
  • Cassereau, J., Chevrollier, A., Bonneau, D., Verny, C., Procaccio, V., Reynier, P., & Ferré, M. (2011). A locus-specific database for mutations in GDAP1 allows analysis of genotype–phenotype correlations in Charcot-Marie-Tooth diseases type 4A and 2K. Orphanet Journal of Rare Diseases, 6, 87. doi:10.1186/1750-1172-6-87
  • Cassereau, J., Chevrollier, A., Gueguen, N., Desquiret, V., Verny, C., Nicolas, G., … Procaccio, V. (2011). Mitochondrial dysfunction and pathophysiology of Charcot-Marie-Tooth disease involving GDAP1 mutations. Experimental Neurology, 227, 31–41. doi:10.1016/j.expneurol.2010.09.006
  • Chancellor, A.M., Slattery, J.M., Fraser, H., & Warlow, C.P. (1993). Risk factors for motor neuron disease: A case–control study based on patients from the Scottish Motor Neuron Disease Register. Journal of Neurology, Neurosurgery, and Psychiatry, 56, 1200–1206. doi:10.1136/jnnp.56.11.1200
  • Chen, Y., Guan, Y., Liu, H., Wu, X., Yu, L., Wang, S., … Wang, X. (2012). Activation of the Wnt/beta-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. Biochemical and Biophysical Research Communications, 420, 397–403. doi:10.1016/j.bbrc.2012.03.006
  • De Ferrari, G.V., Chacón, M.A., Barría, M.I., Garrido, J.L., Godoy, J.A., Olivares, G., … Inestrosa, N.C. (2003). Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Molecular Psychiatry, 8, 195–208. doi:10.1038/sj.mp.4001208
  • Du, X., Wang, Q., Hirohashi, Y., & Greene, M.I. (2006). DIPA, which can localize to the centrosome, associates with p78/MCRS1/MSP58 and acts as a repressor of gene transcription. Experimental and Molecular Pathology, 81, 184–190. doi:10.1016/j.yexmp.2006.07.008
  • Figley, M.D., Thomas, A., & Gitler, A.D. (2014). Evaluating noncoding nucleotide repeat expansions in amyotrophic lateral sclerosis. Neurobiology of Aging, 35, 936 e931–934. doi:10.1016/j.neurobiolaging.2013.09.024
  • Fogarty, M.J., Mu, E.W., Noakes, P.G., Lavidis, N.A., & Bellingham, M.C. (2016). Marked changes in dendritic structure and spine density precede significant neuronal death in vulnerable cortical pyramidal neuron populations in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 4, 77. doi:10.1186/s40478-016-0347-y
  • Fogarty, M.J., Noakes, P.G., & Bellingham, M.C. (2015). Motor cortex layer V pyramidal neurons exhibit dendritic regression, spine loss, and increased synaptic excitation in the presymptomatic hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. Journal of Neuroscience, 35, 643–647. doi:10.1523/JNEUROSCI.3483-14.2015
  • Foo, L.C. (2013). Purification of astrocytes from transgenic rodents by fluorescence-activated cell sorting. Cold Spring Harbor Protocols, 2013, pdb.prot074229–560. doi:10.1101/pdb.prot074229
  • Fujita, K., Mondal, A.M., Horikawa, I., Nguyen, G.H., Kumamoto, K., Sohn, J.J., … Harris, C.C. (2009). p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nature Cell Biology, 11, 1135–1142. doi:10.1038/ncb1928
  • García-Murias, M., Quintáns, B., Arias, M., Seixas, A.I., Cacheiro, P., Tarrío, R., … Sobrido, M.J. (2012). 'Costa da Morte' ataxia is spinocerebellar ataxia 36: Clinical and genetic characterization. Brain, 135, 1423–1435. doi:10.1093/brain/aws069
  • Grzywacz, A., Gdula-Argasińska, J., Muszyńska, B., Tyszka-Czochara, M., Librowski, T., & Opoka, W. (2015). Metal responsive transcription factor 1 (MTF-1) regulates zinc dependent cellular processes at the molecular level. Acta Biochimica Polonica, 62, 491–498. doi:10.18388/abp.2015_1038
  • Haidet-Phillips, A.M., Hester, M.E., Miranda, C.J., Meyer, K., Braun, L., Frakes, A., … Kaspar, B.K. (2011). Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nature Biotechnology, 29, 824. doi:10.1038/nbt1957
  • Han, Z., Huang, H., Gao, Y., & Huang, Q. (2017). Functional annotation of Alzheimer's disease associated loci revealed by GWASs. PLoS One, 12, e0179677. doi:10.1371/journal.pone.0179677
  • Hemali, P., Phatnani, P.G., Friedman, B.A., Carrasco, M.A., Michael, M., Sean, OKeeffe, A.,… Maniatis, T. (2013). Intricate interplay between astrocytes and motor neurons in ALS. PNAS, 110, E756–E765.
