304
Views
5
CrossRef citations to date
0
Altmetric
Original Research Article

Genetic analysis of KillerRed in C. elegans identifies a shared role of calcium genes in ROS-mediated neurodegeneration

, , & ORCID Icon
Pages 1-9 | Received 14 Aug 2017, Accepted 27 Sep 2018, Published online: 29 Nov 2018

References

  • Aggad, D., Vérièpe, J., Tauffenberger, A., & Parker, J.A. (2014). TDP-43 toxicity proceeds via calcium dysregulation and necrosis in aging Caenorhabditis elegans motor neurons. The Journal of Neuroscience, 34, 12093–12103. doi:10.1523/JNEUROSCI.2495-13.2014
  • Arundine, M., & Tymianski, M. (2004). Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cellular and Molecular Life Sciences: CMLS, 61, 657–668. doi:10.1007/s00018-003-3319-x
  • Bánsághi, S., Golenár, T., Madesh, M., Csordás, G., RamachandraRao, S., Sharma, K., … Hajnóczky, G. (2014). Isoform- and species-specific control of inositol 1,4,5-trisphosphate (IP3) receptors by reactive oxygen species. The Journal of Biological Chemistry, 289, 8170–8181. doi:10.1074/jbc.M113.504159
  • Barbagallo, B., Prescott, H.A., Boyle, P., Climer, J., & Francis, M.M. (2010). A dominant mutation in a neuronal acetylcholine receptor subunit leads to motor neuron degeneration in Caenorhabditis elegans. The Journal of Neuroscience, 30, 13932–13942. doi:10.1523/JNEUROSCI.1515-10.2010
  • Baylis, H.A., Furuichi, T., Yoshikawa, F., Mikoshiba, K., & Sattelle, D.B. (1999). Inositol 1,4,5-trisphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene (itr-1). Journal of Molecular Biology, 294, 467–476. doi:10.1006/jmbi.1999.3229
  • Berger, A.J., Hart, A.C., & Kaplan, J.M. (1998). G alphas-induced neurodegeneration in Caenorhabditis elegans. The Journal of Neuroscience, 18, 2871–2880. doi:10.1523/JNEUROSCI.18-08-02871.1998
  • Brassai, A., Suvanjeiev, R.-G., Bán, E.-G., & Lakatos, M. (2015). Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Research Bulletin, 112, 1–6. doi:10.1016/j.brainresbull.2014.12.007
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.
  • Bulina, M.E., Chudakov, D.M., Britanova, O.V., Yanushevich, Y.G., Staroverov, D.B., Chepurnykh, T.V., … Lukyanov, K.A. (2006). A genetically encoded photosensitizer. Nature Biotechnology, 24, 95–99. doi:10.1038/nbt1175
  • Driscoll, M., & Chalfie, M. (1991). The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature, 349, 588–593. doi:10.1038/349588a0
  • Emerit, J., Edeas, M., & Bricaire, F. (2004). Neurodegenerative diseases and oxidative stress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 58, 39–46. doi:10.1016/j.biopha.2003.11.004
  • Fruen, B.R., Mickelson, J.R., & Louis, C.F. (1997). Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors. The Journal of Biological Chemistry, 272, 26965–26971. doi:10.1074/jbc.272.43.26965
  • Hall, D.H., Gu, G., García-Añoveros, J., Gong, L., Chalfie, M., & Driscoll, M. (1997). Neuropathology of degenerative cell death in Caenorhabditis elegans. Journal of Neuroscience, 17, 1033–1045. doi:10.1523/JNEUROSCI.17-03-01033.1997
  • Hetz, C., & Mollereau, B. (2014). Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nature Reviews. Neuroscience, 15, 233–249. doi:10.1038/nrn3689
  • Ijomone, O.M., Miah, M.R., Peres, T.V., Nwoha, P.U., & Aschner, M. (2016). Null allele mutants of trt-1, the catalytic subunit of telomerase in Caenorhabditis elegans, are less sensitive to Mn-induced toxicity and DAergic degeneration. Neurotoxicology, 57, 54–60. doi:10.1016/j.neuro.2016.08.016
  • Jin, Y., Jorgensen, E., Hartwieg, E., & Horvitz, H.R. (1999). The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. The Journal of Neuroscience, 19, 539–548. doi:10.1523/JNEUROSCI.19-02-00539.1999
  • Jorgensen, E.M. (2005). GABA. In WormBook, ed. The C. elegans research community, WormBook, doi/10.1895/wormbook.1.14.1, http://www.wormbook.org.
  • Korswagen, H.C., Park, J.H., Ohshima, Y., & Plasterk, R.H. (1997). An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes & Development, 11, 1493–1503. doi:10.1101/gad.11.12.1493
  • Labuschagne, C.F., & Brenkman, A.B. (2013). Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging. Ageing Research Reviews, 12, 918–930. doi:10.1016/j.arr.2013.09.003