  • Hermida, M.A., Dinesh Kumar, J., & Leslie, N.R. (2017). GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Advances in Biological Regulation, 65, 5–15. doi:10.1016/j.jbior.2017.06.003
  • Iwai, A., Hijikata, M., Hishiki, T., Isono, O., Chiba, T., & Shimotohno, K. (2008). Coiled-coil domain containing 85B suppresses the beta-catenin activity in a p53-dependent manner. Oncogene, 27, 1520–1526. doi:10.1038/sj.onc.1210801
  • Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemical Journal, 353, 417–439. doi:10.1042/bj3530417
  • John Lin, C.-C., Yu, K., Hatcher, A., Huang, T.-W., Lee, H.K., Carlson, J., … Deneen, B. (2017). Identification of diverse astrocyte populations and their malignant analogs. Nature Neuroscience, 20, 396–405. doi:10.1038/nn.4493
  • Kahn, M. (2014). Can we safely target the WNT pathway? Nature Reviews Drug Discovery, 13, 513–532. doi:10.1038/nrd4233
  • Kaiser, M., Maletzki, I., Hülsmann, S., Holtmann, B., Schulz-Schaeffer, W., Kirchhoff, F., … Neusch, C. (2006). Progressive loss of a glial potassium channel (KCNJ10) in the spinal cord of the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 99, 900–912. doi:10.1111/j.1471-4159.2006.04131.x
  • Kobayashi, H., Abe, K., Matsuura, T., Ikeda, Y., Hitomi, T., Akechi, Y., … Koizumi, A. (2011). Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. American Journal of Human Genetics, 89, 121–130. doi:10.1016/j.ajhg.2011.05.015
  • Koike, N., Kassai, Y., Kouta, Y., Miwa, H., Konishi, M., & Itoh, N. (2007). Brorin, a novel secreted bone morphogenetic protein antagonist, promotes neurogenesis in mouse neural precursor cells. Journal of Biological Chemistry, 282, 15843–15850. doi:10.1074/jbc.M701570200
  • Koppers, M., Blokhuis, A.M., Westeneng, H.-J., Terpstra, M.L., Zundel, C.A.C., Vieira de Sá, R., … Pasterkamp, R.J. (2015). C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Annals of Neurology, 78, 426–438. doi:10.1002/ana.24453
  • Li, S.S., Qu, Z., Haas, M., Ngo, L., Heo, Y.J., Kang, H.J., … Heng, J.I.-T. (2016). The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down syndrome. Scientific Reports, 6, 29514. doi:10.1038/srep29514
  • Li, S., Wang, L., Berman, M.A., Zhang, Y., & Dorf, M.E. (2006). RNAi screen in mouse astrocytes identifies phosphatases that regulate NF-kappaB signaling. Molecular Cell, 24, 497–509. doi:10.1016/j.molcel.2006.10.015
  • Libro, R., Bramanti, P., & Mazzon, E. (2016). The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sciences, 158, 78–88. doi:10.1016/j.lfs.2016.06.024
  • Liu, C., & Gotz, J. (2013). How it all started: Tau and protein phosphatase 2A. Journal of Alzheimer's Disease, 37, 483–494. doi:10.3233/JAD-130503
  • Liu, W., Ikeda, Y., Hishikawa, N., Yamashita, T., Deguchi, K., & Abe, K. (2014). Characteristic RNA foci of the abnormal hexanucleotide GGCCUG repeat expansion in spinocerebellar ataxia type 36 (Asidan). European Journal of Neurology, 21, 1377–1386. doi:10.1111/ene.12491
  • Liu, X.-P., Zheng, H.-Y., Qu, M., Zhang, Y., Cao, F.-Y., Wang, Q., … Wang, J.-Z. (2012). Upregulation of astrocytes protein phosphatase-2A stimulates astrocytes migration via inhibiting p38 MAPK in tg2576 mice. Glia, 60, 1279–1288. doi:10.1002/glia.22347
  • Liu, Y., Pattamatta, A., Zu, T., Reid, T., Bardhi, O., Borchelt, D.R., … Ranum, L.P.W. (2016). C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron, 90, 521–534. doi:10.1016/j.neuron.2016.04.005
  • Loureiro, J.R., Oliveira, C.L., & Silveira, I. (2016). Unstable repeat expansions in neurodegenerative diseases: Nucleocytoplasmic transport emerges on the scene. Neurobiology of Aging, 39, 174–183. doi:10.1016/j.neurobiolaging.2015.12.007
  • Ma, T., Tzavaras, N., Tsokas, P., Landau, E.M., & Blitzer, R.D. (2011). Synaptic stimulation of mTOR is mediated by Wnt signaling and regulation of glycogen synthetase kinase-3. Journal of Neuroscience, 31, 17537–17546. doi:10.1523/JNEUROSCI.4761-11.2011
  • Markham, N.O., Doll, C.A., Dohn, M.R., Miller, R.K., Yu, H., Coffey, R.J., … Reynolds, A.B. (2014). DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: Potential roles in hydrocephalus and heterotopia. Molecular Biology of the Cell, 25, 2592–2603. doi:10.1091/mbc.E13-08-0492
  • Miller, S.J., & Rothstein, J.D. (2016). Astroglia in thick tissue with super resolution and cellular reconstruction. PLoS One, 11, e0160391. doi:10.1371/journal.pone.0160391
  • Miller, S.J., Zhang, P.W., Glatzer, J., & Rothstein, J.D. (2016). Astroglial transcriptome dysregulation in early disease of an ALS mutant SOD1 mouse model. Journal of Neurogenetics, 1, 1–12. doi:10.1080/01677063.2016.1260128
  • Miwa, H., Miyake, A., Kouta, Y., Shimada, A., Yamashita, Y., Nakayama, Y., … Itoh, N. (2009). A novel neural-specific BMP antagonist, Brorin-like, of the Chordin family. FEBS Letters, 583, 3643–3648. doi:10.1016/j.febslet.2009.10.044
  • Miyake, A., Mekata, Y., Fujibayashi, H., Nakanishi, K., Konishi, M., & Itoh, N. (2017). Brorin is required for neurogenesis, gliogenesis, and commissural axon guidance in the zebrafish forebrain. PLoS One, 12, e0176036. doi:10.1371/journal.pone.0176036
  • Miyazaki, K., Yamashita, T., Morimoto, N., Sato, K., Mimoto, T., Kurata, T., … Abe, K. (2013). Early and selective reduction of NOP56 (Asidan) and RNA processing proteins in the motor neuron of ALS model mice. Neurological Research, 35, 744–754. doi:10.1179/1743132813Y.0000000196
  • Morahan, J.M., Yu, B., Trent, R.J., & Pamphlett, R. (2007). Genetic susceptibility to environmental toxicants in ALS. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, 144B, 885–890. doi:10.1002/ajmg.b.30543
  • Mori, N., Kuwamura, M., Tanaka, N., Hirano, R., Nabe, M., Ibuki, M., & Yamate, J. (2012). Ccdc85c encoding a protein at apical junctions of radial glia is disrupted in hemorrhagic hydrocephalus (hhy) mice. American Journal of Pathology, 180, 314–327. doi:10.1016/j.ajpath.2011.09.014
  • Nardo, G., Trolese, M.C., Tortarolo, M., Vallarola, A., Freschi, M., Pasetto, L., … Bendotti, C. (2016). New insights on the mechanisms of disease course variability in ALS from mutant SOD1 mouse models. Brain Pathology, 26, 237–247. doi:10.1111/bpa.12351
  • Niemann, A., Huber, N., Wagner, K.M., Somandin, C., Horn, M., Lebrun-Julien, F., … Suter, U. (2014). The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease. Brain, 137, 668–682. doi:10.1093/brain/awt371