  • Lee, D., Singaravelu, G., Park, B.-J., & Ahnn, J. (2007). Differential requirement of unfolded protein response pathway for calreticulin expression in Caenorhabditis elegans. Journal of Molecular Biology, 372, 331–340. doi:10.1016/j.jmb.2007.06.071
  • Ly, K., Reid, S.J., & Snell, R.G. (2015). Rapid RNA analysis of individual Caenorhabditis elegans. MethodsX, 2, 59–63. doi:10.1016/j.mex.2015.02.002
  • Maryon, E.B., Coronado, R., & Anderson, P. (1996). unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction. The Journal of Cell Biology, 134, 885–893. doi:10.1083/jcb.134.4.885
  • Maryon, E.B., Saari, B., & Anderson, P. (1998). Muscle-specific functions of ryanodine receptor channels in Caenorhabditis elegans. Journal of Cell Science, 111, 2885–2895.
  • McIntire, S.L., Jorgensen, E., Kaplan, J., & Horvitz, H.R. (1993). The GABAergic nervous system of Caenorhabditis elegans. Nature, 364, 337–341. doi:10.1038/364337a0
  • Nakamura, K., Zuppini, A., Arnaudeau, S., Lynch, J., Ahsan, I., Krause, R., … Michalak, M. (2001). Functional specialization of calreticulin domains. The Journal of Cell Biology, 154, 961–972. doi:10.1083/jcb.200102073
  • Nass, R., Hall, D.H., Miller, D.M., & Blakely, R.D. (2002). Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 99, 3264–3269. doi:10.1073/pnas.042497999
  • Pollari, E., Goldsteins, G., Bart, G., Koistinaho, J., & Giniatullin, R. (2014). The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Frontiers in Cellular Neuroscience, 8, 131. doi:10.3389/fncel.2014.00131
  • Pu, P., & Le, W. (2008). Dopamine neuron degeneration induced by MPP + is independent of CED-4 pathway in Caenorhabditis elegans. Cell Research, 18, 978–981. doi:10.1038/cr.2008.279
  • Richmond, J.E., & Jorgensen, E.M. (1999). One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nature Neuroscience, 2, 791–797. doi:10.1038/12160
  • Sakube, Y., Ando, H., & Kagawa, H. (1997). An abnormal ketamine response in mutants defective in the ryanodine receptor gene ryr-1(unc-68) of Caenorhabditis elegans. Journal of Molecular Biology, 267, 849–864. doi:10.1006/jmbi.1997.0910
  • Song, S.K., Karl, I.E., Ackerman, J.J., & Hotchkiss, R.S. (1993). Increased intracellular Ca2+: A critical link in the pathophysiology of sepsis? Proceedings of the National Academy of Sciences of the United States of America, 90, 3933–3937. doi:10.1073/pnas.90.9.3933
  • Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews. Neuroscience, 4, 49–60. doi:10.1038/nrn1007
  • Stiernagle, T. Maintenance of C. elegans (February 11, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.101.1, http://www.wormbook.org
  • Syntichaki, P., & Tavernarakis, N. (2004). Genetic models of mechanotransduction: The nematode Caenorhabditis elegans. Physiological Reviews, 84, 1097–1153. doi:10.1152/physrev.00043.2003
  • Syntichaki, P., Xu, K., Driscoll, M., & Tavernarakis, N. (2002). Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature, 419, 939–944. doi:10.1038/nature01108
  • Treinin, M., & Chalfie, M. (1995). A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron, 14, 871–877. doi:10.1016/0896-6273(95)90231-7
  • Vaccaro, A., Tauffenberger, A., Aggad, D., Rouleau, G., Drapeau, P., & Parker, J.A. (2012). Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS One, 7, e31321. doi:10.1371/journal.pone.0031321
  • Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I., & Lazdunski, M. (1996). The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. Journal of Biological Chemistry, 271, 10433–10436. doi:10.1074/jbc.271.18.10433
  • Williams, D.C., El Bejjani, R., Ramirez, P.M., Coakley, S., Kim, S.A., Lee, H., … Hammarlund, M. (2013). Rapid and permanent neuronal inactivation in vivo via subcellular generation of reactive oxygen with the use of KillerRed. Cell Reports, 5, 553–563. doi:10.1016/j.celrep.2013.09.023
  • Xu, K., Tavernarakis, N., & Driscoll, M. (2001). Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron, 31, 957–971. doi:10.1016/S0896-6273(01)00432-9
  • Young, L.E., & Williams, D.C. (2015). Reactive oxygen species-mediated neurodegeneration is independent of the ryanodine receptor in Caenorhabditis elegans. Journal of the South Carolina Academy of Science, 13, Article 4. Available from: https://scholarcommons.sc.edu/jscas/vol13/iss2/4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.