  • Oberheim, N.A., Goldman, S.A., & Nedergaard, M. (2012). Heterogeneity of astrocytic form and function. Methods in Molecular Biology, 814, 23–45. doi:10.1007/978-1-61779-452-0_3
  • Okun, E., Griffioen, K.J., Lathia, J.D., Tang, S.C., Mattson, M.P., & Arumugam, T.V. (2009). Toll-like receptors in neurodegeneration. Brain Research Reviews, 59, 278–292. doi:10.1016/j.brainresrev.2008.09.001
  • Orre, M., Kamphuis, W., Osborn, L.M., Melief, J., Kooijman, L., Huitinga, I., … Hol, E.M. (2014). Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiology of Aging, 35, 1–14. doi:10.1016/j.neurobiolaging.2013.07.008
  • Perera, N.D., Sheean, R.K., Scott, J.W., Kemp, B.E., Horne, M.K., & Turner, B.J. (2014). Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models. PLoS One, 9, e90449. doi:10.1371/journal.pone.0090449
  • Persad, A., Venkateswaran, G., Hao, L., Garcia, M.E., Yoon, J., Sidhu, J., & Persad, S. (2016). Active β-catenin is regulated by the PTEN/PI3 kinase pathway: A role for protein phosphatase PP2A. Genes Cancer, 7, 368–382. doi:10.18632/genesandcancer.128
  • Pfrieger, F.W. (2010). Role of glial cells in the formation and maintenance of synapses. Brain Research Reviews, 63, 39–46. doi:10.1016/j.brainresrev.2009.11.002
  • Pfrieger, F.W., & Ungerer, N. (2011). Cholesterol metabolism in neurons and astrocytes. Progress in Lipid Research, 50, 357–371. doi:10.1016/j.plipres.2011.06.002
  • Philips, T., & Rothstein, J.D. (2015). Rodent models of amyotrophic lateral sclerosis. Current Protocols in Pharmacology, 67, 61–21. doi:10.1002/0471141755.ph0567s69
  • Ratcliffe, C.F., Qu, Y., McCormick, K.A., Tibbs, V.C., Dixon, J.E., Scheuer, T., & Catterall, W.A. (2000). A sodium channel signaling complex: Modulation by associated receptor protein tyrosine phosphatase beta. Nature Neuroscience, 3, 437–444. doi:10.1038/74805
  • Roelofs-Iverson, R.A., Mulder, D.W., Elveback, L.R., Kurland, L.T., & Molgaard, C.A. (1984). ALS and heavy metals: A pilot case–control study. Neurology, 34, 393–395.
  • Rothstein, J.D., Van Kammen, M., Levey, A.I., Martin, L.J., & Kuncl, R.W. (1995). Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Annals of Neurology, 38, 73–84. doi:10.1002/ana.410380114
  • Saini, N., Georgiev, O., & Schaffner, W. (2011). The Parkin mutant phenotype in the fly is largely rescued by metal-responsive transcription factor (MTF-1). Molecular and Cellular Biology, 31, 2151–2161. doi:10.1128/MCB.05207-11
  • Sangodkar, J., Farrington, C.C., McClinch, K., Galsky, M.D., Kastrinsky, D.B., & Narla, G. (2016). All roads lead to PP2A: Exploiting the therapeutic potential of this phosphatase. FEBS Journal, 283, 1004–1024. doi:10.1111/febs.13573
  • Seshacharyulu, P., Pandey, P., Datta, K., & Batra, S.K. (2013). Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Letters, 335, 9–18. doi:10.1016/j.canlet.2013.02.036
  • Smale, G., Nichols NR, Brady, D.R., Finch, C.E., & Horton, W.E. (1995). Evidence for apoptotic cell death in Alzheimer's disease. Experimental Neurology, 133, 225–230.
  • Sontag, J.M., & Sontag, E. (2014). Protein phosphatase 2A dysfunction in Alzheimer's disease. Frontiers in Cellular Neuroscience, 7, 16. doi:10.3389/fnmol.2014.00016
  • Soriano, S., Calap-Quintana, P., Llorens, J.V., Al-Ramahi, I., Gutiérrez, L., Martínez-Sebastián, M.J., … Moltó, M.D. (2016). Metal homeostasis regulators suppress FRDA phenotypes in a drosophila model of the disease. PLoS One, 11, e0159209. doi:10.1371/journal.pone.0159209
  • Tsai, H.-H., Li, H., Fuentealba, L.C., Molofsky, A.V., Taveira-Marques, R., Zhuang, H., … Rowitch, D.H. (2012). Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science, 337, 358–362. doi:10.1126/science.1222381
  • Turnquist, C., Horikawa, I., Foran, E., Major, E.O., Vojtesek, B., Lane, D.P., … Harris, C.C. (2016). p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration. Cell Death and Differentiation, 23, 1515–1528. doi:10.1038/cdd.2016.37
  • Valenza, M., Marullo, M., Di Paolo, E., Cesana, E., Zuccato, C., Biella, G., & Cattaneo, E. (2015). Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease. Cell Death and Differentiation, 22, 690–702. doi:10.1038/cdd.2014.162
  • van Loo, K.M.J., Schaub, C., Pitsch, J., Kulbida, R., Opitz, T., Ekstein, D., … Becker, A.J. (2015). Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1. Nature Communications, 6, 8688. doi:10.1038/ncomms9688
  • Vance, J.E. (2012). Dysregulation of cholesterol balance in the brain: Contribution to neurodegenerative diseases. Disease Models & Mechanisms, 5, 746–755. doi:10.1242/dmm.010124
  • Wang, X., Blanchard, J., Grundke-Iqbal, I., Wegiel, J., Deng, H.X., Siddique, T., & Iqbal, K. (2014). Alzheimer disease and amyotrophic lateral sclerosis: An etiopathogenic connection. Acta Neuropathologica, 127, 243–256. doi:10.1007/s00401-013-1175-9
  • Yamanaka, K., Chun, S.J., Boillee, S., Fujimori-Tonou, N., Yamashita, H., Gutmann, D.H., … Cleveland, D.W. (2008). Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neuroscience, 11, 251–253. doi:10.1038/nn2047
  • Yang, Y., Vidensky, S., Jin, L., Jie, C., Lorenzini, I., Frankl, M., & Rothstein, J.D. (2011). Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia, 59, 200–207. doi:10.1002/glia.21089
  • Yu, L., Guan, Y., Wu, X., Chen, Y., Liu, Z., Du, H., & Wang, X. (2013). Wnt Signaling is altered by spinal cord neuronal dysfunction in amyotrophic lateral sclerosis transgenic mice. Neurochemical Research, 38, 1904–1913. doi:10.1007/s11064-013-1096-y
  • Yu, N., Kakunda, M., Pham, V., Lill, J.R., Du, P., Wongchenko, M., … Huang, XDong. (2015). HSP105 recruits protein phosphatase 2A to dephosphorylate beta-catenin. Molecular and Cellular Biology, 35, 1390–1400. doi:10.1128/MCB.01307-14
  • Zhang, Y., & Barres, B.A. (2010). Astrocyte heterogeneity: An underappreciated topic in neurobiology. Current Opinion in Neurobiology, 20, 588–594. doi:10.1016/j.conb.2010.06.005
  • Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O'Keeffe, S., … Wu, J.Q. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. Journal of Neuroscience, 34, 11929–11947. doi:10.1523/JNEUROSCI.1860-14.2014
  • Zou, F., Belbin, O., Carrasquillo, M.M., Culley, O.J., Hunter, T.A., Ma, L., … Younkin, S.G. (2013). Linking protective GAB2 variants, increased cortical GAB2 expression and decreased Alzheimer's disease pathology. PLoS One, 8, e64802. doi:10.1371/journal.pone.0064802

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.